Statistical Models for Flaring Detection in Astronomical Gamma-ray Light Curves

Andrea Sottosanti

University of Padova - Department of Statistical Sciences

Joint work with:

M. Bernardi, A. R. Brazzale, A. Siemiginowska, M. Sobolewska, D. van Dyk

Data: a light curve of n flux measurements $\{y_{t_i}\}_{i=1}^n$ observed at times (t_1, \ldots, t_n) , with $\Delta_i = t_i - t_{i-1}$ not constant.

time t_i	flux y_{t_i} (10 ⁻⁷)	error ζ_{t_i} (10 ⁻⁷)
54684.00	5.58	2.07
54693.60	1.95	0.83
54695.60	7.56	1.69
54697.60	4.36	1.23
54699.60	5.58	0.92
54701.60	5.23	1.29
54703.60	5.18	1.39
:	:	:
	•	•

Data: a light curve of n flux measurements $\{y_{t_i}\}_{i=1}^n$ observed at times (t_1, \ldots, t_n) , with $\Delta_i = t_i - t_{i-1}$ not constant.

time t_i	flux y_{t_i} (10 ⁻⁷)	error ζ_{t_i} (10 ⁻⁷)
54684.00	5.58	2.07
54693.60	1.95	0.83
54695.60	7.56	1.69
54697.60	4.36	1.23
54699.60	5.58	0.92
54701.60	5.23	1.29
54703.60	5.18	1.39
:	:	:

Goals:

- 1. derive a statistical model to accurately describe the dynamics of the source emission activity.
- 2. separate the different states of variability at the base of the light curve, with particular attention to the flares.

We model the joint distribution of (Y_{t_i}, S_{t_i}) , where:

- $S_{t_i} \in \{1, \dots, S\}$ is a latent continuous-time Markov process with initial probability δ and generator matrix \mathbf{Q} .
- Y_{t_i} is the flux at the *i*-th observation time. We assume that it depends on both the previous flux measurement and the current value of the latent state:

$$Y_{t_i}|S_{t_i}, Y_{t_{i-1}} \sim \mathcal{N}(\mu_{i,s}^*, \sigma_{i,s}^{2*}),$$

where $\mu_{i,s}^*$ and $\sigma_{i,s}^{2*}$ are the mean and the variance of an OU-process parametrized by $(\mu_s, \sigma_s^2, \tau_s)$.

The statistical model

Figure 1: DAG of the continuous time hidden Markov model. Grey circles are the data and white circles represent the latent Markov process.

- S_{t_i} is unknown, and so the inference is carried out using the EM algorithm.
- The distributions of the parameter estimators are assessed using the bootstrap.

Case study: Blasar PKS 1510-05

Figure 2: The γ -ray light curve from the blasar PKS 1510-05 recorded by the *Fermi* LAT telescope over 630 observation times. The most frequent time gap is $\Delta_i = 2$, and the largest is $\Delta_i = 60$.

PSF 1510-05: Model fitting

- When s = 1, we fit an OU process.
- When s = 2, we fit a log-OU process.

Table 1: Estimates of the model parameters in the two latent states. From left to right: mean, square of the volatility, speed of mean reversion and probability to remain in the same state after an interval $\Delta_i = 2$. The standard errors obtained with B = 200 bootstrap replicates are given in parenthesis.

	$\hat{\mu}_s$	$\hat{\sigma}_s^2$	$\hat{\tau}_s$	$\hat{p}_{s,s}(\Delta_t = 2)$
s = 1	$4.69 \cdot 10^{-7}$	$5.563 \cdot 10^{-14}$	0.699	0.952
	$(1.602 \cdot 10^{-8})$	$(8.822 \cdot 10^{-15})$	(0.08)	(0.012)
s = 2	-13.443	0.172	0.522	0.868
	(0.066)	(0.032)	(0.119)	(0.039)

Table 2: Mean and the variance of the limit distributions in the twostates.

	$\lim_{\Delta\to\infty}\mathbb{E}_Y$	$\lim_{\Delta\to\infty}\mathbb{V}_Y$
s = 1	$4.69 \cdot 10^{-7}$	$3.977 \cdot 10^{-14}$
s = 2	$1.576 \cdot 10^{-6}$	$4.446 \cdot 10^{-13}$

PKS 1510-05: Model fitting

Figure 3: Light curve of the blazar PKS 1510-05 (solid black line) against the mean (solid red line) and 95% confidence interval (dashed lines) of the predictive density.

PKS 1510-05: Model fitting

Figure 4: Histogram of the flux compared to the limit distribution of the proposed model (red line) and of a single log-OU process (blue line).

PKS 1510-05: Residuals

Figure 5: Autocorrelation function of the model residuals.

PKS 1510-05: Flaring probabilities

Figure 6: Plot of the classification of the flux measurements. For every data point *i*, the colour represents the estimated probability of being a flare. A shift toward red states that the observation is more probable to come from the flaring activity.

PKS 1510-05: Maximum of the process

Figure 7: Distribution of max(Y) based on B = 200 bootstrap replicates. The red line corresponds to the maximum in the observed light curve \mathcal{Y} . The proportion of bootstrap values larger than the observed maximum is 0.16.

Main idea: the observed flux measurement y_{t_i} comes from a real flux measurement, x_{t_i} , which was observed with an error term ε_{t_i} , and this error has known variance ζ_{t_i} given by the telescope.

Main idea: the observed flux measurement y_{t_i} comes from a real flux measurement, x_{t_i} , which was observed with an error term ε_{t_i} , and this error has known variance ζ_{t_i} given by the telescope.

Observation equation:

 $y_{t_i} = x_{t_i} + \varepsilon_{t_i}$

 $\varepsilon_{t_i} \sim \mathcal{N}(0, \zeta_{t_i}),$

Main idea: the observed flux measurement y_{t_i} comes from a real flux measurement, x_{t_i} , which was observed with an error term ε_{t_i} , and this error has known variance ζ_{t_i} given by the telescope.

Observation equation:

$$y_{t_i} = x_{t_i} + \varepsilon_{t_i}$$
 $\varepsilon_{t_i} \sim \mathcal{N}(0, \zeta_{t_i}),$

State equation:

$$x_{t_i} = e^{-\tau \Delta_i} x_{t_{i-1}} + \mu \left(1 - e^{-\tau \Delta_i} \right) + \eta_{t_i}, \quad \eta_{t_i} \sim \mathcal{N} \left\{ 0, \frac{\sigma^2 \left(1 - e^{-2\tau \Delta_i} \right)}{2\tau} \right\}$$

Main idea: the observed flux measurement y_{t_i} comes from a real flux measurement, x_{t_i} , which was observed with an error term ε_{t_i} , and this error has known variance ζ_{t_i} given by the telescope.

Observation equation:

$$y_{t_i} = x_{t_i} + \varepsilon_{t_i}$$
 $\varepsilon_{t_i} \sim \mathcal{N}(0, \zeta_{t_i}),$

State equation:

$$x_{t_i} = e^{-\tau\Delta_i} x_{t_{i-1}} + \mu \left(1 - e^{-\tau\Delta_i} \right) + \eta_{t_i}, \quad \eta_{t_i} \sim \mathcal{N} \left\{ 0, \frac{\sigma^2 \left(1 - e^{-2\tau\Delta_i} \right)}{2\tau} \right\}$$

The above structure can be thought of as a continuous time Gaussian state space-model, and can be estimated using the *Kalman filter* (Durbin and Koopman, 2012)

In order to perform the parameter estimate, the filter performs the following two steps:

1. compute the expectation and the variance of the following distributions:

$$\begin{split} X_{t_i}|Y_{t_{i-1}} &\sim \mathcal{N}(A_i, P_i), & \text{prediction} \\ X_{t_i}|Y_{t_i} &\sim \mathcal{N}(A_{i|i}, P_{i|i}), & \text{filtering} \end{split}$$

2. compute the log-likelihood of the model on the data, based on the fact that

$$Y_{t_i} \sim \mathcal{N}(A_i, P_i + \zeta_{t_i}).$$

State-space model: results

Figure 8: Top: model fitting (red line) and 95% prediction interval (green lines). Bottom: fitted vs residuals.

Table 3: Mean and the variance of the limit distributions in the original scale.

$$\frac{\lim_{\Delta \to \infty} \mathbb{E}_Y}{7.53 \cdot 10^{-7}} \quad \lim_{\Delta \to \infty} \mathbb{V}_Y$$

• The next step will consist in putting together the two models described during this presentation:

$$Y_{t_i} | X_{t_i} \sim \mathcal{N}(X_{t_i}, \zeta_{t_i}),$$
$$X_{t_i} | X_{t_{i-1}}, S_{t_i} = s \sim \mathcal{N}(\mu_{i,s}^*, \sigma_{i,s}^{2*}),$$
$$\mathbb{P}(S_{t_i} = s | S_{t_{i-1}} = s') = \{ \exp(\mathbf{Q}\Delta_i) \}_{ss'}.$$

• The next step will consist in putting together the two models described during this presentation:

$$Y_{t_i} | X_{t_i} \sim \mathcal{N}(X_{t_i}, \zeta_{t_i}),$$
$$X_{t_i} | X_{t_{i-1}}, S_{t_i} = s \sim \mathcal{N}(\mu_{i,s}^*, \sigma_{i,s}^{2*}),$$
$$\mathbb{P}(S_{t_i} = s | S_{t_{i-1}} = s') = \{ \exp(\mathbf{Q}\Delta_i) \}_{ss'}.$$

Thank you!