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Data: a light curve of n flux measurements {yti}ni=1 observed at
times (t1, . . . , tn), with ∆i = ti − ti−1 not constant.

time ti flux yti (10−7) error ζti (10−7)
54684.00 5.58 2.07
54693.60 1.95 0.83
54695.60 7.56 1.69
54697.60 4.36 1.23
54699.60 5.58 0.92
54701.60 5.23 1.29
54703.60 5.18 1.39

...
...

...

Goals:

1. derive a statistical model to accurately describe the dynamics of the
source emission activity.

2. separate the different states of variability at the base of the light
curve, with particular attention to the flares.
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Model 1: continuous time hidden Markov model

We model the joint distribution of (Yti , Sti), where:

• Sti ∈ {1, . . . ,S} is a latent continuous-time Markov process
with initial probability δ and generator matrix Q.

• Yti is the flux at the i-th observation time. We assume that it
depends on both the previous flux measurement and the
current value of the latent state:

Yti |Sti , Yti−1 ∼ N (µ∗i,s, σ2∗
i,s),

where µ∗i,s and σ2∗
i,s are the mean and the variance of an

OU-process parametrized by (µs, σ
2
s , τs).
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The statistical model

ti−1 ti ti+1 ti+2

Sti−1 Sti
Sti+1 Sti+2

Yti−1 Yti
Yti+1 Yti+2

Figure 1: DAG of the continuous time hidden Markov model. Grey
circles are the data and white circles represent the latent Markov process.

• Sti is unknown, and so the inference is carried out using the
EM algorithm.

• The distributions of the parameter estimators are assessed
using the bootstrap. 4



Case study: Blasar PKS 1510-05
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Figure 2: The γ-ray light curve from the blasar PKS 1510-05 recorded
by the Fermi LAT telescope over 630 observation times. The most
frequent time gap is ∆i = 2, and the largest is ∆i = 60. 5



PSF 1510-05: Model fitting

• When s = 1, we fit an OU process.
• When s = 2, we fit a log-OU process.

Table 1: Estimates of the model parameters in the two latent states.
From left to right: mean, square of the volatility, speed of mean reversion
and probability to remain in the same state after an interval ∆i = 2. The
standard errors obtained with B = 200 bootstrap replicates are given in
parenthesis.

µ̂s σ̂2
s τ̂s p̂s,s(∆t = 2)

s = 1 4.69 · 10−7

(1.602 · 10−8)
5.563 · 10−14

(8.822 · 10−15)
0.699
(0.08)

0.952
(0.012)

s = 2 −13.443
(0.066)

0.172
(0.032)

0.522
(0.119)

0.868
(0.039)
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PSF 1510-05: Model fitting

Table 2: Mean and the variance of the limit distributions in the two
states.

lim∆→∞ EY lim∆→∞VY

s = 1 4.69 · 10−7 3.977 · 10−14

s = 2 1.576 · 10−6 4.446 · 10−13
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PKS 1510-05: Model fitting
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Figure 3: Light curve of the blazar PKS 1510-05 (solid black line)
against the mean (solid red line) and 95% confidence interval (dashed
lines) of the predictive density. 8



PKS 1510-05: Model fitting
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Figure 4: Histogram of the flux compared to the limit distribution of the
proposed model (red line) and of a single log-OU process (blue line).
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PKS 1510-05: Residuals
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Figure 5: Autocorrelation function of the model residuals.
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PKS 1510-05: Flaring probabilities
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Figure 6: Plot of the classification of the flux measurements. For every data
point i, the colour represents the estimated probability of being a flare. A shift
toward red states that the observation is more probable to come from the
flaring activity. 11



PKS 1510-05: Maximum of the process
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Figure 7: Distribution of max(Y ) based on B = 200 bootstrap
replicates. The red line corresponds to the maximum in the observed
light curve Y. The proportion of bootstrap values larger than the
observed maximum is 0.16. 12



Model 2: state-space

Main idea: the observed flux measurement yti comes from a real
flux measurement, xti , which was observed with an error term εti ,
and this error has known variance ζti given by the telescope.

Observation equation:

yti = xti + εti εti ∼ N (0, ζti),

State equation:

xti = e−τ∆ixti−1 + µ
(
1− e−τ∆i

)
+ ηti , ηti ∼ N

{
0,
σ2 (1− e−2τ∆i

)
2τ

}

The above structure can be thought of as a continuous time Gaussian
state space-model, and can be estimated using the Kalman filter (Durbin
and Koopman, 2012)
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A sketch of the Kalman filter

In order to perform the parameter estimate, the filter performs the
following two steps:

1. compute the expectation and the variance of the following
distributions:

Xti |Yti−1 ∼ N (Ai, Pi), prediction
Xti |Yti ∼ N (Ai|i, Pi|i), filtering

2. compute the log-likelihood of the model on the data, based on
the fact that

Yti ∼ N (Ai, Pi + ζti).
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State-space model: results
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Figure 8: Top: model fitting (red line) and 95% prediction interval (green
lines). Bottom: fitted vs residuals.

Table 3: Mean and the variance of the limit distributions in the original scale.

lim∆→∞ EY lim∆→∞VY

7.53 · 10−7 2.48 · 10−13
15



Next step: state-space hidden Markov model

• The next step will consist in putting together the two models
described during this presentation:

Yti |Xti ∼ N (Xti , ζti),

Xti |Xti−1 , Sti = s ∼ N (µ∗i,s, σ2∗
i,s),

P(Sti = s|Sti−1 = s′) = {exp(Q∆i)}ss′ .

Thank you!
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