Measuring Black Hole Spin

Jack Steiner

Astrostatistics Forum Nov 13, '07

Overview

♦ Objects: Stellar-mass BHs in X-ray binaries

Aethod: Spin via fitting the X-ray continuum

Statistical Questions:

(digression : MCMC in XSPEC)

BH -XRB Picture

BH
5-15 M₀
Companion Star
Tidally distorted
Accretion Disk
Most efficient engine in the universe!
5%-40% compared to 0.7%

 \diamond Corona

 \diamond Hot ions in a cloud, surrounding the disk

♦ (Jets - Microquasars)

Beamed highly relativistic ejections (along the BH spin axis)

nasa.gov

Number of BH binaries known = 21 Sun

LMC X-3

M ~ 10 Msun

 $\rightarrow \times$

M33 X-7

Cyg X-1

Mercury

LMC X-1

Courtesy J. Orosz

Measuring Properties

♦ Optical Spectra ♦ Radial Velocities \diamond Mass Function \diamond Spectral Type of Companion Star \Leftrightarrow Temp \diamond Imaging ♦ Ellipsoidal Light Curves ♦ Genetic Fitting \diamond (ELC = pikaia + black sheep) \diamond X-ray Spectra ♦ Accretion Disk Physics

Black Holes are Extremely Simple

Uses of Spin Data

\diamond Test Jet Models

Validate core-collapse GRB models
 Collapsar: Enough J to form disk?

Inform models of GR waveforms
 Shafee et al. motivated first waveform work to include spin

Test evolutionary model of binary black-hole formation
 Were GRS 1915+105, GRO J1655-40?, etc. GRB sources?

Understand disk QPOs
 Both HF/LF in several systems, 2:1

 \diamond Modeling the growth of SMBH

Physics of Spin (in brief)

Two Foundations

◇1. ISCO (Innermost Stable Circular Orbit)
 ◇From General Relativity
 ◇2. Thermal Dominant State

First Foundation Innermost Stable Circular Orbit (ISCO)

- A disk terminates at R_{ISCO} and gas falls freely onto the BH inside this radius.
- Thus, disk emission has a "hole" of radius R_{ISCO} at center.
- If we measure the size of the hole, we will obtain a*

Second Foundation

The Thermal State :
Thermal Disk Model
Describes a physical limit in which:
The accretion disk is thin (H/R <<1)
**The emission is dominated by a thermal component (set by a characteristic temperature)
(Shakura & Sunyaev alpha-disk prescription)

Second Foundation (cont.)

Thermal Dominant State

- L_{disk} / L_{total} > 75% (2-20 keV)
 No QPOs
- Power-law/Comptonization minimal

Remillard & McClintock 2006, ARAA, 44,49

Second Foundation (cont.)

Second Foundation Improvement from theory:

 $f_{col} = T_{in}/T_{eff}$

Davis et al. 2005, 2006

Conclusion: There exists a constant radius

Estimating Spin: Our approach

 \rightarrow Fitting the X-ray continuum \leftarrow

Measuring the Radius of the Disk Inner Edge

 \diamond We want to measure the radius of the 'hole' in the disk emission ♦ Same principle as measuring stellar radius \diamond From F and T get angle of hole \diamond Knowing D and i **R**ISCO Zhang et al. (1997) Gierlinski et al. 2001; Li et al. (2005); Shafee et al. (2006); McClintock et al. (2006); Davis et al. (2006);...

Underlying Theory

 Need accurate theoretical profiles of disk flux F(R) and temperature T(R)
 Answer: KerrBB - a fully relativistic accretion disk model Only a. and Mdot Determined from X-ray Spectrum M,D,i from ground-based observations

from disk atmosphere model
 index
 is a strong to the strong term of term of

 Zero torque condition satisfied at ISCO for L/L_{edd} < 0.3
</p>

◇ Fit for a_{*} and Mdot (Mdot ⇔ L/L_{edd}) only
T & flux → a_{*} & Mdot

Ellipsoidal Light Curves

Statistics

Spectral Fitting

~130 RXTE X-ray spectra fit with XSPEC
 Fitting absorption on top of a thermal disk component (to derive spin) and a power law
 Free parameters:

 kerrbb: a., Mdot
 smedge: energy, optical depth
 powerlaw: normalization, slope

 Fixed parameters:

 kerrbb: M, i, D, boundary torque, normalization, and flags for returning radiation & limb darkening
 smedge: energy width, spectral index

 \diamond phabs: N_H (derived from Chandra spectra)

Unfolded Spectrum

Spectral Fitting - (ctd)

\diamond Questions:

 \diamond To MCMC or not to MCMC?

Only fitting for two primary parameters and ~4-6 secondary parameters giving 40-50 d.o.f.

Is it worth the computational expense to find the global minimum if good fits are obtained?

A Common Complaint

◇ Interpretation of Cash statistic

 \diamond **ONLY for Poisson errors?

 \diamond The idea of χ_v^2 =1 being preferred is intuitive (as opposed to 0). Does Cash have a similarly immediate interpretation?

Comparing Distinct Models

 To compute the hardening factor, f, we have to compare our fully relativistic model of a multi-color disk to a partially-relativistic model that includes the relevant atomic physics
 These models are fundamentally different
 What is the best way to do this?

BHSPEC vs. KERRBB

\diamond KerrBB

 \diamond Assumes blackbody rings, no radiative transfer

 \diamond (no electron scattering or atomic absorption)

Includes gravitational redshift, doppler boosting, limb darkening, returning radiation, Lense-Thirring frame dragging, can account for non-zero torque boundary condition

♦ Similar to stellar atmosphere calculations

 \diamond Uses radiative transfer to calculate disk vertical structure

Takes into non LTE account electron scattering and atomic opacities

 \diamond Includes limb darkening and gravitational redshift ONLY

the second s

Apples to Apples

Current approach :

- Simulated data of an accretion disk are produced by "observing" the BHSPEC model with an RXTE instrumental response matrix.
- The fake data are assigned Poisson errors and fitted with KerrBB over the same energy range as the data, fitting for 'f'

Question: Should we consider an alternative method of comparison?

 \diamond e.g. use a uniform response matrix with uniform error bars, fitting over the entire thermal range?

Data Classification

Currently, we are using two selection criteria to determine which data are considered.

I'd like to consider blurring these sharp boundaries

Is there a preferred way to introduce this?
\$\delta\$e.g. sigmoid

"Thermal-Dominant": $L_{disk} > 75\% L_{tot}$ thermal disk flux Zero Torque, Thin Disk: $L_{disk} < 30\% L_{edd}$

MC Sampling

- Genetic fitting produces a high dimensional (D>10)
 hypersurface.
- \diamond Collapse this into a 4-D topology of M,i,D vs. χ^2
- We will need to run an iteration of our analysis at each point in a large sample of M,i,D.
- Since these uncertainties dominate our error in a*, representative sampling from this space is crucial for determining spin.
- Challenge: how to sample from a sparsely, and nonrandom space

Our Answer: try to grid-sample near the best fit
 The plan is to shoot for a few thousand points and compare 2 runs as a convergence check.

Uniform Weight Resampling

 \diamond The current plan:

- \diamond N iterations (~5000)
- \diamond Each iteration will produce 'm' spin estimates (~100)

 \diamond Selection function y

 ◇ Randomly select a group of "n" results from each of the N iterations such that y(x_{ik}) | i∈1...m and k∈1...N gives the probability of selecting x_{ik}.
 ◇ Use this to construct the spin PDF

Summary

By using the constant inner radius (ISCO) of accretion disks, we are able to determine black hole spin via X-ray continuum fitting
 Spin is a very new field with promise to test and motivate fundamental theory
 We are now working to perfect our methodology, and to bring in modern statistical techniques

Tempus Fugit

 ◇ Despite all our best intentions, we need to weigh in the computer-time required to run through our analysis
 ◇ 3000 iterations (with no MCMC) ⇔ 1 month
 ◇ Want to optimize the tradeoff between quality of our result and time

3 Other Avenues to Spin

Remillard & McClintock 2006, ARAA 44, 49

♦ Fe line profile

Fabian et al. 1989 Reynolds & Nowak 2003

High-frequency X-ray QPOs (100-450 Hz) Abramowicz & Kluzniak 2001 Torok et al. 2005

Lightman & Shapiro 1975 Connors, Piran & Stark 1980 Properties of the ISCO as a function of spin.

Note the nonlinearity at high spin.

 \diamond (Shafee et al, 2006)

Spectral States

Fender et al. (2004)