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Overview

Deriving physical parameters from astronomical
images with two-level error structure

Understanding the correlations among the
physical parameters and their spatial distribution

Deriving the distribution of astrophysical
parameters from a truncated data set

Uncertainty in the selection probability creates
unstable likelihood functions and/or posterior
distributions, how to account for this?
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Dust Images: Scientific Motivation

.

Cold Clouds of gas and dust become
unstable, collapse

Eventually, some regions become
dense and hot enough to start fusion

Image Courtesy:
NASA, STScl,
N. Evans

Star is formed

But there’s a lot to this process we
don’t understand...
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Far-IR Images of Starless Cores

* Provide insight into physical properties of starless
cores

— E.g., models predict Temperature decreases toward
core of cloud

* Hopefully will lead to a better understanding of
star formation

* Most of emission in images due to cold dust, so
analysis of images will lead to a better
understanding of astrophysical dust as well

— E.g., does dust opacity depend on its temperature?
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Modeling Dust Emission

* Model dust brightness as a Vil

spectrum
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Model for Measurement Process of
TEIES

* Each pixel is assumed to have an additive normally-distributed
measurement error with known standard deviation

Each of J images is also assumed to have a multiplicative log-
normally distributed calibration error with known standard
deviation. This error is the same for all n pixels in the image

f; =0.(f,+€,;), f; =CV/B(v,T)
2

e, ~N@O,0;)

logd,; ~ N(0,77)

i=1....n and j=1,..,J
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Example: Starless Core TMC-1C

160 wm
T

850 m 1200 ttm
T T T T T

Best fit parameters typically estimated
using least-squares, highly uncertain
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Degeneracy between T and 3

* Errors in estimated
temperature and
power-law index can
be large and highly
anti-correlated

Biases the inferred

relationship between T

and B, leads to

spurious anti- SRR\
Correlahon | / Désert et al., 2008

Fie T = 285 K

Shetty et al., 2009
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Hierarchical Model for Dust Maps

e Use Bayesian hierarchical
model to simultaneously logC; ~ N(uc,Ve)

model the joint -
distribution of T and I'~pTly)

with the observed [3’i T, ~ N(M(H),Vﬁ)

brightness values
e Accounts for

uncertainties at all levels, ,
pools information from logo; ~N(0,77)
all pixels
Parametersare C, T,and  [iE oy SA(ORY AN -3
B for each pixel, 6 for

each image, Me) VC' VB’ e, Use uniform prior for hyperparameters
and \_I) over some regional range

Va\
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10/6/09

Posterior Distribution

p(C9T9[))a5987V[3 ,w,MC ’VC | f) e

| [NQogC, 11 VN, 11(8).V,) p(T; 1)

J oy

J
x | |N(f;18,,(C..B,.T)).570;)N(logd, 10,7%)
j=1

Want to account for spatial correlation in Temperature prior

Might be able to integrate our C, since it’s a nuisance
parameter

Also, likelihood has the form of a normal variance-mean
mixture, so might be able to integrate out 6
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MCMC Sampler: Strong Correlations
Among Parameters

Many parameters, so use MCMC
(MHA + Gibbs) to sample from the
posterior

Strong correlations exist among
C,T.B, and 6, so convergence is
*very* slow

Need to come up with more clever
transition kernels, or integrate out

nuisance parameters (e.g., 6)
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Part 2: Truncated Astronomical
Surveys

Much astronomical research focuses on
understanding populations of objects

For extragalactic (outside of the Milky Way)
sources, we also able to study how the
population evolves

The distribution of the parameters observed (e.g.,
luminosity) and derived is studied and compared
with astrophysical models

But, selection function (probability of a source
ending up in your survey) depends on luminosity
and distance (and therefore cosmic age).
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Some representative science questions

* How does the rate at which galaxies form stars
depend on the galaxy’s properties, and how
does it change over time?

* When did supermassive black hole grow? How
long were they actively growing for, on
average? How do they affect the evolution of

their host galaxies?

 What role did stars play in reionizing the early
universe? How about active black holes?
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Example: Cosmological Simulations

® Cole et al. (20 Lld?® ® Norberg et ol. (2002)

0 Hueng et al. (2003) b
8 e

P Bl

Comparison of actual distribution of galaxy
Luminosity with that predicted from a

cosmological simulation (+ additional assumptions),
Croton et al.(2006)

Millennium Simulation, Springel et al. (VIRGO Consortium, 2005),
and Max-Planck-Institute for Astrophysics
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Likelihood Function for Truncated Data

 Denote observed data as x, distribution of x as p(x|©), total number
of sources as N, total number of observed sources as n

Introduce indicator variable |, where | = 1 if a source is included in
the survey, and | = 0 if a source is missed. Selection function is

p(I=1|x) and assumed known.
The complete data likelihood is:

N
n

p(I,xIH,N)=( ) | [, =01x)p(x,16) | | p(; =11x)p(x, 16)

Missing Included
Data Data
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Posterior Distribution

The observed data likelihood is found by integrating over the
missing data:
N N-n
p(l,x, 10,N) =( )[1 - p(I=110)] p(;=11x)p(x;16),

Included
Data

p(I=110) = [ p(I =11x)p(x 16)dx

Assuming a prior p(N,0) = p(®) / N (i.e., uniform on log N), the
marginal posterior of O is (e.g., Gelman et al., 2004)

p@1x,,.Dx[pd=116)]"] | p(x,16)

The conditional posterior p(N|©,1) is a negative binomial
distribution with parameters n and p(I=1|0)
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Uncertainty in the Selection Function

e All this assumes we know p(I=1|0) (i.e., the
selection function), or that we can calculate
the integral without error

* But what happens when there is some
uncertainty in the selection function?

* Alternatively, what happens when the integral
cannot be calculated without error, as in
stochastic integration?
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Posterior/Likelihood highly unstable to
errors in selection function
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Posterior also unstable to stochastic
Integration

Simulated a data set from
standard normal with zero mean
having N = 1000 sources. The
mean, W, and N are assumed
unknown.

c
—_— —

I n

Posterior

Only kept those above x =1

Estimated p(lI=1|u) by simulating
different numbers of data points
from N(u,1) and only keeping
those above x=1.

MCMC routine was used to obtain
random draws from the posterior

Unstable, how can we account for

this??7?? ) 1000 1500
N
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