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ABSTRACT
Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime

and have average value zero, and thus may be used to simultaneously characterize the shape, location,
and strength of astronomical sources. But in addition to their use as source characterizers, wavelet func-
tions are rapidly gaining currency within the source detection Ðeld. Wavelet-based source detection
involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the
chosen wavelet function exhibits the property of vanishing moments, signiÐcantly nonzero correlation
coefficients will be observed only where there are high-order variations in the data ; e.g., they will be
observed in the vicinity of sources. Source pixels are identiÐed by comparing each correlation coefficient
with its probability sampling distribution, which is a function of the (estimated or a priori known) back-
ground amplitude.

In this paper, we describe the mission-independent, wavelet-based source detection algorithm
““WAVDETECT,ÏÏ part of the freely available Chandra Interactive Analysis of Observations (CIAO) soft-
ware package. Our algorithm uses the Marr, or ““Mexican Hat ÏÏ wavelet function, but may be adapted
for use with other wavelet functions. Aspects of our algorithm include : (1) the computation of local,
exposure-corrected normalized (i.e., Ñat-Ðelded) background maps ; (2) the correction for exposure varia-
tions within the Ðeld of view (due to, e.g., telescope support ribs or the edge of the Ðeld) ; (3) its applica-
bility within the low-counts regime, as it does not require a minimum number of background counts per
pixel for the accurate computation of source detection thresholds ; (4) the generation of a source list in a
manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape ; and
(5) error analysis. These features make our algorithm considerably more general than previous methods
developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the
robustness of WAVDETECT by applying it to an image from an idealized detector with a spatially
invariant Gaussian PSF and an exposure map similar to that of the Einstein IPC; to Pleiades Cluster
data collected by the ROSAT PSPC; and to simulated Chandra ACIS-I image of the Lockman Hole
region.
Subject headings : methods : data analysis È techniques : image processing È X-rays : general

1. INTRODUCTION

The detection and characterization of astronomical
sources becomes increasingly difficult as we attempt to
observe these sources in the EUV, X-ray, and gamma-ray
spectral regimes. There are several reasons for this. First, in
these high-energy regimes, source data may consist of only
a few counts, so that we must rely on the Poisson distribu-
tion when making statistical inferences rather than using
Gaussian statistics that are considerably easier to apply, but
that are strictly applicable only in the high-counts limit.
Second, spatially extended sources, such as supernova rem-
nants and galaxy clusters, exhibit bright di†use emission at
high energies which may overlap with point sources, render-
ing the latter more difficult both to detect and characterize.
And third, the present generation of broadband high-energy
telescopes, unlike optical telescopes, have spatially nonuni-
form point spread functions (PSFs) as an unavoidable by-
product of their design. For instance, the PSF of the Wolter
I-type High Resolution Mirror Assembly (HRMA) on the
Chandra X-Ray Observatory (CXO) has a 50% encircled
energy radius that varies in width from on-axis toB0A.3
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near the outer edges of an ACIS-I chip (B10@ o†-Z10A
axis).

A standard method for the analysis of Poisson count data
involves the application of the so-called ““ sliding cell ÏÏ
(Harnden et al. 1984).3 In sliding-cell analysis, two co-
aligned but di†erently sized square cells are placed at each
image pixel, with the number of counts in the annular
region between cells providing an estimate of the local
background amplitude at the pixel. This amplitude is then
used to compute the Poisson signiÐcance of the observed
number of counts in the inner cell. The usefulness of a
sliding-cell algorithm is limited both when the Ðeld of view
(FOV) is crowded, since overlapping sources cannot be
handled and/or nearby sources contributing counts to the
estimated background may decrease detection sensitivity,
and when sources are observed o†-axis, since uncertainties
in the model of the PSF, which generally increase with o†-
axis angle, can greatly a†ect source property estimates (see,
e.g., Kashyap et al. 1994). The sliding cell also may not
provide accurate source property estimates for extended
sources. Source characterization can be improved by Ðtting
the detected sources using maximum likelihood methods (as
in the algorithm of Hasinger, Johnston, & Verbunt 1994),

3 The method used, e.g., in the CIAO source detection routine CELL-
DETECT.
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but the accuracy of this method is still limited by uncer-
tainties in the PSF.

Within the last decade, astronomers have begun to apply
wavelet functions to the problem of source detection. (For
an introduction to the theory of wavelet functions, see, e.g.,
Mallat 1998 and references therein.) These functions are
scalable, oscillatory, have a Ðnite support (i.e., are nonzero
within a limited spatial regime), and have an average value
of zero ; they can be used to deÐne a set of basis functions
that act as highly localized Ðlters in both the spatial and
frequency domains, and thus are superior source character-
izers. Certain wavelet functions also exhibit the property of
vanishing moments, which is important for source detec-
tion : the integral of the product of a wavelet with N van-
ishing moments and a polynomial of degree ¹N [ 1 is
zero. Thus, the correlation of a suitably chosen wavelet
function with a photon counts image will yield correlation
coefficients which are signiÐcantly large only in the vicinity
of localized high-order variations in the data, e.g., in the
vicinity of astronomical sources, which appear as PSF-
broadened bumps with inÐnite power-series representation.
Wavelet-based source detection thus boils down to the sta-
tistical problem of identifying image pixels with
““ signiÐcantly large ÏÏ correlation coefficients.

Damiani et al. (1997a) were the Ðrst to present a wavelet-
based generalized method for source detection and charac-
terization, which they apply to ROSAT PSPC data in a
subsequent work (Damiani et al. 1997b). Among its features,
this method, unlike the others, uses exposure maps to
handle situations in which, e.g., support rib shadows or the
edge of the FOV lie within the wavelet support, allowing the
analysis of the entire FOV. Their algorithm is, however,
instrument-dependent in that they must make signiÐcant
changes to it in order to account for qualitative di†erences
between exposure maps of di†erent detectors (e.g., between
the exposure maps of the ROSAT PSPC and ROSAT HRI;
Micela et al. 1999 provide a short description of the changes
that are necessary to perform HRI image analysis). In addi-
tion, while one can apply the Damiani et al. method to data
from other photon-counting detectors, the PSFs must be
very nearly Gaussian. Last, they publish a function for the
computation of source detection thresholds which is strictly
valid only when the mean background amplitude per image
pixel is counts pixel~1)/p2, where p is the waveletZ(0.1
scale size.

In this paper (and in Freeman et al. 2002) we describe our
own algorithm for wavelet source detection and character-
ization that has been developed for a generic detector and
implemented in the Chandra Interactive Analysis of Obser-
vations (CIAO) routine WAVDETECT.4 In subsequent
papers (e.g., Kashyap et al. 2002, in preparation) we will
discuss the application of this algorithm to speciÐc scientiÐc
problems. Our algorithm is considerably more general and
Ñexible than others that have been developed, in that it can :
(1) operate e†ectively in the low background counts regime,
which is crucial because of the expected low particle and
cosmic background count rates for the Chandra detectors
(the overall rate being D10~6 and 10~7 counts s~1 pixel~1

4 The CIAO software package may be downloaded from
http ://cxc.harvard.edu/ciao/. WAVDETECT is composed of
““WTRANSFORM,ÏÏ a source detector, and ““WRECON,ÏÏ a source list
generator ; these programs may be run separately.

for the Chandra ACIS and HRC detectors, respectively) ;
and (2) operate e†ectively regardless of the PSF shape, also
crucial because of the (non-Gaussian) nature of the o†-axis
Chandra PSFs.5 It also (3) corrects for the e†ect of exposure
variations in a general, nonÈdetector-speciÐc manner. Thus,
our algorithm may be immediately adapted for the analysis
of data from virtually any other photon-counting detector.

In ° 2, we provide a brief description of wavelet functions,
and deÐne the Marr, or ““Mexican Hat ÏÏ (MH) wavelet func-
tion which we use in our algorithm.6 We then present a
simple example in which we apply the MH function to
idealized data, in order to build the readerÏs intuition about
how to interpret the results. The MH function has been
used often in astronomical wavelet analyses,7 in, for
example : the analysis of 13CO spectral maps of the molecu-
lar cloud L1551 (Gill & Henrikson 1990 ; see also Langer,
Wilson, & Anderson 1993, who apply Laplacian pyramid
transforms to a 13CO image map of Barnard 5) ; the analysis
of galaxy cluster structure in optically derived catalogs
(Slezak, Bijaoui, & Mars 1990) ; the detection and localiza-
tion of features in optical CCD images of galaxies
(Coupinot et al. 1992) ; the analysis of substructures
observed in ROSAT PSPC images of the Coma Cluster
(Vikhlinin, Forman, & Jones 1994) ; the examination of Ein-
stein HRI and ROSAT PSPC images of Abell 1367
(Grebenev et al. 1995) ; the detection of serendipitous X-ray
clusters in archival ROSAT PSPC data (SHARC; cf. Ulmer
et al. 1995 ; Freeman et al. 1996 ; Nichol et al. 1997) ; and the
analysis and modeling of X-ray emission in Abell clusters
(Lazzati & Chincarini 1998 ; see also Lazzati et al. 1998) and
stellar clusters (Damiani et al. 1997b).

In ° 3 we describe the basic steps of our algorithm, in
which sources are detected and characterized. The basic
steps of source detection include : the correlation of the
wavelet function with the data to create the correlation
image ; the estimation of the local background (if necessary)
in each pixel ; the computation of the source detection
threshold in each pixel ; accounting for the e†ects of expo-
sure variations within the FOV on the correlation value ;
and the identiÐcation and ““ cleansing ÏÏ of source counts
from the image. Source count cleansing is done iteratively,
Ðrst by analyzing the raw data, then the Ðrst version of the
cleansed data, etc., until the background is estimated. This
Ðnal background is used to compute source detection

5 While it can operate to a limited extent if nothing at all is known
about the PSF, our algorithm is most e†ective if characteristic PSF sizes,
e.g., the radii of circles containing 50% of the encircled energy for di†erent
o†-axis angles, are computable.

6 We note that while our algorithm uses the MH function exclusively,
one can adapt our algorithm to work with other wavelet functions.

7 However, we must note that the Mexican Hat is not the only wavelet
function used by astronomers ; for instance, Rosati et al. (1995) and Vikh-
linin et al. (1998) use the Morlet wavelet function to detect and analyze
X-ray clusters in ROSAT PSPC images, while Slezak, Durret, & Gerbal
(1994), Biviano et al. (1996), and Pierre & Starck (1998) use the so-called
““ B-splines ÏÏ in their cluster analyses. Also, there is the trous algorithm ofà
Starck, Murtagh, & Bijaoui (1995), Starck & Murtagh (1998), and Starck &
Pierre (1998). Methods based on this algorithm are similar to the one
which we describe in this paper ; however, because their use is limited to
particular problems, these methods are not sufficiently generalized to be
applied to the full-FOV data of an arbitrary detector. For instance, these
methods generally do not take into account exposure variations within the
FOV or are applied only in limited regions not greatly a†ected by
vignetting, and they also generally ignore local variations in the back-
ground.
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thresholds, which are subsequently used to identify putative
sources. Source characterization involves the combination
of outputs from a number of wavelet scales, and the creation
of source cells on the initial image within which source
properties (positions, count rates, etc.) are estimated.

In ° 4 we demonstrate the efficacy of the algorithm by
applying it to a large variety of cases, such as : an idealized
image containing simulated extended and point sources,
with spatially invariant Gaussian PSF and an exposure
map similar to that of the Einstein IPC; a 32 ks ROSAT
PSPC observation of the Pleiades cluster (cf. Micela et al.
1996) ; and a simulated 30 ks Chandra ACIS-I observation
of the Lockman Hole region (T. Gaetz 1998, private
communication). We then describe the di†erences between
our method and previously published methods, especially
that of Damiani et al., in ° 5, and provide our summary and
conclusions in ° 6. In future works, our algorithm will be
applied to the analysis of speciÐc scientiÐc problems, e.g.,
observed spatial variations in the di†use X-ray background
of the Pleiades Cluster (see Kashyap et al. 1996 and
Kashyap et al. 2002, in preparation).

2. WAVELETS AND SOURCE DETECTION

2.1. Wavelet Properties
Wavelets can be used to Ðlter an image at a given length

scale.8 This can be seen by considering the di†erence
between two smoothed functions : one formed by convolv-
ing an (arbitrary) function f with a real-valued, non-
negative, inÐnitely di†erentiable smoothing function
/ ½ C=, whose size is characterized by a scale p and satisÐes
the condition / /\ 1 (e.g., the Gaussian function), and one
formed by the convolution of f with the same smoothing
function with scale size p ] dp (Holschneider 1995).
Because all structure at length scales smaller than the
smoothing scales would be suppressed, the di†erence of
these two smoothed functions will provide information
about the details of f that are introduced at the scale p itself.
In the situation of interest to us, the analysis of two-
dimensional images, the relationship between / and the
wavelet function W @ is, in the limits dp
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(The reason for our use of a prime symbol will become
apparent below.) This is an analyzing wavelet, or mother
wavelet (hence the subscript m). Other members of the same
wavelet family (so-called ““ atoms ÏÏ) can be generated from
this mother wavelet via dilations and translations :
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There are many functions / that can be used to create a
mother wavelet. One example is the two-dimensional
Gaussian function :
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8 For a general introduction to wavelets, see, e.g., Mallat (1998) and
references therein, and Daubechies (1992).

from which is created the Marr, or ““Mexican Hat ÏÏ (MH),
wavelet function :
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This is the wavelet function we use in our source detection
algorithm. (Note that we use the function instead ofW

m
W

m
@ ,

to be consistent with Damiani et al. 1997a.) The MH func-
tion has a positive kernel with shape similar to a canonical
PSF (PW ), surrounded by a negative annulus (NW ; Fig. 1).
Ellipses with semiaxes of length andJ2p

x‰y
, 2p

x‰y
, 5p

x‰ydescribe the boundary between PW and NW , the minimum
of the MH function, and the e†ective support of the MH
function, respectively.

The MH function o†ers several advantages which moti-
vate its use for source detection : (1) it has two vanishing
moments (i.e., the correlation of the MH function with con-
stant or linear functions is zero), so that it acts to suppress
the contribution of the (generally spatially constant) back-
ground to the correlation coefficients ; (2) while it does not
have compact support, and cannot be used to construct a
set of orthogonal basis functions, a dyadic sequence of MH
functions (i.e., with MH functions with scales separated by
factors of 2) is sufficient to sample the entire frequency
domain, because of the limited extent of an MH functionÏs
Fourier transform; (3) its limited extent in both spatial and
Fourier domains helps to minimize e†ects of aliasing ; and
(4) it is analytically manipulable, so that many numerical
operations may be performed using analytically derivable
functions (see Appendix A), which can reduce computation
time signiÐcantly.

2.2. A Simple Example
Before describing our algorithm in detail, we present a

simpliÐed example to help build the readerÏs intuition. We
assume that we are analyzing a subset of an evenly exposed
image with the MH wavelet function, far from any edge of
the FOV. Within this image, the counts in each pixel, D

i,j,are sampled from a function which has a constant, relatively
large (?1) amplitude, which we denote B. These assump-
tions allow us to build intuition with a minimum of
unnecessary detail (such as correcting for exposure varia-
tions, etc.), and should not be construed as being reÑective
of limitations on the applicability of our algorithm.

As will be described in ° 3, the Ðrst step in our algorithm
is to correlate the wavelet function W and the binned image
data D. We denote correlation using the symbol S . . . %

. . . T ; in this case, we would write C\ SW DT, or%

for a particular pixel, Because theC
i,j \ SW % DT

i,j.9average value of the wavelet is zero and the data are
sampled from a constant amplitude function, the mean
correlation value will tend asymptotically to zero, with sta-
tistical sampling causing positively and negatively valued
deviations from zero in individual pixels. Indeed, for our

9 This notation deviates somewhat from that of Mallat (1998), in which
would be written W D[i, j] ; however, we feel our notation makesC

i,jcomplicated expressions in the remainder of this work more easily
interpretable.
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FIG. 1.ÈTwo-dimensional Marr, or Mexican Hat, wavelet function (eq. [5])

simple situation, the resulting probability sampling dis-
tribution (PSD) of correlation values, denoted p(C oB), will
tend asymptotically to a zero-mean Gaussian, with width

(Freeman et al. 1996 ; Damiani et al.pG,CP (p
x
p
y
B)1@2

1996, 1997a).
We now assume that there is a tightly bunched clump of

counts in our otherwise source-free subset image, which
could be caused by a Poisson sampling Ñuctuation or by an
astronomical source. We assume the clump has Gaussian
shape with amplitude and width which is compara-AG pG,
ble to the size of the PSF of the instrument. The correlation
of the MH function with a Gaussian yields a MH function
that has its centroid at the Gaussian centroid and has cen-
troid amplitude proportional toCmax(px
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For our simple example, i.e., is alwaysCmax[ 0, Cmaxgreater than the mean of the PSD. To determine whether
we should associate the clump with an astronomical source,
we would compute the integral of the PSD from to O ;Cmaxif this quantity is smaller than a predeÐned signiÐcance
threshold (e.g., \10~6, or then we associ-Cmax [ 4.75pG,C),ate the clump with a source.
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source becomes undetectable. If we apply symmetric wave-
lets in our analysis, the maximum value of this ratio occurs
at Hence, sources are most easily detectedp

x
\p

y
\ J3pG.

when one analyzes the image with a wavelet function that

has a size similar to that of the source. Since such a function
acts to ““ Ðlter,ÏÏ or selectively enhance, structures of similar
scale, this behavior is to be expected.

If the clump is associated with a previously known
source, but is not detected, we can use equation (6) to deter-
mine the upper limit on source counts, by substituting the
source detection threshold for and solving for (see,Cmax, AGe.g., ° 4.1). (Because the Gaussian is normalized, is iden-AGtically the number of source counts.) We stress that the use
of this method to place upper limits on source counts is
limited to cases where the PSF shape is that of a two-
dimensional Gaussian function, and should not be used in
the place of simulations if the PSF has arbitrary shape.

3. ALGORITHM

3.1. Source Detection
Our Ðrst objective is source detection : the identiÐcation of

putative source pixels in binned, two-dimensional image
data. This identiÐcation is normally done by carrying out
the steps in the algorithm described below separately with
each of a number of wavelet functions (see also Fig. 2). The
basic steps in this algorithm include (1) the correlation of
the data with the given wavelet function (° 3.1.1) and (2) the
identiÐcation of image pixels with correlation values larger
than predeÐned thresholds for source detection (° 3.1.2). The
second step requires knowledge of the local background in
each pixel (due to unresolved point sources, di†use astro-
physical emission, particle background, etc.). If the back-
ground has not been determined previously, then it must be
estimated, e.g., via the method described in ° 3.1.3. Also,
instrumental artifacts such as support rib structures, hot
spots, and the edge of the FOV can adversely a†ect the
second step, resulting in the detection of instrumental fea-
tures in the image, which are astrophysically uninteresting.
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FIG. 2.ÈFlow chart illustrating the source detection algorithm described in ° 3.1, as carried out at selected scales Parentheses indicate optional(p
x
, p

y
).

input or computations. The local background map may be estimated or provided by the user ; a Ñow chart illustrating how it can be iteratively estimated
using the input data (and exposure map) is given in Fig. 3.

In ° 3.1.4, we describe a method for rejecting such
““ instrumental sources.ÏÏ Finally, in ° 3.1.5 we describe how
the variances of the correlation and local background
amplitudes are estimated.

3.1.1. Correlation of the Wavelet Function and the Data

The Ðrst step in the source detection process at a given
scale is to compute the correlation of the wavelet function

with the binned, two-dimensional imageW (p
x
, p

y
; x, y)

data D.10 The translation parameters a and b shown in
equation (2) correspond to image pixel indices i and j ; for a
given pixel, the correlation value is

C
i,j \;

i@
;
j@

W
i~i{,j~j{

D
i{,j{ (7)

4 SW % DT
i,j . (8)

[Henceforth, if a quantity is given with subscripts, we are
referring to its value at pixel (i, j) ; otherwise, we are refer-
ring to the quantityÏs array of values.] The interested reader
may Ðnd details about how SW DT is computed in%

Appendix A.
3.1.2. Computation of the Source Detection T hresholds

To determine whether pixel (i, j) should be associated
with a source, we compute the probability of observing the
correlation value if there are only background countsC

i,jpresent within the support of W :

S
i,j \

P
Ci,j

=
dCp(C oB

i,j) . (9)

10 In this section, we do not speciÐcally refer to the Mexican Hat
wavelet to underscore the fact that our algorithm may be adapted for use
with other wavelet functions.

is dubbed the signiÐcance (or the Type I error ; see, e.g.,S
i,jEadie et al. 1971, pp. 215È216), and it is the estimated prob-

ability that we would erroneously identify pixel (i, j) with a
source. In ° 2.2, we indicated how could be determinedS

i,janalytically in the high-counts limit, where tendsp(C oB
i,j)asymptotically to a zero-mean Gaussian of width

In general, however, must be(2np
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p
y
B

i,j)1@2. p(C oB
i,j)determined via simulations (see Appendix B). Because the

number of simulations we carried out is only sufficient to
directly determine signiÐcances and becauseS

i,j Z 10~7,
strong sources may have much greater signiÐcances (in a
qualitative sense), we instead compute a source detection
threshold via the equationC

o,i,j(So
, B

i,j)

S
o
\
P
Co,i,j

=
dCp(C oB

i,j) , (10)

where is the user-speciÐed threshold signiÐcance.11 IfS
o we associate the pixel (i, j) with a source.C

i,j [C
o,i,j,

3.1.3. Background Estimation

In this section, we describe how the local background
counts amplitude is estimated if it is unknown a prioriB

i,j(see also Fig. 3). While there is no unique way to make this
estimate, we seek a method that does not depend on a
detectorÏs PSF, both for increased generality and computa-
tional speed, and also because we want our algorithm to be
able to detect and analyze sources of arbitrary size, not just
point sources. We can fulÐll this condition by creating back-

11 One choice is where P is the number of analyzed pixels inS
o
\P~1,

the image ; with this choice, the average number of false detections is one
per image.
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FIG. 3.ÈFlow chart illustrating the iterative local background estimation method described in ° 3.1.3. Note that a background map is output for each
selected scale pair Parentheses indicate optional computations.(p

x
, p

y
).

ground maps at each wavelet scale,12 using a localized func-
tion that is wavelet-scale, and not PSF-scale, dependent :
the wavelet negative annulus (i.e., W with posi-NW (p

x
, p

y
)

tive values reset to zero). While the function NW is related
to a wavelet function, we stress that it itself is not a wavelet
function and that its use in background estimation does not
constitute a transform.

If the exposure within the support of NW is constant, and
if and are sufficiently large such that the integral of thep

x
p
ysource counts distribution (i.e., the PSF for a point source)

over the NW is insigniÐcant with respect to the integrated
background, then one can estimate the background using
the formula

B
i,j \

exp (1)
4np

x
p
y

o SNW % DT
i,j o , (11)

12 These maps are later combined into a single map used in the calcu-
lation of source properties. See ° 3.2.1.

where is the integrated volume of4np
x
p
y
/exp (1)

(see ° A3 for derivation). If on the other handNW (p
x
, p

y
)

the exposure is not constant, the exposure map13 can be
used as a weighting function :
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i,j \ E

i,j Bnorm,i,j
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where is the normalized (i.e., Ñat-Ðelded) number ofBnorm,i,jexpected background counts at pixel (i, j). We ignore the
distinction between vignetted and nonvignetted com-
ponents of the background (e.g., the particle background) in

13 If one does not provide an exposure map, a Ñat one is assumed, to
account for the edge of the FOV.



No. 1, 2002 SPATIAL ANALYSIS OF POISSON DATA 191

our estimate, because of degeneracy. We note that if the
amplitude of the nonvignetted background component BNV
is known, then one could in principle estimate the back-
ground using a variation of equation (13) :

B
i,j\ E

i,j
SNW % (D[ B NV)T

i,j
SNW % ET

i,j
] BNV .

There are three situations in which counts from sources
may bias the local background estimate : (1) if the estimate is
being made within di†use extended emission ; (2) if the pixel
in which the estimate is being made is a source pixel, but p

xand/or is smaller than the source size s ; or (3) if sourcesp
yare located within the NW .

The Ðrst situation is a nonissue, because if the analysis
goal is detection, say of a source within a supernova

FIG. 4.ÈIllustration of how source counts may bias a Ðnal background estimate (° 3.1.3), causing ““ bumps ÏÏ if the wavelet scale sizes the(p
x
, p

y
) [ rPSF,characteristic PSF size at a given pixel. We use a 50 ] 50 subÐeld of the ROSAT PSPC Pleiades Cluster image in which pixels. Top : image andrPSF B 3

surface plot of the background estimate for pixel. Middle : same as top, but for pixels. Bottom : same as top, but forp
x
\p

y
\ 1 p

x
\ p

y
\ 2J2 p

x
\p

y
\ 8

pixels.
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remnant, then the di†use emission should be treated as a
local background component : for instance, should a clump
of counts be associated with a source, or with Poisson Ñuc-
tuations in the background and the di†use emission?

In the second situation, the background map will exhibit
a ““ bump ÏÏ at the location of the source, whose amplitude is
greatest where the number of source counts within the
support of the NW is maximized, generally at the source
centroid (Fig. 4). Within the bump, the source detection
threshold is overestimated, and thus this perhaps otherwise
detectable source may remain undetected at the given scale.
However, this is not a critical problem, since if the source is
detectable, it will be detected when a scale(p

x
, p

y
)Z s,

regime where the bump is minimized, and the issue becomes
moot. Note that these bumps do not adversely a†ect source
property estimation, since they are eliminated when the
background map that is used for source property estimates
is computed (° 3.2.1).

The third situation can be more problematic for source
detection. If there are sources in the FOV, then there will
always be some image pixels for which the background
amplitude is overestimated : for instance, for a symmetric
wavelet function, these pixels will surround sources in circu-
lar ““ rings ÏÏ of radius B2 p (the radius at which NW
achieves its minimum value ; see Fig. 5). In these rings, isC

ooverestimated, so that otherwise detectable sources whose
locations coincide with these rings may go undetected.
Rings can appear regardless of the scale or source size, and
thus can impede source detection at all scales. They can also
adversely a†ect the computation of source properties, as a
background that is overestimated in the vicinity of a source
can lead to underestimated count rates, etc., in the Ðnal
source list. (This last point is demonstrated below in Figure
16, which shows the e†ect of rings on the estimation of
Pleiades Cluster source properties. See ° 4.2.)

One way to remove the rings is to remove source counts
iteratively from the raw data, via the following algorithm:

1. Identify pixels to be ““ cleansed ÏÏ using p(C oB) and the
initial background map, which we will dub B1 ;

2. Mask out these pixels or replace their data with other
values, creating a new image we denote D2 ;

3. Estimate where n is the iteration numberB
n
(D

n
),

(n º 2) ; and
4. If the background map is to be reÐned yet again, deter-

mine identify pixels to be cleansed usingC
n
(D

n
), p(C oB

n
),

and return to step 2.

Then, when the Ðnal background map is determined,Bfinalcompare the original values C with to create ap(C oBfinal)Ðnal list of putative source pixels.
Regarding steps 1 and 4, since the goal of this iterative

approach is to remove as many source counts as possible
from the raw data, we advocate an aggressive approach to
identifying the pixels to be cleansed : the threshold signiÐ-
cance should be set high, e.g., to (although neverS

o
\ 10~2

higher than 0.05, which corresponds to the oft-used 95%
rejection level of statistics). Regarding step 2, while masking
is used by Damiani et al. (1997a) in their two-iteration
approach to source detection, it would preclude us from
using FFTs to calculate Thus, we replace the data inC(D

n
).

cleansed pixels with the inferred background amplitude.
There are no rigorous quantitative rules governing how

one should specify the number of iterations, as that can
depend on the crowdedness of the Ðeld, the source distribu-

tion, the source strengths, and the wavelet scale size.14 We
do note that iterative cleansing will cease if the background
map does not change from one iteration to the next, i.e., if
no new pixels are marked for cleansing.

3.1.4. Treating the E†ect of Exposure Variations on Source
Detection

In ° 3.1.2, we describe how we use probability sampling
distributions to identify sources. These distribu-p(C oB

i,j)tions are derived assuming a spatially constant exposure. If,
for instance, the exposure map exhibits localized high-order
variations, then the list of detected sources may contain a
mixture of astrophysically interesting sources and
““ instrumental sources ÏÏ aligned near support rib shadows,
near the edge of the FOV, at the location of hot pixels, etc.
(See, e.g., Fig. 1 of Damiani et al. 1997b.) Thus, an effica-
cious source detection algorithm should include additional
calculations that act to decrease the detectability of instru-
mental sources, while leaving the detection efficiency of
astrophysical sources unchanged.15,16

One possibility is to construct new sampling distributions
for each observation, taking into account allp(C oB

i,j, E)
the exposure variations that can appear within the wavelet
support ; however, this is not computationally practical.
Instead, we estimate the systematic e†ect that exposure
variations have on the correlation coefficients. Assuming
the null hypothesis, we may write the observed correlation
coefficient as

C
i,j \ SW % DT

i,j \ SW % BT
i,j ] *C

i,j , (14)

where is the estimated (noise-free) background intensityB
i,jand is the noise (and possibly source count) contribu-*C
i,jtion to We ignore the latter term (see the caveatsC

i,j.below) and rewrite the former so that its dependence on
exposure variations is explicit :

SW % BT
i,j \ SW % EBnormT

i,j
\;

i@
;
j@

W
i~i{,j~j{

E
i{,j{ Bnorm,i{,j{

\;
i@

;
j@

W
i~i{,j~j{

[E
i,j Bnorm,i{,j{

[ (E
i,j [ E

i{,j{)Bnorm,i{,j{]
\ E

i,jSW % BnormT
i,j [ SW % (dEBnorm)T

i,j .

(15)

The quantity encapsulates exposure variabilitydE
i,j‰i{,j{within the wavelet support, and thus the last term in equa-

tion (15) encapsulates the e†ect of exposure variability upon

14 For a typical, uncrowded Chandra Ðeld, two iterations (i.e., one
round of source count cleansing) are usually sufficient, because the high
resolution of Chandra reduces source crowding relative to that observed in,
e.g., ROSAT data. However, one should always verify that this is the case
with oneÏs speciÐc image !

15 The distributions are also derived assuming a spatially con-p(C oB
i,j)stant background map, from which simulated data are sampled. Thus, an

efficacious source detection algorithm should also include calculations that
mitigate the e†ect of background variations caused by, e.g., X-ray shadows.
The current algorithm does not take such variations into account ; anec-
dotal evidence (e.g., in ° 4.2) indicates that they have little e†ect, possibly
because they are far less ““ sharp ÏÏ than variations induced by support rib
shadows, etc. Note that if the background is known a priori, one can in
principle remove the e†ect of high-order background variations on corre-
lation values using a transformation similar to the one described below.

16 Note that exposure corrections are not mandatoryÈfor instance, the
user may choose to have no corrections made if the analysis goal is scale-
by-scale characterization of sources in correlation space. See the caveats
below.
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FIG. 5.ÈIllustration of how source counts may bias an initial background estimate (° 3.1.3), causing ““ rings ÏÏ if sources are located within the negative
annulus of the wavelet. We use a 50 ] 50 subÐeld of the ROSAT PSPC Pleiades Cluster image. Top : image and surface plot of the background estimate after
one iteration (i.e., no ““ cleansing ÏÏ). Middle : same as top, but after two iterations. Bottom : same at top, but after three iterations.

subtracting this term from yields an ““ exposure-C
i,j ; C

i,jcorrected ÏÏ quantity that contains only information of
astrophysical value :

Ccor,i,j \ C
i,j [ SW % (dEBnorm)T

i,j
\ C

i,j [ SW % EBnormT
i,j ] E

i,jSW % BnormT
i,j .

(16)

It is this quantity that is compared with the distribution
to determine whether (i, j) is a source pixel.p(C oB

i,j)

If is constant (or linear) within the wavelet support,Bnormthen equation (16) reduces to

Ccor,i,japprox\ C
i,j [ Bnorm,i,jSW % ET

i,j . (17)

Because SW ET is computed only once, we dub this the%

““ fast ÏÏ exposure correction, as opposed to the ““ full ÏÏ expo-
sure correction of equation (16). One should not use the
““ fast ÏÏ correction if nonlinear structures (caused, e.g., by
X-ray shadows) are apparent in the background map.
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One should keep the following caveats in mind :

1. Strictly speaking, still cannot be directly com-Ccor,i,jpared with the probability sampling distribution p(C oB
i,j)because the noise term is itself uncorrected. If we*C

i,jconcentrate on the issue of false positives (i.e., assume that
there is no source count contribution to the impor-*C

i,j),tant question is : is the asymptotic width of the distribution
from which is sampled smaller than the width of the*Ccor,i,jdistribution from which is sampled? If so, then the*C

i,jrate of false detections will still be greater than expected.
This is a problem if and only if for a given pixel, isE

i,jsmaller than the average exposure over the waveletEavesupport, i.e., this is only a problem within troughs or
beyond the edge of the FOV. To see this, harken back to the
simple example of ° 2.2 : what would happen to the width of

if we were to reduce the exposure? Fewer countsp(C oB
i,j)would be detected, so would decrease, and the width ofB

i,jthe noise distribution, which is would alsoP (B
i,j)1@2,decrease. Thus, we suggest that one should carefully scrutin-

ize all sources detected in low-exposure regions ([0.2Emax).2. Note the distinction between the correlation maps C
and especially if the analysis goal is not just sourceCcor,

detection, but also image decomposition (the scale-by-scale
characterization of sources in correlation space).17 The
quantity represents a pixel-by-pixel wavelet ÐlteringCcornot of the raw data D, but of the quantity D[ EBnorm(eq. [16]). Because may be estimated] E

i,jBnorm Bnormusing the NW , which is most sensitive to low-frequency
components of the data (see Fig. 6), these modiÐed data may
be ““ contaminated ÏÏ with low-frequency information
(although wavelet Ðltering [eq. (16)] mitigates the e†ect of
the contamination).

3. We note that while systematic overestimates of Bnorm(caused for reasons discussed in ° 3.1.3) adversely a†ect the
computation of they will not lead to an increasedCcor,number of false detections. This is because the only situ-
ation where such a systematic overestimate a†ects non-

17 Note that source characterization in WAVDETECT is done using
the raw data themselves and not using correlation coefficients. Aside from
source detection, the only other place where the exposure-corrected corre-
lation map is used in WAVDETECT is in the creation of the noise-free,
exposure-corrected image of detected sources (° 3.2.5). Thus, this caveat is
only an issue if the user desires to analyze correlation maps outside of
WAVDETECT.

FIG. 6.ÈSample power spectra of the Mexican Hat wavelet function (W ) and of the negative annulus of the Mexican Hat wavelet function (NW ). N is the
number of pixels in the (padded) image. The NW has much larger response to low-frequency components, but this signal would be suppressed upon
correlation with W (see ° 3.1.4).
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source pixels in the Ðnal, reÐned background image is when
the background is computed in regions of extended di†use
emission. In this situation, the algorithm treats the sum of
the real background and the di†use emission as the
““ background,ÏÏ so the rate of false detections (which is inde-
pendent of background amplitude) will be unchanged.

3.1.5. Variance Estimation

We estimate the variances of (if one does not provideB
i,ja background map), and of (or or usingC

i,j Ccor,i,j Ccor,i,japprox),
the standard formula (Eadie et al. 1971, p. 23)

V [Y ]\ V [;
i

;
j

a
i,j Xi,j]

\ ;
i

;
j

a
i,j2 V [X

i,j]

]2;
i

;
i@;i

;
j

;
j@;j

a
i,j ai{,j{ cov[X

i,j, X
i{j{

] (18)

where Y is quantity of interest and are random vari-X
i,jables (either or functions of For instance,D

i,j D
i,j).

V [C
i,j]\ V [;

i@
;
j@

W
i~i{,j~j{

D
i{,j{]

\ ;
i@

;
j@

W
i~i{,j~j{
2 V [D

i{,j{]

\ ;
i@

;
j@

W
i~i{,j~j{
2 D

i{,j{ (19)

\ SW 2 % DT
i,j .

Note that we make two assumptions when deriving this
formula : (1) the datum is sampled from a PoissonD

i{,j{distribution with variance and (2) each pixelÏs rawD
i{,j{ ;datum is independently sampled (so covariance terms do

not contribute to V [C
i,j]).We list variance formulae related to source detection in

Table 1. The reader should keep in mind two important
caveats about them:

1. These formulae ignore the contribution of the covari-
ance terms, which are nonzero for andV [Ccor], V [Ccorapprox],
V [B] if the data are iteratively cleansed, i.e., if B is a not just
a function of the raw data D only. We ignore these terms
because even the simplest covariance computation, that for
a two-iteration background map (see Appendix C), has a
staggeringly high computational cost : we Ðnd that the CPU
time needed to compute the variance increases by a factor

where and are the x- and y-axisDO(d
x
d
y
p
x
2 p

y
2), d

x
d
ylengths in pixels, respectively. Also, additional arrays con-

taining information needed to compute the covariance

terms must be kept in memory, so there is a resource cost as
well. We Ðnd that including covariance terms increases the
variance by a median value of B7%, and at most by only
B30% adjacent to strong sources, although this is a source-
strengthÈ and source-geometryÈdependent result that obvi-
ously cannot be blindly applied to all Ðelds. Ultimately, it is
up to the user to judge whether adding the computation of
covariance to our base algorithm is worthwhile.

2. When computing for the Ðnal backgroundV [B
i,j]map, we make the simplifying assumption that the variance

of a cleansed datum is equal to the cleansed datum itself ; for
instance, for a two-iteration background map,

V [B
i,j]\ ;

i@
;
j@

a
i,i{,j,j{2 V [D2,i{,j{]

\ ;
i@

;
j@

a
i,i{,j,j{2 D2,i{,j{ , (20)

where

a
i,i{,j,j{ \ E

i,j
NW

i~i{,j~j{
SNW % ET

i,j
. (21)

We make this assumption because if the data are a mixture
of raw data and background estimates, the variance esti-
mates become increasingly complicated : for one iteration,

V [D
i,j]\ D

i,j ,

for two iterations,

V [D2,i,j]\
4
5
6

0
0
D

i,j uncleansed pixel ,
;
i@

;
j@

a
i,i{,j,j{2 D

i{,j{ cleansed pixel ,
(22)

etc.

3.2. Source Characterization
Once we have identiÐed putative source pixels at each of

a number of wavelet scale size pairs our next objec-(p
x
, p

y
),

tive is source characterization, wherein we combine informa-
tion derived at each scale pair to generate a Ðnal source list
and to estimate source properties (see Fig. 7). Unlike source
detection, source characterization algorithms can be arbi-
trarily complex, depending, for instance, upon whether one
wishes to use detailed PSF information. Our method is par-
ticularly simple, in that we use only the characteristic PSF
size at a given pixel, This size may be associatedrPSF,i,j.with, e.g., 50% encircled energy ; we Ðnd that smaller values,
such as 39.3% (which corresponds to the integral of a sym-
metric normalized two-dimensional Gaussian to radius pG),
work better than large values. While using the detailed PSF

TABLE 1

SOURCE DETECTION VARIANCE FORMULAE

Property Variance

Correlation (C
i,j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SW 2 % DT

i,j

Exposure-corrected correlation (Ccor,i,j) . . . . . . . . . . . . . . . . . . . . . V[C
i,j]]

SW 2 % (E2V [Bnorm])T
i,j ] 2E

i,jSW 2 % (EV [Bnorm])T
i,j ] E

i,j2 SW 2 % V [Bnorm])T
i,j

Approximate exposure-corrected correlation (Ccor,i,japprox) . . . . . . V[C
i,j]] Bnorm,i,jSW 2 % E2T

i,j

Normalized background (Bnorm,i,j) . . . . . . . . . . . . . . . . . . . . . . . . . . . SNW 2 % D
N
T
i,j/(SNW % ET

i,j)2

NOTES.Èi and j are pixel indices, and N is the number of iterations used to compute the background map, if it is not provided.
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FIG. 7.ÈFlow chart illustrating the source list generation algorithm described in ° 3.2. Parentheses indicate optional input.

shape may allow for more accurate estimates of source
properties, the simplicity of our scheme makes it more
immediately applicable to images from virtually any counts
detector (including those for which calibration is on-going
or is for other reasons incomplete).

3.2.1. Corrected Background Estimate

In ° 3.1.3, we describe how we calculate a scale-dependent
normalized local background estimate by assumingBnorm,
that there are no source counts in the negative annulus,
NW . Source detection itself is not markedly a†ected if this
assumption is violated and the background overestimated,
for reasons given in ° 3.1.3, but an overestimated back-
ground will adversely a†ect the computation of source
properties. We create a new, corrected, background esti-
mate by combining information across scales (denoted with
a subscript k), noting that the assumption that there are no
source counts in NW is always violated around sources if
either or is less than the source size :p

x,k p
y,k

Bnorm,i,j@ \;
k/1N v

i,j,kpx,kpy,k Bnorm,i,j,k
;

k/1N v
i,j,k p

x,kpy,k
. (23)

N is the number of scale pairs used, and

v
i,j,k \ 4

5
6
0
0

1 min (J2p
x
, J2p

y
)º mrPSF,i,j ,

0 otherwise .
(24)

The quantity m is a multiplicative factor, set to 1 when
estimating the properties of point sources, and to larger

values when extended sources are analyzed. We use equa-
tion (18) to estimate the variance of with covari-Bnorm,i,j@ ,
ance terms ignored :

;
k/1

N A v
i,j,kpx,k p

y,k
;

k/1N v
i,j,kpx,k p

y,k

B2
V [Bnorm,i,j,k] . (25)

is estimated using the approximate equationV [Bnorm,i,j,k]listed in Table 1.

3.2.2. Source Cells

The next step in source characterization is to determine
which pixels of the original image D are to be associated
with each detected source. We term contiguous pixels which
are associated with a particular source a source cell, and as
we describe below in ° 3.2.4, we use the raw data in a source
cell to determine a sourceÏs properties. We need to create
source cells because, as noted above, we do not use PSF
shape information in our algorithm, and because we want
an algorithm that is applicable to both point and extended
sources. Source cells are not computed in algorithms such
as the sliding cell, where the integrated PSF volume and
sum of (point) source counts for a given user-deÐned cell
can be used to estimate the total number of (point) source
counts, etc.

To create source cells, we Ðrst compute source count
images, smoothing the raw data with the positive kernel of
the wavelet function, PW , at user-speciÐed scales, and then
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subtracting the corrected background image, B@ :

SC
i,j,k\ max

ASPW % DT
i,j,k

SPW % ET
i,j,k

[ Bnorm,i,j@ , 0
B

. (26)

(We denote these images SC to avoid confusion with either
the signiÐcance S or the correlation image C.) We use PW
as the smoothing function because it has the desirable
properties of being localized, and, for the particular case of
a symmetric MH function, of mimicking the shape of a
canonical Gaussian PSF. In regions where there are no
sources, source count image values are either zero, or posi-
tive and nearly zero ; only in the vicinity of sources do the
values deviate markedly from zero. Thus, the source count
images appear to contain numerous ““ islands ÏÏ of nonzero
Ñux in a sea of zero values, with their relative size increasing
with size of the smoothing function PW (see Fig. 8). Each
island contains one or more peaks, and subislands may be
deÐned using each peak, with saddle points providing the
boundaries between them. (Sub-) islands observed in selec-
ted source count images deÐne the source cells.

To deÐne a source cell, we must select a source counts
image and then determine to which (sub-) island the
putative source belongs. The selection proceeds as follows.
The location of a putative source in correlation-space is
assumed to be the location of the correlation maximum,

At this location, we compute the PSF size, in pixels,(i
C
, j

C
).

(This introduces a bias toward point sources ; werPSF,iC,jC.return to this point below.) We then select the source count
image with smoothing scale ““ closest ÏÏ to by mini-rPSF,iC,jCmizing where is deÐned foro log2 p

k
[ log2 rPSF,iC,jC o , p

keach scale pair :

p
k
\ exp

Clog (p
x
) ] log (p

y
)

2
D

.

On the selected source count image, we examine pixel
the (sub-) island to which this pixel belongs deÐnes(i

C
, j

C
) :

the source cell.
A source cell deÐned in this manner has advantageous

properties : (1) if then nearly all isolated pointp
k
B rPSF,iC,jC,source counts should lie within a source cell (Fig. 9) ; (2)

exposure variations are taken into account via the use of
SPW ET in equation (26), so that source cells are not%

truncated near, e.g., support rib shadows ; and (3), as noted
above, saddle points in the source count images provide
natural boundaries between sources in crowded Ðelds
(Fig. 10).

We note two situations where care must be exercised
when interpreting results. First, the source cell for an
extended source may be too small if the smoothing scale is

The steps one must take to deal with this situ-B rPSF,iC,jC.

FIG. 8.ÈSample source counts image (° 3.2.2), created by Ðrst smoothing the data in a 50 ] 50 subÐeld of the ROSAT PSPC Pleiades Cluster image with
a PW function of size pixels, then subtracting the estimated background. Pixels associated with the strongest local maxima comprise the sourcep

x
\p

y
\ 2

cells that are used for source property estimation. See Figs. 9 and 10.
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FIG. 9.ÈTop : counts data showing an isolated Pleiades Cluster source,
as observed by the ROSAT PSPC. Middle : source counts image data,
created smoothing the counts data with a PW function of size p

x
\p

y
\ 2

pixels, then subtracting the estimated background. Bottom : the source cell
deÐned using the source counts image data (° 3.2.2). This cell, used in the
estimation of source properties, contains nearly all, if not all, of the counts
from this source.

ation will vary depending upon analysis circumstances, but
one possible step is to create only one source count image,
with and to use this image to deÐne the cell,p

k
? rPSF,iC,jC,while being careful to note whether previously detected

point sources are located within it. (See, e.g., ° 4.1.) Another
situation for which care must be exercised is when the PSF

FIG. 10.ÈTop : counts data showing two nearly overlapping Pleiades
Cluster sources, as observed by the ROSAT PSPC. Middle : source counts
image data, created smoothing the counts data with a PW function of size

pixels, then subtracting the estimated background. Bottom :p
x
\p

y
\ 2

the source cells deÐned using the source counts image data. The saddle
point seen in the middle image deÐnes the boundary between the cells
(° 3.2.2).

is bimodal or otherwise strangely behaved (such as the o†-
axis Chandra PSF) ; two or more source cells could be
created for one detected source. The necessary steps to deal
with this situation depend upon the details of the detector
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itself, and thus we will not discuss this particular situation
further here.

3.2.3. Source Rejection

Because the same source will generally be detected at
multiple scales, and to further decrease the possibility of
Ðnding false sources, it is necessary to reject sources from
the lists of correlation maxima generated at each scale. A
maximum observed at for the scale pair is(i

C
, j

C
), (p

x,k, p
y,k),rejected from further consideration if any of the following

conditions are met : (1) lies in a previously deÐned(i
C
, j

C
)

source cell ; (2) 0 ; (3) the ellipse deÐned bySC
iC,jC,k \

(x [ i
C
)2

2p
x,k2 ] (y [ j

C
)2

2p
y,k2 \ 1

contains one or more previously deÐned sources detected at
smaller scales (this can occur when or isp

x,k p
y,k ZrPSF,since previously identiÐed sources will eventually merge if

the Ðeld is crowded, creating ““ new ÏÏ sources at new
locations) ; and (4) if, after the source cell is deÐned for a
particular scale, it is found not to contain any correlation
maxima at that scale. This last check is aimed at rejecting
small-scale Poisson Ñuctuations that may be observed in
the background data.

3.2.4. Source Properties

We present the formulae we use to estimate source
properties and their variances in Tables 2 and 3, respec-
tively. The summations performed when making these esti-
mates are carried out over the pixels within the source cell.
We use the raw counts data, as a weighting function,D

i,j,instead of the source Ñuence because theD
i,j[ E

i,j Bnorm,i,j@ ,
use of the latter can greatly complicate the estimation of
variances. Using the data rather than the source Ñuence will
lead to similar estimates when the background amplitude is
small relative to source amplitude.

3.2.5. Noise-Free Source Image

We can use the information present in the correlation
images and the source cell image to create a ““ noise-free ÏÏ
rendering of the observed source data, SD, with the e†ect of

TABLE 2

SOURCE PROPERTY EXPECTATION VALUES
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NOTES.Èi and j are pixel indices ; sc denotes those image pixels which lie
within the sourceÏs cell ; and is the total exposure,D

s
\ £

i | sc £
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i,j ; t
oin the same units as the exposure map.

exposure variations removed :

SD
i,j \ ;

k/1

N Ccor,i,j,k
p
x,kpy,k

l
i,j,k . (27)

Dividing the correlation value by and restores thep
x,k p

y,knormalization contained in equation (5), allowing a scale-
by-scale summation. The quantity if (1)l

i,j,k \ 1 Ccor,i,j,k [
(2) the local maximum corresponding to (i, j) has been0,

identiÐed as a source pixel, and (3) the associated local
correlation maximum is contained within a source cell (the
second condition ensures that random maxima which are
not associated with a source but which happen to lie within
a source cell are not included in the source image ; the last
condition ensures that rejected sources are not included) ;
otherwise, l

i,j,k\ 0.

4. VERIFICATION

To verify its source detection and characterization capa-
bilities, we apply our algorithm to : (1) 1 and 10 ks obser-
vations by an idealized detector with a spatially invariant
PSF; (2) a 32 ks ROSAT PSPC observation of the Pleiades

TABLE 3

SOURCE PROPERTY VARIANCE FORMULAE
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NOTES.Èi and j are pixel indices ; sc denotes those image pixels which lie within the
sourceÏs cell ; and is the total exposure, in the same units as theD

s
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oexposure map. is deÐned in eq. (25).V [Bnorm,i,j@ ]
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Cluster ; and (3) a simulated 30 ks Chandra ACIS-I obser-
vation of the Lockman Hole region. These tests allow us to
demonstrate that our algorithm can efficiently detect and
accurately describe well-sampled sources in an uncrowded
Ðeld and can e†ectively analyze crowded Ðelds, even in the
low-background limit of the Chandra detectors.

4.1. Idealized Detector with Spatially Invariant PSF
We Ðrst demonstrate that our algorithm can efficiently

detect, and accurately describe, well-sampled sources in an
uncrowded Ðeld. We apply it to two 512 ] 512 images,
hereafter Images A and B, that represent 1 and 10 ks obser-
vations by an idealized detector with an e†ective area 1000
cm2 and a spatially invariant Gaussian PSF of width

pixels (Fig. 11). The exposure map for thispPSF\ 2.56
detector is similar to that of the Einstein IPC. Within each
image we randomly place 42 point sources, and four
extended sources with elliptical shape. The Ñuxes of the
point sources were sampled from a log N [ log S distribu-
tion with slope [1.5, above 10~14 erg cm~2 s~1. We also
simulate a locally variable background (amplitude D10~5
counts s~1 pixel~1) by setting the background amplitude at
Ðve reference points, performing minimum-curvature-
surface interpolation, and sampling background data in
each pixel.

We analyze the images assuming the input parameters
listed for Test 1 in Table 4. In Figure 12, we plot the source
counts for detected sources, and the upper limits for unde-
tected sources, against the number of predicted counts.
Upper limits are deÐned using the source detection thresh-
old values at the correlation maxima nearest the location of
the undetected sources and are computed using equation
(6), with pixels. We conclude thatp

x
\ p

y
\ J3pG\ 4.43

our algorithm efficiently detects and describes point sources
with counts. This is not an absolute quantity : theZ10
minimum number of counts needed for source detection
varies as a function of the background amplitude and
source size (see ° 2.2). Hence, while we may conclude that a
1 ks observation is sufficient for the detection by Chandra of
nearly on-axis point sources with Ñuxes erg cm~2Z10~14
s~1, since it has a similar e†ective area as, and lower
expected background count rates than, our idealized detec-
tor, it may not be sufficient far o†-axis, or for detectors that
have higher rates of background accumulation.

In Figure 13, we show the cells for the detected sources,
along with the input source locations. We use a wavelet
scale of pixels to create the source counts image that is2J2
in turn used to delineate the source cells. This scale is the

closest ““ standard ÏÏ scale to the assumed PSF size (if we
assume scale sizes separated by factors of rather than 2J2
for greater source detection efficiency). In both images, our
algorithm detects one false source, which is consistent with
the assumption of for a 512 ] 512 image.S

o
\ 10~6

Creating source cells by using information derived at a
wavelet scale close to the PSF size is not optimal when one
wishes to analyze and describe extended sources, as dis-
cussed in ° 3.2.2, and indeed by examining Figure 13 we can
see that the extended source cells are undersized. There are
many ways by which an analyst may wish to treat extended
sources ; here, we show how one could derive an image
showing the (normalized) number of counts per pixel within
the extended source. We use as our example the largest
extended object in Image B. First, we must expand the
source cell so that it just encloses the extended source. To
do this, we increase the minimum scale size at which a
source counts image is to be computed (in this example,
from pixels to pixels ; see Figs. 14aÈ14b). (Note2J2 8J2
that the parameter m in eq. [24] must also be increased so
that the background is not overestimated within the
source.) Second, we would use the new source cell as a
spatial Ðlter, applying it to the original source counts image
created at the PSF scale (e.g., Fig. 14c), or to the data, etc.

(If one outputs source count image data, one can then, in
principle, Ðt directly to them. For instance, the image may
be of a galaxy cluster, and one may wish to assess the
detectability of its constituent galaxies. However, care must
be exercised since the data in contiguous pixels are not
independent. Taking into account the width of the PW used
to smooth the raw image data, we can state that data more
than p pixels apart are independent. Thus, simple sta-J2
tistical Ðtting can be done to a sparse grid of data. This
process of Ðtting would be essentially equivalent to the
““ decimation ÏÏ method described by Lazzati et al. 1998,
except that they Ðt to correlation image data.)

4.2. ROSAT PSPC: T he Pleiades Cluster
Next, we demonstrate that our algorithm outperforms

the sliding cell in efficiently detecting sources in a crowded
Ðeld, by applying it to the deep (32 ks) ROSAT PSPC
observation of the core of the Pleiades Cluster (RP200068,
cf. Micela et al. 1996). These data were obtained in two
segments separated by roughly six months, and the slight
boresight o†set between the two segments has been cor-
rected using a method described by Micela et al. The data
were also Ðltered to exclude times of high background con-
tamination, and to exclude pulse-heightÈinvariant (PI)

TABLE 4

NUMBER OF DETECTED SOURCES : ROSAT PSPC PLEIADES IMAGE

Scale Exposure Number of
Test Iterations SigniÐcance Separation Correction Sources

1 . . . . . . 2 10~6 2 Fast (eq. [17]) 129
2 . . . . . . 2 10~6 J2 Fast 136
3 . . . . . . 3 10~6 2 Fast 130
4 . . . . . . 3 10~6 J2 Fast 137
5 . . . . . . 3 10~6 2 Full (eq. [16]) 132
6 . . . . . . 3 10~6 J2 Full 138
7 . . . . . . 2 10~5 2 Fast 144
8 . . . . . . 2 10~5 J2 Fast 148

NOTES.ÈScale sizes range from p \ 1 to p \ 16 pixels. The threshold signiÐcance for
source cleansing is S

o
\ 10~2.



FIG. 11.ÈTop : 512 ] 512 pixel image (Image A) showing a 1 ks observation by an idealized detector with e†ective area 1000 cm2, a spatially invariant
Gaussian PSF of width pixels, and an exposure map similar to that of the Einstein IPC (° 4.1). Within this image were placed 42 point sources andpPSF \ 2.56
four extended sources. The background is assumed to be locally variable, with amplitude D10~5 counts s~1 pixel~1. Bottom : same as top, except the
observation time is 10 ks (Image B).
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FIG. 12.ÈTop : comparison of observed counts, with estimated 1 p errors, and upper limits for undetected sources, with predicted counts for the point
sources of Image A. Upper limits are deÐned using the source detection threshold values at the correlation maxima nearest the location of the undetected
sources and are computed using eq. (6), with pixels. The source exposure time (see Table 2), not the total observation time, is used top

x
\p

y
\J3pG\ 4.43

compute the predicted counts. Bottom : same as top, but for Image B. The two farthest outliers on this Ðgure correspond to observed ““ sources ÏÏ which are
actually composed of two sources each.

channels at both the low-energy (PI \ 20, to avoid the so-
called ““ ghost image ÏÏ problem; Nousek & Lesser 1993) and
high-energy (PI[ 201, where no instrument map is avail-
able to determine exposure variations) ends of the spectral
response. We have computed exposure maps taking into
account these changes using software developed by
Snowden & Kuntz (1998).

In Table 4, we show how the number of detected sources
varies as a function of the number of iterations, the spacing
of scales, the exposure correction method, and the source
detection signiÐcance. Comparing Tests 1 through 6, for
which is constant, we Ðnd that the number of detectedS

osources changes little if the number of iterations is increased
beyond two, or if the full exposure correction method (eq.
[16]) is used instead of the fast one (eq. [17]). However,
there is an B5% increase in source yield by analyzing the
image with the scale sizes spaced by factors of instead ofJ2
2. The extra sources are relatively weak sources whose
probability of detection is maximized around the scales J2
pixels, pixels, etc. It is the decision of the user as to2J2
whether the increase in weak-source detection efficiency is
worth nearly doubling the computation time.

We compare the source detection results for our Test 8
with those shown in the WGACAT and ROSATSRC cata-
logs (White, Giommi, & Angelini 1994, and Voges et al.
1994, respectively),18 as well as those shown in Micela et al.
and Damiani et al. (1997b). (The WGACAT and
ROSATSRC catalog teams, and Micela et al., use variants
of the sliding-cell algorithm.) We choose Test 8 because it
most closely resembles the analysis of Damiani et al., who
perform a two-iteration analysis of the Pleiades image with
wavelet functions of scale sizes 1, . . ., 16 pixels, and withJ2,
threshold signiÐcance (4.2 p). Our result isS

o
\ 1.33] 10~5

nearly equal to that of Damiani et al., as we detect 148
sources, while they detect 150. We cannot directly compare
our numerical results with those of Damiani et al., who only

18 Available from HEASARC: http ://heasarc.gsfc.nasa.gov/.

publish Ðgures showing the performance of their algorithm
on a subset of the Pleiades Ðeld. However, we can emulate
Damiani et al. by showing how our results compare with
those of the WGACAT and ROSATSRC catalogs (Table 5,
cf. Damiani et al. Table 1). Our results are virtually identi-
cal to those of Damiani et al., in, e.g., how many sources are
detected only by our algorithm, etc. We thus may conclude
that our algorithm and that of Damiani et al. generate a
largely similar source list.

A large fraction of the sources that we detect, but that are
not included in the WGACAT or ROSATSRC catalogs, are
located either near the inner telescope support ring (B20@
o†-axis) or near the precipitous drop-o†s in exposure
caused by telescope vignetting near the edge of the FOV
(Fig. 15 ; see also Fig. 16). A visual examination of these
sources indicates that they are not spurious. We further
examine in detail the two sources near the edge of the FOV
that were not included in either the WGACAT or
ROSATSRC catalogs but are in regions covered by other

TABLE 5

COMPARISON AMONG SOURCE DETECTION ALGORITHMS : ROSAT
PSPC PLEIADES IMAGE

Method Number of Detected Sources

Our Algorithm (Test 8) . . . . . . . . . . . . . . . . . 148
Damiani et al. 1997b . . . . . . . . . . . . . . . . . . . 150
Micela et al. 1996 . . . . . . . . . . . . . . . . . . . . . . . 99
WGACAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
MPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Common to :
All methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Our algorithm and WGACAT . . . . . . 27
Our algorithm and MPE . . . . . . . . . . . . 12
WGACAT and MPE . . . . . . . . . . . . . . . . 3
Our algorithm only . . . . . . . . . . . . . . . . . . 28
WGACAT only . . . . . . . . . . . . . . . . . . . . . . . 16
MPE only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



FIG. 13.ÈTop : source cell image generated during the analysis of Image A, for wavelet scale size pixels. The overlaid small circles and larger ellipses2J2
represent, respectively, the 42 point sources and four extended sources randomly placed in the image. Bottom : same as top, but for Image B.
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FIG. 14.ÈTop : subset of the source-cell image shown at the bottom of
Fig. 13, showing the cells generated in the vicinity of the largest extended
source in Image B. Middle : same as top, except that now the source cells
are deÐned using a source counts image with smoothing size pixels8J2
instead of pixels. Bottom : the normalized count-rate image for the2J2
extended source (and three point sources), generated by creating a source
counts image with smoothing size 2 pixels, then Ðltering out all pixels not
contained in the source cell shown immediately above. If this source were a
galaxy cluster, the analyst could proceed to Ðt to these data (respecting the
caveats discussed in ° 4.1).

ROSAT PSPC pointings described by Stau†er et al. (1994).
We Ðnd that these sources lie within pixels of the Stauf-rPSFfer et al. sources 159 and 197 (see their Table 2), which have
reported count rates B0.023 and 0.016 counts s~1, respec-
tively. These rates are consistent with our derived count
rates. This demonstrates the robustness of our simple expo-
sure correction method.

We also note the intriguing result that the local back-
ground map computed by our algorithm indicates the pres-
ence of an X-ray shadow in the core of the cluster (Fig. 17 ;
Kashyap et al. 2002, in preparation). Because the Pleiades
cluster is located beyond the edge of the local bubble of hot
gas (Frisch 1995), this shadow, which is most pronounced at
low energies, is of more distant sources of the di†use X-ray
background (DXBG), such as the extragalactic component
and obscured stars in the Pleiades cluster itself. The depth
of the shadow places constraints on the nature of the stellar
mass-function at low masses, and in particular rules out
models where the mass-function is extrapolated at a con-
stant slope from higher masses, thus providing independent,
X-ray observational support for optical observations that
report drops in the mass function at low masses (M

B
D 10 ;

see, e.g., Tinney, Mould, & Reid 1992 ; Bahcall et al. 1994).

4.3. Chandra ACIS-I : T he L ockman Hole
Finally, we demonstrate that our algorithm can handle

the low background amplitudes which are characteristic of
Chandra observations, while continuing to outperform the
sliding cell, by applying it to a simulated 30 ks Chandra
ACIS-I image of the Lockman Hole (T. Gaetz 1998, private
communication ; Fig. 18). The ACIS-I is comprised of four
1024 ] 1024 pixel CCDs conÐgured in a 2] 2 square, with
FOVB 17@] 17@ (B50 times smaller than that of the
ROSAT PSPC). Within the ACIS-I Ðeld are placed : (1) 12
optically identiÐed ROSAT PSPC X-ray sources cata-
logued by Schmidt et al. (1998), including one extended
cluster source ;19 (2) B6000 point sources sampled from the
Hasinger et al. (1998) log N [ log S distribution between
10~17 and 5] 10~15 erg cm~2 s~1 ; and (3) 19500 particle
background counts (corresponding to a particle back-
ground rate of 1.5 ] 10~7 counts pixel~1 s~1).

If we assume the input parameters listed for Test 1 in
Table 4, and do not use an exposure map, we detect 171
sources in the full ACIS-I Ðeld, of which four are directly
associated with the extended galactic cluster (Fig. 18). In
Figure 19, we show di†erential log N [ log S distributions
for both detected, and all, points sources in the FOV. On
the basis of this Ðgure, we may conclude that our algorithm
will efficiently detect sources in ACIS-I images with Ñuxes

erg cm~2 s~1 (0.5È2 keV) and has the ability toZ10~15
detect Poisson sampling Ñuctuations for sources with Ñuxes

erg cm~2 s~1. Our result compares very favorably[10~16
with the performance of ““ CELLDETECT,ÏÏ which detects
51 sources with S/Nº 3. (Further comparison of the source
detection efficiencies of WAVDETECT and CELLDE-
TECT is provided by Kim et al. 2002, in preparation.) We
conclude that the relative superiority of our wavelet detec-
tion algorithm, with respect to the sliding cell, is inversely
proportional to the background amplitude.

In Figure 20, we plot the o†sets of the locations of
detected sources from their actual locations within the

19 Other detected X-ray sources that lie within the ACIS-I FOV but
were not optically identiÐed, have not been included.
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FIG. 15.ÈTop left : full ROSAT PSPC image of the Pleiades Cluster. Top right : ellipses representing the 148 sources detected by our algorithm. The ellipse
sizes are set by deriving the 1 p principal axes and rotation angle for each source. Middle left and right : same as top left and right, with only the central 1¡ ] 1¡
portion of the image shown. Bottom left and right : same as top left and right, with only the central 30@] 30@ portion of the image shown.

FOV. (These o†sets are caused by the asymmetry of the
Chandra PSF, and their magnitude increases with o†-axis
angle.) We note two characteristics of these o†sets. First, the
variation in the o†sets does not depend on source strength,
signifying that the source-locating process is insensitive to

the strength of the source. Second, the observed o†sets are
signiÐcantly smaller than the expected mean separation
between sources (B50 pixels), implying that the observed
o†sets are due to the asymmetries inherent in the PSF and
not due to source misidentiÐcations. We thus Ðnd that the



FIG. 16.ÈIllustration of how the number of iterations used to estimate the local background amplitude (° 3.1.3) a†ects the estimation of Pleiades Cluster
source properties (° 4.2). L eft : the ratio of source predicted counts given backgrounds estimated using one iteration, and two iterations, as a function ofC1/C2Right : same as left, but instead computed for two and three iterations.C2.

FIG. 17.ÈCorrected background map generated during the analysis of the ROSAT PSPC image of the Pleiades Cluster (° 4.2) via the method of ° 3.2.1.
The contour levels are 0, 0.9, 1.05, 1.2, 1.35, and 1.5 counts, with darker areas having more counts. Since the estimated error in each pixel is D0.01 counts, the
perceived structure is real and is indicative of X-ray shadowing (Kashyap et al. 2002, in preparation).
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FIG. 18.ÈTop : simulated 30 ks Chandra ACIS-I observation of the Lockman Hole. Data in all four chips are shown, rebinned by a factor of 2 for greater
visual clarity. The gaps between chips are B15 pixels. Bottom : ellipses representing the 171 sources detected by our algorithm. The ellipses, whose sizes are
normally set by deriving the 1 p principal axes and rotation angle for each source, have minimum axis lengths of 10 pixels for greater visual clarity.
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FIG. 19.ÈDi†erential log N [ log S distributions for detected point sources (dotted line) and all point sources (solid line) in the Chandra ACIS-I Lockman
Hole Ðeld. We conclude that our algorithm will efficiently detect sources in ACIS-I images with Ñuxes erg cm~2 s~1 (0.5È2 keV) and has the abilityZ10~15
to detect Poisson Ñuctuations for sources with Ñuxes 10~16 erg cm~2 s~1.[

weak sources are as ““ well-behaved ÏÏ as strong sources
(about whose detection and identiÐcation there can be little
doubt), and hence infer that even the weakest detected
sources are real.

5. COMPARISON WITH EXISTING ALGORITHMS

The source detection algorithm which we present in this
work resembles algorithms published previously by Vikh-
linin et al. (1994), Rosati et al. (1995), Grebenev et al. (1995),
Damiani et al. (1997a), and Lazzati et al. (1998). In this
section, we highlight important di†erences between our
algorithm and these other algorithms, all of which, having
been developed for analyzing ROSAT PSPC data, su†er
from inherent limitations that do not allow them to be
directly applied to data from, e.g., Chandra. We do not
discuss how our method of source characterization di†ers
from those described previously, because these other
methods are built upon the premise that the PSF has
Gaussian shape. Thus, they are simply not directly applica-
ble in situations where the PSF has a more complex shape.

5.1. Correlation Image
Our basic method for computing the correlation images

is the same as that used by Vikhlinin et al., Rosati et al.,

Grebenev et al., and Lazzati et al., with the exception that
Rosati et al. use the symmetric Morlet wavelet function

WM(r) \ 2
p2
C
e~r2@p2 [ 1

2
e~r2@2p2

D
(28)

instead of the MH function. However, these authors do not
attempt to correct for exposure variations, as they focus
their attention upon the center of the ROSAT PSPC FOV,
and they use a fundamentally di†erent method to determine
source detection thresholds (see below).

The method by which Damiani et al. correct for exposure
and detect sources di†ers substantially from ours. They Ðrst
divide the raw data image (which they refer to as the
““ photon image ÏÏ) by an exposure map on a pixel-by-pixel
basis, to create the so-called ““ count-rate image.ÏÏ Pixels with
relative exposure less than a certain amount (e.g., 0.2) are
not included, which introduces a sharp edge in the count-
rate image where telescope vignetting becomes important.
Damiani et al. correlate the wavelet function with this
image, applying an analytic correction to correlation values
near the edge (as given in their eq. [12]). Because the data in
the count-rate image are not Poisson-distributed, Damiani
et al. must convert source detection threshold values,
derived from their background map in the photon image, to
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FIG. 20.ÈO†sets of the locations of detected sources from their actual locations within the Chandra ACIS-I Lockman Hole Ðeld, as a function of o†-axis
angle. These o†sets are caused by the asymmetry of the Chandra PSF, and the solid line represents its 95% encircled energy radius. Triangles represent
sources with fewer than 6 counts ; crosses, sources with between 6 and 15 counts ; and stars, sources with more than 15 counts. This Ðgure demonstrates that
our ability to associate detected sources with actual sources does not vary as a function of source strength.

values appropriate for the count-rate image. They accom-
plish this by dividing the photon-image detection thresh-
olds by an e†ective exposure time which is not a sourceteff,exposure time that can be used to convert estimated source
counts to count rates. Because Damiani et al. derive the
equation with which they compute e†ective exposure time
in the Gaussian limit (see their Appendix B), their exposure
correction method is e†ectively limited to the high-counts
regime : it cannot be applied as is to, e.g., typical Chandra
data.

5.2. Background and Source Detection
As described in ° 3, we estimate the local background

counts amplitude in each pixel by assuming that within the
negative annulus of the wavelet, NW , there are no source
counts (eq. [12]). We then use that inferred amplitude to
determine source detection thresholds. This is a gener-
alization of the approach used by Vikhlinin et al., Rosati et
al., Grebenev et al., and Lazzati et al., in which the corre-
lation variance SW 2 DT is used to determine thresholds%

(e.g., SW DTSW 2 DT1@2º 3.5). This approach will work% %

if the background is locally Ñat or has a locally constant
gradient, in which case the correlation of wavelet and back-
ground is zero. Such an approach is obviously insufficient
for use with the whole FOV of X-ray detector, where
support rib shadows and vignetting will a†ect the back-
ground, and/or in situations where the noninstrumental
background varies markedly (such as in the Pleiades ; see
Fig. 17).

Damiani et al. use the same basic approach to source
detection as we do, in that they compute a local back-
ground amplitude, and use it to compute source detection
thresholds. Damiani et al. compute the background map by
Ðrst smoothing the raw data with a Gaussian with width

They then interpolate background estimatesº2pPSF,i,j.within support rib shadows. At each scale, they compute the
median value of the smoothed background within a square
region with side-length centered on thel \ 4(p2] pPSF,i,j2 )
given pixel. (We explicitly use instead of to high-pPSF2 rPSF2
light their assumption of Gaussian PSF shape.) After point
sources are detected (using a source cleansing signiÐcance
that is 0.2 p smaller than their source detection signiÐcance),
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regions around them containing 95% of the counts are
masked out, and a reÐned background estimate is made by
interpolating over the masked regions.

6. SUMMARY

In this work, we present a generalized wavelet-based
source detection algorithm that, in principle, can be applied
immediately to image data collected by any photon counts
detector, although it was developed speciÐcally for the
analysis of Chandra X-ray Observatory image data. We
exclusively use the Marr, or Mexican Hat, wavelet function
in this paper, but the basic details of our algorithm would
be unchanged if we use other wavelet functions, such as the
Haar or Morlet wavelet functions. Aspects of our algorithm
include : (1) the computation of the correlation of the
wavelet function and the data image using either analytic or
FFT methods ; (2) the computation of a local, exposure-
corrected normalized (i.e., Ñat-Ðelded) background in each
pixel ; (3) its applicability within the low-counts regime, as it
does not require a minimum number of background counts
per pixel for the accurate computation of source detection
thresholds ; (4) the correction of those correlation values
which are a†ected by large exposure variations within the
wavelet support (due to, e.g., telescope support ribs or the
edge of the Ðeld of view), using either one of two methods
given by equations (16) and (17) ; (5) the generation of a
source list in a manner that does not depend upon the
details of the PSF shape, including the creation of general,
data-dependent source cells for the estimation of source
properties and Ðltering of extended source data ; and (6) full
error analysis. In these respects, our algorithm is consider-
ably more general than the similar wavelet-based methods
developed by Vikhlinin et al. (1994), Rosati et al. (1995),
Grebenev et al. (1995), Damiani et al. (1997a, 1997b), Starck
& Pierre (1998), and Lazzati et al. (1998). Nearly all of these
methods were developed speciÐcally for treating data col-
lected by the ROSAT PSPC (Starck & Pierre 1998 apply
their method to data from the ROSAT HRI) ; none except
Damiani et al. attempt to correct for variations in exposure
within the FOV; and all except for Damiani et al. assume a

Ñat background across the region of interest. The relatively
more general method of Damiani et al. is limited to analyz-
ing data from detectors which have PSFs with Gaussian
shape, and which have high rates of background accumula-
tion. These limitations make the Damiani et al. approach,
as published, inappropriate for use with, e.g., Chandra data.

In ° 4, we demonstrate the robustness of our algorithm by
applying it, without algorithmic changes, to data collected by
an idealized detector with a spatially invariant Gaussian
PSF; to ROSAT PSPC data of the crowded Ðeld of the
Pleiades Cluster ; and to a simulated Chandra ACIS-I image
of the Lockman Hole region. Collectively, these test cases
indicate that our algorithm: (1) e†ectively detects and
describes point sources and can be applied to the study of
extended sources ; (2) does not detect more spurious sources
than expected ; (3) is more sensitive than sliding-cell
methods ; and (4) has equal sensitivity to the Damiani et al.
method for the speciÐc case of ROSAT PSPC data. We Ðnd
that while we can use the algorithm as presented to analyze
extended sources, such analysis requires careful monitoring
on the part of the analyst. Work on generalizing this
analysis is on-going and will be reported in a future work.
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APPENDIX A

DERIVATION OF FORMULAE ASSOCIATED WITH THE MEXICAN HAT FUNCTION

The source detection algorithm that we have presented does not explicitly depend on the details of wavelet function itself,
and thus should be applicable with other, simple, wavelet functions which have one central positive mode. Hence, we have
deferred to this Appendix and the next the derivation of various formulae that we use in our algorithm which are valid
speciÐcally when using the Marr, or Mexican Hat (MH), wavelet function.

A1. PIXEL-BY-PIXEL INTEGRATION OF THE MH FUNCTION

Before carrying out source detection at given scales we must determine the grid of values (see eq. [7]). This(p
x
, p

y
), W

i~i{,j~j{is accomplished by integrating the function deÐned in equations (4)È(5), on a pixel-by-pixel basis within anW
m
(x/p

x
, y/p

y
),

ellipse with axes with full lengths and with values farther from the origin set to zero :10p
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y
,
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(x, y) represent coordinates relative to the center of pixel (i, j), and and denote the limits of integration over(x1, x2) (y1, y2)
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FIG. 21.ÈIllustration of variables used when computing correlation values. x and y are continuous variables describing the wavelet function centered in
pixel (i, j). The correlation value for pixel (i, j) is computed by summing the product of the data in pixels (i@, j@) and the integral of the wavelet function in those
pixels. The dotted line shows the boundary between the positive kernel PW and negative annulus NW of a Mexican Hat wavelet with pixel,p

x
\p

y
\ 1

while the solid line shows the extent over which the summation is carried out ; beyond this line, the amplitude of wavelet function is B0.

pixel (i@, j@) (Fig. 21) :

x1\ i@[ i [ 12 , y1\ j@[ j [ 12 ,

x2\ i@[ i ] 12 , y2\ j@[ j ] 12 .

We expand equation (A2) and perform each integral separately. The Ðrst integral in the expansion is computed using
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where the substitution is made, and erf(x) is the error function. Performing the same integration over y, wet \ x/J2p
xdetermine that the Ðrst term is 2(n/2)p
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This integral can be solved by parts, by taking the derivative of t and the integral of t exp ([t2). We present the solution :
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The Ðnal solution is
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A2. FOURIER TRANSFORM OF THE MH FUNCTION

Analytic computation of correlation values (eq. [7]) may be too computationally intensive if the image and/or wavelet scale
sizes are too large. So in WAVDETECT, for instance, fast Fourier transforms20 (FFTs) are used if scale sizes are º2 pixels :

CB FFT~1[N ] FFT(W ) ] FFT*(D)] . (A6)

To mitigate the e†ect of ““ wrap-around,ÏÏ any image that is to be transformed is padded with zeros ; the minimum width of the
padding is 10 ] max (p

x
, p

y
).

In our own FORTRAN code, we use the analytic Fourier transform of the MH function, which we denote FT(W ) :
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The wavenumber k equals where is the pixel number in Fourier space, is the Nyquist wavenumber,[2(i
k
[ 1)kN]/l, i

k
kN \ 12and l is half the length of the relevant axis in the padded image. The fourth integral in equation (A7) and the second integral in

equation (A8) are zero, as the integrands are products of even and odd functions. Solving for we ÐndC
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and represent two integral solutions which one may Ðnd, e.g., in Gradshteyn & Ryzhik (1980 ;(0,c(p, q, j) (2,c(a, p)
formulae [3.896-2] and [3.952-4], respectively) :
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Substituting these quantities into equation (A9), one Ðnds that
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20 The CIAO WAVDETECT code (written in C) makes use of the FFTW package (Frigo & Johnson 1998), while our own FORTRAN code uses the
publicly available MFFT algorithm (Nobile & Roberto 1986).
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Substituting equation (A12) into equation (A8) and solving, we Ðnd
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By using FT(W ) instead of FFT(W ), we reduce computation time, but numerical estimates are less accurate (with respect to
estimates derived analytically). We quantify the discrepancy between any two of our three methods (FT(W ), FFT(W ), or
analytic) using

d \ o*C o

Tan
. (A14)

We use the analytically derived detection threshold in the denominator because the expectation value of C is zero. It alsoTanprovides an intuitive way to describe the discrepancy at the detection threshold. We Ðnd whiledFFT,an D 10~4, dFT,anZ 10~2,
increasing with (See Fig. 22.)C/Tan.The discrepancy results from the fact that we analyze binned images. Because the data are binned, we should actually
compute FT(W ) using the equation

FT(W )\
P
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`=P
~=

`=
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e2ni(kx x`ky y) , (A15)

If W (x, y) exhibits signiÐcant curvature in a bin, then within that bin ; the e†ect of this discrepancy in theW
i~i{,j~j{

D W (x, y)
Ðnal correlation value is proportional to the number of counts in the bin. Thus, will increase with source strength, asdFT,anshown in the right panel of Figure 22.

If we wish to compute the error of the correlation value in a pixel, we calculate SW 2 saving computation time by% DT
i,j,using the analytic Fourier transform FT(W 2). The derivation of this function is similar to the derivation of FT(W ). A new

integral which appears is
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One may solve this integral by parts, di†erentiating the term and integrating the term(x3/p
x
2) cos (2nk

x
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FIG. 22.ÈL eft : discrepancy between the correlation values determined by the analytic method and by using the FFT, for the ROSAT PSPC data of the
Pleiades cluster. In this example, pixels. Right : same as left, but comparing the analytic method with the use of the analytic Fourier transform forp

x
\p

y
\ 2

the MH function.
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The integralexp [[(x2/p
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has solution (see, e.g., Gradshteyn & Ryzhik 1980, formula [3.952-5])
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The Ðnal solution is
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Use of FT(W 2) instead of FFT(W 2) leads to a less accurate accounting of the errors as derived using purely analytic
methods, for reasons given above. We Ðnd the magnitude of the discrepancy in error estimates, as a fraction of the detection
threshold, to be similar to that seen above (D10~2) ; if we use the analytic error in the denominator instead of the detection
threshold, we Ðnd that the discrepancy is constant as a function of C/T , at D10~2.

A3. INTEGRATION OF THE MH FUNCTION NEGATIVE ANNULUS

If exposure variations and the FOV edge may be ignored in the computation of the background, then we may replace
SNW in equation (12) with a background normalization factor, which we derive here.% ET

i,j N
B
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The average value of the MH function is zero. Hence, may be derived by integrating the MH function over either PW orN
BNW . We choose the former :
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The limits of integration reÑect that the core extends over an ellipse with axes and We reparameterize theJ2p
x

J2p
y
.

integral using polar coordinates (r, h), after Ðrst mapping the boundary ellipse to a boundary circle using the transformation
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The determinant of the Jacobian of the transformation from (x, y@) ] (r, h) is r.
We evaluate the second integral using integration by parts :
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The second integral in equation (A24) cancels with the Ðrst integral in equation (A23), leaving
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APPENDIX B

COMPUTATION OF DETECTION THRESHOLDS

We associate an image pixel (i, j) with a source if the signiÐcance of its correlation value is greater than aS
i,j C

i,juser-deÐned detection threshold signiÐcance S
o
:

S
i,j \

P
Ci,j

=
dCp(C oB

i,j) [ S
o

, (B1)
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where is either SNW the convolution of the wavelet negative annulus NW with (possibly cleansed) image data D,B
i,j % DT

i,j,or the amplitude in an input background map. is the probability sampling distribution (PSD) for C given (Wep(C oB
i,j) B

i,j.are assuming here that the Ðeld of view is evenly exposed, which is true for the simulations we describe below. In a more
general expression, we would replace SNW with By deÐning the signiÐcance in this% DT

i,j E
i,jSNW % DT

i,j/SNW % ET
i,j.)manner, we are making the assumption that the expected background counts amplitude is constant throughout the wavelet

support and that if we are computing the background, there are no source counts in the negative annulus. Since the PSD is
dimensionless, it is independent of scale size (e.g., the PSD for would be the same if we were to double and andB

i,j p
x

p
yreduce the count rate by a factor of 4).

We replace with the equivalent quantity the expected number of background counts within the spatial regionB
i,j q

i,j,spanned by the positive kernel of the wavelet, PW . is related to by multiplicative factors.) The PSD does not have(q
i,j B

i,janalytic form when the total number of expected counts within the positive kernel of the wavelet, is small 1) ; this isq
i,j, ([

demonstrated by Damiani et al. (1997a). Like Damiani et al., we use simulations to estimate signiÐcances and detection
thresholds ; we carry these simulations out both within the regime they examine and also for lower expected counts values.
Because this is a computationally intensive problem, we cannot accurately estimate signiÐcances for each pixel if S

i,j [ 10~7.
Instead, we compare the value of in each pixel with the detection threshold deÐned byC

i,j C
i,j,o(So

, B
i,j),

S
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Here we recast the equation using the variable the number of expected counts in PW , as its use clariÐes our descriptionq
i,j,below of how we estimate C

i,j,o.To determine we simulated over 50,000 1024] 1024 Ñat-Ðeld images.21 For each image, we :C
i,j,o(So

, q
i,j),

1. Randomly selected values from the range (we describe why we chose this upper limit below) ;log q
o

[10 ¹ log q
o
¹ 3.25

2. Determined the expected background amplitude in each image pixel (p \ 4 pixels) ;B
o
\ q

o
/2np2

3. Sampled data in each pixel from the appropriate Poisson distribution given rate B
o
;

4. Computed and for each image pixel ; andC
i,j q

i,j5. Recorded in bins of size for with one bin being used for all values ofC
i,j *(log q

i,j)\ 0.2, [6.9¹ log q
i,j ¹ 3.1,

From these distributions we can determinelog q
i,j \ [6.9.22 p(C o q

i,j), C
i,j,o.

Because there is an inverse correlation between observed values of and it is important to record and notC
i,j q

i,j, p(C o q
i,j)Use of the latter distribution leads to underestimated detection thresholds, and thus to larger numbers of false sourcep(C o q

o
).

detections than one would expect, given S
o
.

We determined 25 values of in each log q bin, for values of using the central 68% (17 values) to estimateC
o
(S

o
, q) S

o
Z 10~7,

““ 1 p ÏÏ errors on We then Ðtted these data with simple functions, minimizing the s2 statistic. These functions we useC
o
.

describe the observed detection thresholds well, except in the regime and where we use a look-uplog q
i,j [ 0 log S

o
Z [4,

table instead. These Ðts allow us in principle to compute detection threshold for signiÐcances below our computational lower
limit (such as for the signiÐcance corresponding to one false source pixel in an AXAF HRC image).S

o
D 10~7 S

o
D 10~9,

In the regime and we compute using the functionlog q
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where

Alo\ 0.00462 ,

Blo\ 0.0661 ,

Clo\ [0.0154(log S
o
)2 [ 0.252(log S

o
) [ 0.031 .

In the regime we compute using the functionlog q
i,j Z 0, C

o
(q

i,j)
C

o
(q

i,j) \ AhiJq
i,j ] Bhi , (B3)

21 Images that had at least one count ; empty images were ignored.
22 This is of the order of the machine precision.
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where

Ahi\
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6
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o
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This function is also used by Damiani et al. to Ðt detection thresholds in this counts regime, though their derived coefficients
di†er from ours.

For values we Ðnd that we must use the formulalog q
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to compute the detection threshold, with
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For our simulations, we chose as a upper limit because of the contention of Damiani et al. that iflog q
o
\ 3.25 log q

i,j Z 3,
the PSD probability sampling distribution is analytically representable as a Gaussian with width (Note that thep \ (q

i,j)1@2.value of that we use in this work is larger than that used by Damiani et al. by a factor of 2n.) If this is the case, theq
i,jsigniÐcance is given by
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We Ðnd, however, that if we use this formula in the regime the derived values of are smaller than thoselog q
i,j Z 3, C

i,j,opredicted by equation (B3) above. Thus, because it is more conservative, we use equation (B3) to compute detection thresholds
for all values log q

i,j Z 0.

APPENDIX C

COVARIANCE ESTIMATE: TWO-ITERATION BACKGROUND

If the data are cleansed (see ° 3.1.3), then an exact calculation of will include nonzero covariance terms. In thisV [B
i,j]section, we derive these terms assuming that the data are cleansed only once, i.e., we compute the variance for aB2,i,j,background estimate made by convolving the wavelet negative annulus with data that are a mixture of raw data D andD2Ðrst-iteration background estimates B1 :

B2,i,j \ E
i,j

SNW % D 2Ti,j
SNW % ET

i,j
\ N

i,j;
i@

;
j@

NW
i~i{,j~j{

D
i{,j{@ , (C1)

where N
i,j \ E

i,j/SNW % ET
i,j.Using equation (18),

V [B2,i,j]\ ;
i@

;
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(N
i,j NW

i~i{,j~j{
)2V [D

i{,j{@ ]] 2 ;
i@

;
i@@;i@

;
j@

;
j@@;j@

(N
i,j NW

i~i{,j~j{
)(N

i,j NW
i~i{{,j~j{{

)cov[D
i{,j{@ , D

i{{,j{{@ ] .

To calculate the variance, we must estimate both and The estimate of the former is given inV [D
i{,j{@ ] cov[D

i{,j{@ , D
i{{,j{{@ ].

equation (22), derived assuming that the raw datum is sampled from a Poisson distribution with variance and thatD
i{,j{ D

i{,j{each pixelÏs raw datum is independently sampled.
Estimation of is more complicated. For the two-iteration background case, there are three possibilities :cov[D

i{,j{@ , D
i{{,j{{@ ]

and and (or vice-versa) ; or andD
i{,j{@ \ D

i{,j{ D
i{{,j{{@ \ D

i{{,j{{ ; D
i{,j{@ \D

i{,j{ D
i{{,j{{@ \ B1,i{{,j{{ D

i{,j{@ \ B1,i{,j{ D
i{{,j{{@ \ B1,i{{,j{{.Assuming that the raw data are independently sampled, in the Ðrst case the covariance is zero. In the second case, we can
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FIG. 23.ÈIllustration of the e†ect of including the computation of covariances in the calculation of a two-iteration background (see Appendix C for
details). L eft : ratio of variances for a 50 ] 50 subÐeld of the ROSAT PSPC Pleiades Cluster image, analyzed with a wavelet withV [B2]covar/V [B2]nocovar,scale sizes pixels. Light regions have values B1, while dark regions have values up to B1.3. Right : 50 ] 50 subÐeld of the ROSAT PSPCp

x
\ p

y
\ 4

Pleiades image for which the ratio of variances shown at left was computed. Sources in this Ðeld correspond with light (low-amplitude) regions in the ratio
image.

estimate the covariance using the approximation (Eadie et al., p. 27)

cov[D
i{,j{, B1,i{{,j{{]\;

k
;
l

;
k@

;
l@

ALD
i{,j{

Lk
k,l

BALB1,i{{,j{{
Lk

k{,l{

B
cov[D

k,l, D
k{,l{]

\;
k

;
l

ALD
i{,j{

Lk
k,l

BALB1,i{{,j{{
Lk

k,l

B
V [D

k,l]

\;
k

;
l

ALD
i{,j{

LD
k,l

BALB1,i{{,j{{
LD

k,l

B
V [D

k,l]

\
ALB1,i{{,j{{

LD
i{,j{

B
V [D

i{,j{]

\ V [D
i{,j{]

L
LD

i{,j{
N

i{{,j{{ ;
i@@@

;
j@@@

NW
i{{~i{{{,j{{~j{{{

D
i{{{,j{{{

\ V [D
i{,j{]Ni{{,j{{ NW

i{{~i{,j{{~j{
\ D

i{,j{ Ni{{,j{{ NW
i{{~i{,j{{~j{

.

In the above equations, k represents the expectation value of the sampling distribution for D ; for a Poisson distribution with
variance equal to the datum, k will be equal to the datum. In the third case, we Ðnd (while skipping some steps)

cov[B1,i{,j{, B1,i{{,j{{]\ ;
k
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To demonstrate the e†ect of including covariance terms, we compute for a 50 ] 50 subÐeld of the ROSAT PSPCV [B2]Pleiades image, with pixels. In Figure 23, we show the ratio We infer the following fromp
x
\p

y
\ 4 V [B2]covar/V [B2]nocovar.this computation : (1) it is quantitatively unimportant at the location of sources and within voids, where the change in variance

is 1%; (2) in the vicinity of a strong sources, the change in variance is D10% (with maximum B30% for this particular[
Ðeld, in the vicinity of an 800 count source) and is a†ected by source crowding ; and (3) including covariance terms increases
the CPU time needed to compute by a factor where and are the x- and y-axis lengths,V [B2] DO(d

x
d
y
p
x
2 p

y
2), d

x
d
yrespectively, in pixels.
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