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ABSTRACT

Photon limitations arise in spectral imaging, nuclear medicine, as-
tronomy and night vision. The Poisson distribution used to model
this noise has variance equal to its mean so blind application of stan-
dard noise removals methods yields significant artifacts. Recently,
overcomplete dictionaries combined with sparse learning techniques
have become extremely popular in image reconstruction. The aim
of the present work is to demonstrate that for the task of image de-
noising, nearly state-of-the-art results can be achieved using small
dictionaries only, provided that they are learned directly from the
noisy image. To this end, we introduce patch-based denoising algo-
rithms which perform an adaptation of PCA (Principal Component
Analysis) for Poisson noise. We carry out a comprehensive empiri-
cal evaluation of the performance of our algorithms in terms of ac-
curacy when the photon count is really low. The results reveal that,
despite its simplicity, PCA-flavored denoising appears to be compet-
itive with other state-of-the-art denoising algorithms.

Index Terms— Image denoising, gradient methods, Newton’s
method, signal representations.

1. INTRODUCTION, MODEL AND NOTATION

Since the introduction of patch based method for image denoising
[1], those methods have proved to outperform previously consid-
ered approaches [2, 3]. Our work is inspired by recent combining
Principal Component Analysis (PCA) with patch based approaches
[4, 5, 6] for the Additive White Gaussian Noise (AWGN) model.

One important difference with the standard AWGN model is that
the effect of Poisson noise increases (i.e. the signal-to-noise ratio
decreases) as the mean intensity value decreases. However, most
state-of-the-art methods dealing with Poisson noise rely on variance
stabilization techniques as in [7] and [8]. Those two methods con-
sist in using the Anscombe transform [9] and to treat the processed
image as if it was corrupted by a Gaussian noise. A recent modifica-
tion of the inverse Anscombe transform [10] has shown impressive
results on standard images.

Our main contribution is to combine Poisson-PCA (also referred
to as Exponential-PCA) [11, 12] with patches to denoise images
corrupted by Poisson noise. We will detail the targeted optimiza-
tion problem and present results improving state-of-the-art methods
when the noise level is particularly high, a range of noise where the
usual treatment relying on Anscombe’s [9] transform is no longer
relevant. We coined our method Poisson NL-PCA, (for Non-Local
Principal Component Analysi).

A major difference with our method is that we directly handle
the Poisson structure of the noise, without any “Gaussianization” of

the data, a point of view also adopted in [13]. These direct approach
is particularly relevant when the image suffers from a high noise
level (i.e., low photon emission). We apply patch based methods
(also referred to as Non-Local methods) to Poisson noise, adapting
PCA-based denoising in this heteroscedastic context.

Several methods have been proposed to represent the data in a
lower dimensional space in the same spirit as PCA. The framework
considered in [11, 12] deals with data well approximated by random
variables drawn from any exponential distribution. A simple case
is the standard PCA, assuming the random variables are distributed
according to a Gaussian distribution.

1.1. Problem formulation

For i = 1, . . . ,M , let yi be the observed pixel values obtained
through an image acquisition device. We consider each xi to be
an independent random Poisson variable whose mean xi ≥ 0 is the
underlying intensity value to be estimated. Explicitly, the discrete
Poisson probability of each yi is

P(yi|xi) =
xyi
i e−xi

yi!
. (1)

Recall the objective of Poisson-PCA. For that, we denote by Y the
M×N matrix of all the (vectorized)

√
N×
√
N overlapping patches

extracted from the noisy image and by J1,MK the set {1, . . .,M}.
Then, one aims to approximate Y by :

∀(i, j) ∈ J1,MK× J1, NK, Yi,j ≈ exp([UV ]i,j) , (2)
where
• U is the M × ` matrix of coefficients.
• V is the `×N matrix representing the dictionary components

/ axis. The rows of V represents the dictionary elements.
• exp(UV ) is the element-wise exponential transform of UV:

∀(i, j)∈J1,MK× J1, NK, exp(UV )i,j = exp
(
[UV ]i,j

)
. (3)

We assume that the patches, up to an exponential transform, can be
approximated by a low dimensional space of small dimension `, i.e.,
we assume that ` is small with respect to M .

The framework introduced in [11, 12] leads in the Poisson case
to minimizing the following loss function L:

L(U, V ) =

M∑
i=1

N∑
j=1

exp(UV )i,j − Yi,j(UV )i,j , (4)

with respect to the matrices U and V . Defining the corresponding
minimizers of the non-jointly convex problem

(U∗, V ∗) = argmin
(U,V )∈RM×`×R`×N

L(U, V ) , (5)



the original data is then denoised by considering Ŷ = exp(U∗V ∗) .
We restrict the dictionary elements to be in the Euclidean unit

sphere since otherwise the solution of the problem is obviously non
unique, and multiplying the coefficients by some positive number
and dividing the dictionary by the same number does not modify L:
L(U, V ) = L(tU, V

t
) for any t 6= 0.

2. NEWTON’S METHOD FOR MINIMIZING L

Here we follow the approach proposed by [14, 15] that consists in us-
ing Newton steps to minimize the function L. Though the joint func-
tion L is not convex, when fixing one variable and keeping the other
fixed the partial optimization problem is convex. Therefore we con-
sider Newton updates on the partial problems. It consists in applying
a gradient descent step where the updates matrix used are the inverse
of the Hessian matrices. Thus, to apply the Newton’s method, one
needs to invert the Hessian matrices, with respect to both variable
U and V , defined by HU = ∇2

UL(U, V ) and HV = ∇2
V L(U, V ).

Simple algebra leads to the following closed form expressions for
the components of these matrices

[HU ](a,b),(c,d) =


N∑

j=1

exp(UV )a,jV
2
b,j , if (a, b) = (c, d),

0 otherwise.
(6)

[HV ](a,b),(c,d) =


M∑
i=1

U2
i,a exp(UV )i,b, if (a, b) = (c, d),

0 otherwise.
(7)

where both matrices are diagonal, and so are their inverses.
We propose to update the rows of U and columns of V as pro-

posed in [15]. We need to introduce the function VectC that trans-
forms a matrix into one single column (concatenates the columns),
and the function VectR that transforms a matrix into a single row
(concatenates the rows). The updating step for U and V are then

VectR(Ut+1) = VectR(Ut)−VectR
(
∇UL(Ut, Vt)

)
H−1

Ut
,

VectC(Vt+1) = VectC(Vt)−H−1
Vt

VectC
(
∇V L(Ut, Vt)

)
.

Easy algebra (cf. [14] for more details) leads to the following updat-
ing rules for Ut+1,i,: the ith row of Ut+1:

Ut+1,i,: = Ut,i,: − (exp(UtVt)i,: − Yi,:)V
>
t (VtDiV

>
t )−1 , (8)

where Di = diag
(
exp(UtVt)i,1, . . . , exp(UtVt)i,N

)
is a diag-

onal matrix of size N × N . The updating rule for Vt,:,j , the jth
column of Vt, is computed in a similar way, leading to

Vt+1,:,j = Vt,:,j − (U>t+1EjUt+1)
−1U>t+1(exp(Ut+1Vt):,j − Y:,j) ,

(9)
where Ej = diag

(
exp(Ut+1Vt)1,j , . . . , exp(Ut+1Vt)M,j

)
is a

diagonal matrix of size M ×M . More details about the implemen-
tation is given Algorithm 1:

In practice we have iterated this alternating process until reach-
ing ‖ exp(UtVt) − exp(Ut+1Vt+1)‖2/‖ exp(UtVt)‖2 ≤ εstop for
some (small) real number εstop. Moreover for numerical stability
we have added a Tikhonov/Ridge regularization term, thus we sub-
stitute (VtDiV

>
t + εcondI`) to VtDiV

>
t in Eq. (8), respectively

(U>t EjUt) + εcondI`) to (U>t EjUt) in Eq. (9).

Algorithm 1 Poisson NL-PCA
Inputs: noisy image I
Parameters: Patch size

√
N ×

√
N , number of clusters K, num-

ber of components `, maximal number of iterations Niter

Output: estimated image Î
Patchization: create the collection of patches for the noisy image
Clusterization: create K clusters of patches using K-Means
The k-th cluster (represented by a matrix Y k) has Mk elements
for all cluster k do

Initialize U0 = randn(Mk, `) and V0 = randn(`,N)
while t ≤ Niter and test > εstop do

for all i ≤Mk do
Update the ith row of U using (8)

end for
for all j ≤ ` do

Update the jth column of V using (9)
end for
t := t+ 1

end while
Ŷ k = exp(UtVt)

end for
Concatenation: get the whole collection of denoised patches Ŷ
Reprojection: average the various pixel estimates due to overlaps
to get an image estimate: Î int

Second iteration: repeat the process, using the denoised image to
clusterize the noisy patches: Î

3. CLUSTERING AND DOUBLE ITERATION

One strategy could be to use patches from the whole image, but a
more robust approach consists by first performing a clustering step.
It avoids grouping dissimilar regions in the image. Enforcing simi-
larity insides those groups allows us to use a lower rank representa-
tion of the data.

For this step, we have simply used the K-means algorithm, with
a small number K of clusters. More refined methods, adapted to the
structure of the Poisson noise, could also be used for this step.

In the high noise setting we are targeting, the noise might be so
strong that the clustering of the patches on the noisy observations is
not precise enough. We have thus chosen to perform a second step,
so that the noisy patches are clustered with respect to the similarity
measured on their denoised versions. This first pre-filtering can be
done using any method, but for the sake of clarity we have applied
the same method in those two steps. In practice, we have notice an
improvement of the performance from 0.5 dB up to 1.5 dB in term
of PSNR, depending on the noise level (see Tab. 1).

4. EXPERIMENTAL SETTINGS

Here we present a comparison of our methods with other state-of-
the-art approaches. All our results use the following parameters for
our Poisson NL-PCAalgorithm :

• N = 20×20 : dimension of the (vectorized) patches
• ` = 4 : number of components kept
• K = 14 : number of clusters
• N = 10−1 : stopping criterion in Newton’s method
• Niter = 20 : maximum iteration of the algorithm
• εcond = 10−3 : term added to invert Hessian matrices

The last step of the algorithm consist in reprojecting the infor-



mation from the patch domain to the pixel domain. We use for that
purpose the usual uniform reprojection [16].

We have conducted experiments both on simulated data (cf. Sat-
urn image Fig. 1) and on real data (cf. Fig. 2). The last image is a sin-
gle spectral channel (the 65th) of a supernova explosion in the Milky
Way of the supernova remnant G1.9+0.3 (@ NASA/CXC/SAO). For
this image we have access to 256 spectral channels. Performing an
average across these channels provide a possible approximation of
the real geometry one channel data.

In terms of PSNR for simulated data, our method globally out-
performs other state-of-the-art methods such as Poisson-NLM [17],
SAFIR [7], HaarTIApprox [13]. Moreover, visual artifacts tend to
be reduced by our Poisson NL-PCA.

4.1. Anscombe approach and classical PCA

To compare the importance of fully taking advantage of the Poisson
model and not only using the Anscombe’s trick , we derive the algo-
rithm in the Gaussian setting. It corresponds to an implementation
similar to the classical power method for computing PCA [11]. The
function L to be optimized in (4) is replaced by the square loss L̃,

L̃(U, V ) =

M∑
i=1

N∑
j=1

((UV )i,j − Yi,j)
2 . (10)

The following update equations are substituted to (8) and (9){
Ut+1,i,: = Ut,i,: − ((UtVt)i,: − Yi,:)V

>
t (VtV

>
t )−1 ,

Vt+1,:,j = Vt,:,j − (U>t+1Ut+1)
−1U>t+1 ((Ut+1Vt):,j − Y:,j) .

(11)
An illustration of the improvement due to the direct modeling in-
stead of a simpler Anscombe Gaussian NL-PCA approach is shown
in Tab. 1. The gap is most noticeable when the noise is strong (more
than 1dB increase for peak 0.1). Moreover, high-frequency artifacts
are more likely to appear when using the Anscombe transform.

5. CONCLUSION AND FUTURE WORK

Inspired by the methodology of [6] we have adapted a generalization
of the PCA [11, 15] for denoising images damaged by Poisson noise.
Numerical, as well as visual results support the efficiency of our
method, especially in the case of low count photons.

Ongoing work includes locally adapting the number of dictio-
nary elements used to represent each denoised patches.

Peak Direct-2P Ansc-2P Direct-1P Ansc-1P [13]
0.1 20.31 18.73 19.18 18.97 19.48
0.2 22.49 20.74 22.04 21.55 20.93
0.5 25.58 23.98 25.34 24.31 23.69
1 26.79 26.17 26.88 26.46 25.07
2 27.90 28.25 28.10 28.34 26.67
3 28.57 28.94 28.73 29.12 27.62
4 29.21 29.31 29.27 29.61 28.19

Table 1. PSNR comparison on the Saturn image (averaging over ten
noise realizations). We compare our Poisson NL-PCA with one or
two pass (Direct-1P and Direct-2P), the Gaussian NL-PCA version
of our algorithm (using Anscombe transform) with one or two pass
(Ansc-1P and Ansc-2P) and the haarTIApprox algorithm [13].
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(a) Noisy image, PSNR=4.77 (b) Original image

(c) PLNM, PSNR=16.34 (d) SAFIR, PSNR=19.94

(e) HaarTIApprox, PSNR=19.23 (f) BM3D, PSNR=18.76

(g) Gaussian NL-PCA, PSNR=17.84 (h) Poisson NL-PCA, PSNR=20.06

Fig. 1. Simulation data: comparing our Poisson NL-PCA with two
iterations on the Saturn image, with Poisson NLM [17], SAFIR [7],
haarTIApprox [13] and BM3D [10]. Gaussian NL-PCA, SAFIR,
and BM3D use the optimized inverse Anscombe function as in [10].

(a) Single spectral channel (b) Averaged spectral channels

(c) PLNM (d) SAFIR

(e) HaarTIApprox (f) BM3D

(g) Gaussian NL-PCA (h) Poisson NL-PCA

Fig. 2. Real data: comparing our Poisson NL-PCA with two iter-
ations on the Chandra image, with Poisson NLM [17], SAFIR [7],
haarTIApprox [13] and BM3D [10]. Gaussian NL-PCA, SAFIR,
and BM3D use the optimized inverse Anscombe function as in [10].


