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Introduction

Project Goals
Develop a comprehensive method to infer (properties of) the
distribution of source fluxes for a wide variety source populations.

More generally, to also infer luminosity functions for source
populations.

Collaborators: Irina Udaltsova (UCD), Andreas Zezas (University
of Crete & CfA), Vinay Kashyap (CfA).





CHANDRA:

⇓



Estimating Flux Distributions

Our goal is to estimate the distribution of fluxes for the source
population.

Toy example: Uniformly distributed source population, same
intrinsic luminosity L0, then for telescopic sensitivity S , sources will
be detectable to:

d =

√
L0

4πS

The number of sources within this distance is then:

N(< d) = N(> S) = n0

(
4π

3
d3

)
∝ S−3/2

Therefore, the convention is to plot the log (base 10) of the
cumulative number of sources as a function of log (base 10) flux.



The Rationale for logN − log S Fitting

In the simple case we have:

log10 (N(> S)) = β0 + β1 log10(S),

Cosmology complicates the anticipated linearity somewhat, but in
many cases the relationship is approximately linear.

More generally, knowing the specific relationship for different
objects (e.g., stars, galaxies, pulsars) gives a lot of information
about the underlying physics (e.g., the mass of galaxies).

Primary Goal: Estimate β1, the power law slope, while properly
accounting for detector uncertainties and biases.

Note: There is uncertainty on both x− and y−axes (i.e., N and s).



Process/Analyze Raw Image to obtain:



Inferential Process

To infer the log N − log S relationship there are a few steps:

1. Collect raw data images

2. Run a detection algorithm to extract ‘sources’ from the image

3. Produce a dataset describing the photon counts of all
‘sources’ (and uncertainty about them, background etc.)

4. Infer physical properties about the source population (e.g., the
log N − log S distribution) from this dataset

Our analysis is focused on the final step – accounting for some
(but not all) of the detector-induced uncertainties. . .

Adding further layers to the analysis to start with raw images is
possible but that is for a later time. . .



The Data

The data is essentially just a list of photon counts – with some
extra information about the background and detector properties.

Src_ID Bgr_intensity counts Src_area Off_axis Effective_area

1 3.16 285 1720 4.98 307.306

2 0.19 133 96 5.72 143.110

3 0.61 37 396 6.17 40.4481

4 0.22 15 128 6.34 15.9011

5 0.96 12 604 4.51 13.3569

I . . . and an incompleteness function, specifying the probability of
source detection under a range of conditions:

P( Detecting a source with flux S, location L and effective area E )

≡ g(S , L,E )



Näıve Fitting

One can obtain simple estimates for the fluxes source-by-source
(e.g., MOM). Then do a least squares (χ2) fit for the slope.

Slightly more sophisticated, we could fit using maximum likelihood
methods, but these generally fail to properly account for
incompleteness and other detector-based uncertainties.

We will approach the problem with the goal with building a
framework that can account for the many sources of uncertainty.



Probabilistic Connection

The standard approaches make it difficult to coherently incorporate
detector effects and uncertainties (more later).

Probabilistic Connection: Under independent sampling, linearity on
the log N − log S scale is equivalent to the flux distribution being a
Pareto distribution.

(Follows from log-linearity of the survival function)

The probabilistic representation for the flux distribution now allows
for more rigorous analysis by embedding within a hierarchical
model.



Beyond the Pareto

With Pareto flux distribution we obtain a linear relationship on the
logN − log (N > S) scale. In general, with complete-data flux
distribution G , we have:

Si
iid∼ G ⇒ log10 (1− FG (s)) := H (log10(s)) . (1)

The function H is linear if and only if G is the Pareto distribution.
Our framework will allow for flexible specification of the
(parametrized) flux distribution.

Since linearity has both theoretical and empirical support, a
commonly used generalization is a broken power-law:

log10 (1− FG (s)) =

{
α0 − θ0 log10(s) s ≤ K
α1 − θ1 log10(s) s > K

, (2)

subject to a continuity constraint.



Broken Power-Law Modeling

It is natural to ask then: ‘What, if any, probability distribution
does the broken power-law in (2) correspond to?’.

Y ∼ I · X0 + (1− I ) · X1,

where:

I ∼ Bin

(
1,

[
1−

(
K

Smin

)−θ0])
X0 ∼ Truncated-Pareto (Smin, θ0,K ) , X1 ∼ Pareto (K , θ1) .

The result is also an ‘if and only if’ result:

Theorem
Any distribution whose log N − log S relationship is a broken power
law, with M breakpoints, can be represented as a mixture of M
truncated Pareto distributions and another (untruncated) Pareto
distribution.



Multiple Broken Power-Law Model

The broken power-law model can be generalized to a piece-wise linear
relationship with arbitrary number, m, of break-points:

FG (s) =


1− α∗

0 s−θ0 K0 ≤ s < K1

...
...

1− α∗
m−1s−θm−1 Km−1 ≤ s < Km

1− α∗
ms−θm s ≥ Km

.

Similarly to the single broken power-law setting we can show:

Fj(s) =
1

pj

{
1−

j−1∑
i=0

pi

}[
1−

(
s

Kj

)−θj
]
, j = 0, . . . ,m. (3)

Constraints lead to a recursive relationship for mixture probabilities:

pj =

[
1−

(
Kj+1

Kj

)−θj
](

1−
j−1∑
i=0

pi

)
, j = 0, 1, . . . ,m. (4)

i.e., the multiple broken power-law assumption corresponds to:

Y ∼ I0X0 + I1X1 + · · ·+ ImXm

Ij ∼ Multinomial (1; p0, p1, . . . , pm) , Xj ∼ Truncated-Pareto (Kj , θj ,Kj+1) .



Physically Motivated Fitting

The insight from the probabilistic setting reveals that the broken
power-law model has a number of unphysical properties (to be
expected).

Notably, it requires an ‘initial source population’ to have a sharp
cut-off, before yielding to a secondary source population present
only above the threshold.

More physically realistic descriptions are also more natural
statistically e.g., a mixture of populations:

S ∼
m∑
j=1

IjXj , Ij
iid∼ Multinomial(1; p1, . . . , pm), Xj ∼ Pareto (Kj , θj) .

The goal may be to detect possible ‘subpopulations’, or just to fit
a more flexible model. Note: the resulting log N − log S plot will
now be curved!



Mind the Gap

The previous discussion centered around the flux distribution.

Now things get interesting:

I We only observe photon counts from the source with intensity
proportional to the flux

I There is background contamination for all sources

I Different sensitivities across the detector

I Some sources will not be observed to detector limitations

I We do not know how many sources there actually are

I Some ‘sources’ extracted from the image may not actually be
sources

To Model



Missing Data Overview

There are many potential causes of missing data in astronomical
data:

I Low-count sources (below detection threshold)

I Detector schedules (source not within detector range)

I Background contamination (e.g., total=source+background)

I Foreground contamination (other objects between the source
and detector)

I etc.

Some are more problematic than others. . .



Missing Data Mechanisms

In the nicest possible case, if the particular data that is missing
does not depend on any unobserved values then we can essentially
ignore the missing data.

In this context, whether a source is observed is a function of its
source count (intensity) – which is unobserved for unobserved
sources. This missing data mechanism is non-ignorable, and needs
to be carefully accounted for in the analysis.

Heuristically: Whether or not a source is missing provides
information about the parameters we are trying to estimate.



Non-Ignorable Missingness

Let Ycom = (Yobs ,Ymis), and the missing data indicators be M. The
missing data mechanism is defined to be p(M|Ycom, ψ).

The observed data likelihood is based on:

p(Yobs |θ) =

∫
p(Ycom|θ)dYmis . (5)

The complete data likelihood is based on:

p(Yobs ,M|θ, ψ) =

∫
p(Ycom|θ)p(M|Ycom, ψ)dYmis . (6)

Inference based on (5) is valid only if inference about θ agrees with that
from (6). In these cases, the missing data mechanism is called ignorable.

Main condition for ignorability is the data be missing at random (MAR):

p(M|Ycom, ψ) = p(M|Yobs , ψ) ∀ Ymis , ψ. (7)

Here this is not true! Missingness depends on the unobserved flux.



The Model

Standard power-law flux distribution:

Si |Smin, θ
iid∼ Pareto (θ,Smin) , i = 1, . . . ,N.

Source and background photon counts:

Y tot
i |Si , Li ,Ei

⊥⊥∼ Pois (λ(Si , Li ,Ei ) + k(Li ,Ei )) , i = 1, . . . ,N,

Incompleteness, missing data indicators:

Ii ∼ Bernoulli (g (Si , Li ,Ei )) .

Prior distributions:

N ∼ NegBinom (α, β) ,

θ ∼ Gamma(a, b).



Model Overview

Some important notes:

I The dimension of the missing data is unknown (care must be
taken with conditioning)

I Incompleteness function g can take any form and is
problem-specific

I The lower limit, Smin, is fixed: inferential sensitivity?

I Prior parameters can be science-based or ‘weakly informative’



Broken Power-Law Model

Broken power-law flux distribution (known break-points ~C ):

Si |Smin, θ
iid∼ Broken-Pareto

(
~θ,Smin; ~C

)
, i = 1, . . . ,N.

Source and background photon counts:

Y tot
i |Si , Li ,Ei

⊥⊥∼ Pois (λ(Si , Li ,Ei ) + k(Li ,Ei )) , i = 1, . . . ,N,

Incompleteness, missing data indicators:

Ii ∼ Bernoulli (g (Si , Li ,Ei )) .

Prior distributions:

N ∼ NegBinom (α, β) ,

θj
⊥⊥∼ Gamma(aj , bj), j = 1, . . . ,M.



Mixture Pareto Model

Mixture Pareto flux distribution (fixed number m mixture components

and known mixture-points ~K = (K1, . . . ,Km)):

Si |~K , θ
iid∼ Mixture-Pareto

(
~θ, ~K

)
, i = 1, . . . ,N.

i.e.,

Si |~K , θ ∼
m∑
j=1

IjXj , Ij ∼ Multinomial(1; p1, . . . , pm), Xj ∼ Pareto (Kj , θj) .

Source and background photon counts:

Y tot
i |Si , Li ,Ei

⊥⊥∼ Pois (λ(Si , Li ,Ei ) + k(Li ,Ei )) , i = 1, . . . ,N,

Incompleteness, missing data indicators:

Ii ∼ Bernoulli (g (Si , Li ,Ei )) .

Prior distributions:

N ∼ NegBinom (α, β) ,

θj
⊥⊥∼ Gamma(aj , bj), j = 1, . . . ,M.



Posterior Inference

For all of these versions of the model, inference about θ, N and S
is based on the observed data posterior distribution. Care must be
taken with the variable dimension marginalization over the
unobserved fluxes.

The posterior can be shown to be:

p
(
N, θ, Sobs ,Smis ,Y

src
obs |n,Y tot

obs

)
∝

p (N) · p (θ|N) · p (n|N, θ) · p (Sobs |n,N, θ) ·
p (Smis |n,N, θ) · p

(
Y tot
obs |n,N,Sobs

)
· p
(
Y src
obs |n,N,Y tot

obs ,Sobs

)
Computation is performed by Gibbs sampling.

To Model Checking



Computational Details

The Gibbs sampler consists of four steps:

[N|n, θ] , [θ|n,N,Sobs ,Smis ] ,
[
Y src
obs |n,Y tot

obs , θ,Sobs ,Smis

]
,[

Sobs |n,N,Y tot
obs ,Y

src
obs , θ

]
, [Smis |n,N, θ] .

I Sample the total number of sources, N, (Numerical Integration):

p(N|n, θ) ∝ Γ(N + α)

Γ(N − n + 1)

(
1− π(θ)

β + 1

)N

I{N ≥ n}

Note: The (prior) marginal detection probability π(θ) is
pre-computed via the numerical integration.

I Sample the power-law slope, θ, (Rejection Sampling):

θ|n,N,Sobs ,Smis

∼ Bin (n; N, π(θ))

·Gamma

θ; a + N, b +
n∑

i=1

log

(
S
(obs)
i

Smin

)
+

N−n∑
j=1

log

(
S
(mis)
j

Smin

)



Computational Details cont. . .

I Sample the observed photon counts:

Y src
obs,i |n,Y tot

obs,i ,Sobs,i ∼ Bin

(
Y tot
obs,i ,

λ(Sobs,i , Lobs,i ,Eobs,i )

λ(Sobs,i , Lobs,i ,Eobs,i ) + k

)
,

for i = 1, . . . , n.

I Sample the fluxes Sobs,i , i = 1, . . . , n (Metropolis Hastings using a
t−proposal):

Sobs,i |n,N,Y tot
obs,i ,Y

src
obs,i , θ

∼ Pareto(Si ; θ,Smin)g(Si ,Ei , Li )

· Pois(Y tot
obs,i ;λ(Sobs,i ,Eobs,i , Lobs,i ) + k(Eobs,i , Lobs,i ))

·Bin

(
Y src
obs,i ; Y tot

obs,i ,
λ(Sobs,i ,Eobs,i , Lobs,i )

λ(Sobs,i ,Eobs,i , Lobs,i ) + k(Eobs,i , Lobs,i )

)
(8)

I Sample the fluxes Smis,i , i = 1, . . . , n (Rejection Sampling):

Smis,i |n,N, θ ∼ Pareto(Si ; θ,Smin)(1− g(Si ,Ei , Li ))



Computational Notes

Some important things to note:

I For single power-law models computation is fast (secs), and
insensitive to the number of missing sources

I The fluxes of the missing sources need not be imputed

I Fluxes of missing sources can (optionally) be imputed to
produce posterior draws of a ‘corrected’ log N − log S

I Computation for the broken-power law model is slower

I Generalized mixtures of Pareto’s (or other forms) require only
minor modifications of general scheme



Model Checking

The model we have presented contains a lot of assumptions.
Obviously, where possible, we would like to check those
assumptions.

Bayesian model checking is primarily built around the posterior
predictive distribution, and can be done in a few different ways. . .



Posterior Predictive p−values

The posterior predictive p−value, first proposed by Rubin (1984),
is a valuable tool for assessing the adequacy of the model fit for
Bayesian models.

It is based on the posterior predictive distribution:

p(y∗|y) =

∫
p(y∗, θ|y)dθ =

∫
p(y∗|θ) · p(θ|y)dθ

where the second identity follows only if the predictive distribution
of y∗ depends only on θ (this is usually the case).



Posterior Predictive Checking

The idea:

(Assuming conditional independence) we expect the predictive
distribution of new data to look ‘similar’ to the empirical
distribution of the observed data.

More generally:

(Assuming conditional independence) we expect the predictive
distribution of functions (e.g., test statistics) of the new data to
look ‘similar’ to the empirical distribution of functions of the
observed data.

In fact, the idea extends beyond test statistics (functions of the
data) to ‘generalized test variables’ (functions of both the data
and parameters) (Meng, 1994).



Posterior Predictive p−values

Consider testing the hypothesis:

H0 : The model is correctly specified , vs.,

H1 : The model is not correctly specified .

Select a test statistic T (x) to perform the test, then we define the
posterior predictive p−value to be:

pb = P (T (y∗) ≥ T (y)|y ,H0) .

In practice we use:

p∗b = 2 ·min {pb, 1− pb} .



Posterior Predictive p−values

Some things to note:
I This is easy to compute since p(y∗|y) is easy to sample from:

1. Sample θ from the posterior distribution p(θ|y)
2. Given θ, sample y∗ from p(y∗|θ)

Use MC to compute the posterior predictive p−values.

I Minimal extra work once posterior samples have been obtained

I Choice of test statistic: mean? median? max? min? other?

I Test statistic must be a function of photon counts



Posterior Predictive Check: Example

For example, in the logN-logS example our predictive data are the
photon counts for ‘replicate datasets’.

We could take the number of observed sources in the replicate
dataset as our statistic.

This will essentially test part of the assumptions about the missing
data mechanism. . .





Extended Posterior Predictive p−values

The idea behind posterior predictive p−values extends to
multivariate test statistics, First, lets reformulate:

pb = P (T (y∗) ≥ T (y)|y ,H0)

as the tail probability:

pb =

∫
I{T (y∗)≥T (y)}p (y∗|y ,H0) dy∗

Then the multivariate generalization is immediate.



Multivariate PP p−values

The multivariate posterior predictive p−values can yield extra
insight when the dimensions of the test statistic are highly
correlated (i.e., have a strong dependence structure).

For example, let:

T (Y ∗) =

 Ȳ ∗

min {Y ∗}
max {Y ∗}

 .



To Example



Example MCMC Output

(L) Posterior logN-logS (red: missing, gray: observed), truth (blue).

(R) Posterior distributions for N, θ, Sobs,i



Validating Bayesian Computation

Given the complexity of the model and computation, it is
important to validate that everything works.

Bayesian methods lend themselves to a straightforward
self-consistency check:

1. Simulate parameters from the prior, and data from the model,
given those parameters

2. Fit the model to obtain posterior intervals

3. Record whether or not the ‘true’ value of the parameter was
within the interval

4. Repeat steps 1 & 2 a large number of times, and calculate the
average coverage

⇒ The average and nominal coverages should be equal.

These validation checks are extremely important when dealing with
complex procedures.



Validation Details

Parameter specifications as follows:

I N ∼ NegBinom(α, β), where α = 200 = shape, β = 2 = scale

I θ ∼ Gamma(a, b), where a = 20 = shape, b = 1/20 = scale

I Si |θ ∼ Pareto(θ,Smin), where Smin = 10−13

I Y src
i |Si , Li ,Ei ∼ Pois(λ(Si , Li ,Ei ))

I Y bkg
i |Si , Li ,Ei ∼ Pois(k(Li ,Ei ))

I λ = Si ·Ei
γ , where effective area Ei ∈ (1, 000, 100, 000), and the

energy per photon γ = 1.6× 10−9

I ki = z · Ei , where the rate of background photon count
intensity per million seconds z = 0.0005

I niter = 250000, Burnin = 50000



Simulated Example cont. . .

Detection probability:

I g(λ, k) = 1.0− a0 · (λ+ k)a1 · ea2·(λ+k), where
a0 = 11.12, a1 = −0.83, a2 = −0.43

Marginal detection probability:



0 20 40 60 80 100

0
20

40
60

80
10

0

Actual vs. Nominal Coverage (1000 datasets)

Nominal

A
ct

ua
l

Target
N
theta
Sobs



Non-Ignorable Missingness

(L) Nonignorable (full) analysis: θ̂ = 1.113, (0.957, 1.286)
(R) Ignorable analysis: θ̂ = 0.465, (0.391, 0.586)
Truth: θ = 1.070



Example

Application: X-ray pulsars in the Small Magellanic Cloud (SMC).

I The SMC is the second nearest galaxy ( 200k light years away)

I It has 1/100 th of the mass of our Galaxy

I It is interacting with our Galaxy and the LMC.

I This interaction triggered the formation of a large population
of stars about 40 million years ago.

I This population of stars gives the X-ray pulsars we observe in
X-ray observations.

I Close proximity allow the study of low luminosity sources that
are hard to observe in other galaxies.

Dataset consists of 26 observed sources.

Priors: a = b = 4, E [N] = 100, Var(N) = 502.



SMC Gamma Ray Pulsars

We will now take a look at a few different model fits and discuss
model selection, parameter interpretation for the SMC example. . .



Single Pareto log(N)-log(S)



Single Pareto



Single Pareto



Single Pareto



SMC Pulsar Conclusions

I Estimated slope of 0.485 (median), 0.487 (mean)

I 95% (central) interval = (0.312, 0.681)

I Zezas et al. (2003) estimated a power-law slope of θ̂ = 0.45.

I Estimated missing data fraction 7.2%, interval:(0.0, 18.25%)

I Evidence of a possible break in the power-law in the observed
log N − log S .

Note: The ignorable analysis gives a posterior median of 0.363,
mean of 0.367, and 95% interval (0.248, 0.511).



SMC Pulsar Mixture-Pareto

We now take a look at a two component mixture-Pareto fit to the
data, with fixed mixture point.

Fit the following possible mixture (break) points:

> round(log(possible.bps,base=10),2)

[1] -13.70 -13.52 -13.40 -13.30 -13.22 -13.15 -13.10 -13.05 -13.00

[10] -12.96 -12.92 -12.89 -12.85 -12.82 -12.80 -12.77 -12.74 -12.72

[19] -12.70 -12.68

Take a look at diagnostics. . .



Break-Point: -13.70



Break-Point: -13.22



Break-Point: -12.96



Break-Point: -12.89



Break-Point: -12.89



Break-Point: -12.89



SMC Pulsars: Mixture Power-Law Fit

Estimates: θ̂1 = 0.591(0.412, 0.809), θ̂2 = 0.853(0.661, 1.276).

p̂1 = 0.69(0.42, 0.93)



SMC Pulsars: Mixture Power-Law

Parameter interpretation in the broken and mixture power-law
setting is similar but slightly more tricky.

Note that θ2 is larger than θ1, indicating the accelerated downward
slope after the break-point.

By fitting multiple models it becomes possible to test for the
existence of break-points, compare mixture- to broken-power laws
etc.



(L) Regular Pareto, (R) Broken Pareto

Note: similar posterior log N − log S, but very different predictive
and inferential properties



Conclusions

1. Probabilistic insight allows us to build statistical procedures
that correspond to more physically realistic models

2. Hierarchical modeling allows for us to account for multiple
types of uncertainties

3. Importance of handling the non-ignorable missing data
mechanism

4. Provides a recipe for assessing goodness-of-fit (posterior
predictive checks)

5. Provides a way to include prior information

6. Allows for bias-corrected inference (Eddington,
Incompleteness)

7. Flexible framework for computation (e.g., distributional
assumptions for fluxes)



Future Work

1. False sources (allowing that ‘observed’ sources might actually
be background/artificial)

2. Field contamination (allowing a mixture of a source
population with known parameters)

3. Break-point estimation for multiple power-law setting

4. Formal testing for presence/number of break-points

5. Extension to non-Poisson regimes
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