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Outline

• Brief Introduction to Type Ia Supernovae & 
Cosmology

• Part 1: Supernova Classification with Host Galaxy 
Data

• Part II: Hierarchical Bayesian Regression Model for 
SN Ia colors and spectroscopic velocities
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SN Ia Basics:
Estimating Astronomical Distances 

with Standard Candle Principle

1. Know or Estimate Luminosity L of a Class 
of Astronomical Objects

2. Measure the apparent brightness or flux F

3. Derive the distance D to Object using 
Inverse Square Law:  F = L / (4π D2)

4. Optical Astronomer’s units: m = M +μ
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The Expanding Universe: 
Galaxies are moving apart! Hubble’s Law (1929)

Distance ∝ Velocity (Redshift) 
But what is the rate of change of the expansion?

(the deceleration parameter)

Hubble: @Einstein, 
you’re wrong
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Type Ia Supernovae are
Almost Standard Candles

• Progenitor:  C/O White Dwarf 
Star accreting mass leads to 
instability (single / double 
degenerate)

• Thermonuclear Explosion: 
Deflagration/Detonation

• Nickel to Cobalt to Iron Decay + 
radiative transfer powers the light 
curve

Credit: FLASH Center
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Telescopes collect light of 
different wavelengths

Optical

Near Infrared6
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Observable:
Type Ia Supernova Apparent Light Curve

(time series)
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Observable: 
Type Ia SN Spectrum
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The Accelerating Universe
2011 Nobel Prize in Physics
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Cosmological Energy Content

Dark Energy Equation of state P = wρ

Is w + 1 = 0?  Cosmological Constant
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Supernova Cosmology:
Constraining 
Cosmological 
Parameters

using 
Luminosity Distance 

vs.  Redshift

AAS 215  
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Need accurate distances!
Host Galaxy Dust is a 
Major Confounding 

Factor

Credit: Gautham Narayan 
(ESSENCE)
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Part I: 
Supernova Classification

• Core Collapse (CC: II/Ibc) vs. Type Ia(SN Ia)

• Spectroscopic:  Obtain spectrum, compare 
against library of spectrum with known 
types (SNID)

• For current and future large automated 
transient surveys (e.g. DES, LSST), too many 
SN targets, too little telescope time to 
obtain spectrum for each one

• Photometric:  Properties of Broadband light 
curves
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New Alternate Strategy:
Use Host Galaxy Properties

(Foley & Mandel 2013, last week! 
arxiv.org/abs/1309.2630)

• Use correlations between SN Type and properties 
of the Host Galaxy (Morph, Color, Luminosity, 
Position/offset, Pixel brightness rank)

• CC SN rarely occur in red, luminous, early-type 
galaxies

• CC SN explode in late-type galaxies in spiral arms, 
SN Ia explode in all types of galaxies

• Uses different data source than traditional typing 
methods

13Tuesday, September 17, 2013



Distribution of the SN Ia fraction vs. host 
galaxy property (using LOSS sample)
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• Want P( Ia | D )∝P( D | Ia) P( Ia)

• Modeling P( D | Ia ) is hard for multidimensional D

• Simplify by assuming Di are conditionally 
independent given the class 

•  

• galsnid probability 

galsnid: 
a Naive Bayes Classifier

P (D|Ia) =
n�

i=1

P (Di|Ia)

P (Ia|D) ∝ P (Ia)
n�

i=1

P (Di|Ia)
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Application to LOSS training set
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Figure of Merit

• Choose a subset with galsnid p > threshold p*

• FoM = Efficiency x Pseudopurity

• Efficiency

• Pseudopurity

• W = 5, penalizes misclassified SN Ia

�Ia = NSub
Ia /NTot

Ia

PPIa =
NSub

Ia

NSub
Ia +WFalse

Ia NSub
Non-Ia
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FoM as function of threshold galsnid p  
6 Foley & Mandel
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Fig. 3.— Efficiency, purity, and FoM (blue, red, and black curves,
respectively) for subsamples of the LOSS sample defined by a par-
ticular galsnid probability or larger. The FoM peaks at p = 0.97
at a value that is 2.23 times larger than the FoM for the entire
sample.

again using the LOSS sample. We split the sample in
half, placing every-other SN (to mitigate possible biases
in the SN search or classification with time) as the train-
ing and comparison samples. Using the “evenly-indexed”
sample as the training set, we find the galsnid probabil-
ity which results in the highest FoM for the training set,
which we consider the value above which a SN will en-
ter our final sample. We then apply the probabilities and
the galsnid probability found from the training set to the
“oddly-indexed” sample and determine the efficiency and
pseudo-purity of the sample. Doing this, we find that the
FoM improves by a factor of 1.4 compared to not using
the galsnid procedure. Performing the same procedure
but switching the training and testing samples, we find
that the FoM improves by a factor of 2.4. Therefore, the
method appears to be robust within a given sample, al-
though clearly the amount of improvement depends on
the training sample.

6.2. Importance of Each Observable

To assess the importance of each host-galaxy observ-
able for classification, we first re-analyze the data and
computed galsnid probabilities using a single observable
at a time. We then compute the galsnid probabilities
using all observables, but excluding a single observable
at a time. The summary of the results are presented in
Table 2, where we list the peak FoM, the improvement
factor over the baseline FoM, and the difference in the
median galsnid probability for the spectroscopically con-
firmed SNe Ia and core-collapse SN classes. The latter
is a measure of the difference of distribution of galsnid
probabilities for different spectroscopic classes, and thus
an additional (and different) indication of the importance
of the observable beyond the improvement in the FoM.
Unsurprisingly, the pixel ranking data was not partic-

ularly useful, and excluding it made no significant dif-
ference in the results. The vast majority of SNe in the
sample do not have pixel ranking data, and thus it only

has the ability to affect a small number of objects. Addi-
tionally, pixel ranking does not appear to be as discrim-
inating as other observables.
The color and luminosity are both somewhat impor-

tant. The median galsnid probability when just using
color (luminosity) was 0.43 (0.47) and 0.33 (0.40) for
SNe Ia and core-collapse SNe, respectively. However,
just using color or luminosity results in only a modest
improvement in the peak FoM with ratios of 1.06 and
1.12, respectively. Using both quantities together (but
excluding all other observables) results in a maximum
FoM improvement ratio of 1.17.
Removing either color and luminosity results in only

modest changes in the maximum FoM from 0.269 to
0.273 (a net increase). We do not consider this change
in the FoM significant. However, removing these data
results in more smearing of the populations with the dif-
ference in the median galsnid probabilities for SNe Ia
and core-collapse SNe decreasing from 0.34 to 0.26 and
0.24, respectively. Removing both color and luminosity
continues this trend with a difference in medians for the
two populations of only 0.16. Therefore, although color
and luminosity do not significantly affect the peak FoM
presented here, they could be particularly important for
other applications or different FoMs.
Using only offset information results in no significant

improvement in maximum FoM, although it is slightly
helpful with classification; the median galsnid values for
the SN Ia and core-collapse populations are 0.44 and
0.41, respectively. However, removing the relative offset
decreases the maximum FoM to 0.261. This is a some-
what surprising result and may not be significant.
By far, the most important parameter is morphology.

Morphology alone results in a maximum FoM of 0.262,
a factor of 2.18 improvement over not using any host-
galaxy information. Removing morphology information
decreases the maximum FoM to 0.157. Without these
data, the maximum improvement is only a factor of 1.30
over not using any host-galaxy data. Nonetheless, galsnid
is still effective without morphology.

6.3. SDSS

We also examined the largest photometry-selected
SN Ia sample: the SDSS-II SN survey compilation
(Sako et al. 2011; Campbell et al. 2013). This sam-
ple, which we call the “SDSS sample,” was taken from
the SDSS-II SN survey and various cuts were made
based on the photometric properties of the SNe to de-
termine a relatively pure subsample of SNe Ia (see
Campbell et al. 2013 for details). This sample is a subset
of the full photometric-only sample of SNe from SDSS-
II (Sako et al. 2011). All SNe in the SDSS sample have
host-galaxy redshifts.
Using simulations, Campbell et al. (2013) showed that

the SDSS sample should have an efficiency of 71% and
a contamination of 4%. This sample only includes SNe
photometrically classified as Type Ia.
Using the SDSS imaging data of the host galaxies, we

apply the galsnid procedure to the SDSS sample. This
sample is already supposedly quite pure, and an ideal
method would provide a criteria to sift out the 4% con-
tamination without a large loss of true SNe Ia. Of course
this is not a perfect test of a given method since increased
efficiency with minimal decrease in purity is also a net
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galsnid evaluation

• Max FoM is 2.23x improvement over baseline

• Comparable to photometric light curve method 
(2.6x)

• 2-fold Cross-Validation (split into two samples, 
alternate training and test sets)

• CV FoM = 1.4 (even training), 2.4 (odd training)

• Also test on independent SN samples (SDSS, PTF)

• galsnid: an effective and independent SN classifier
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Part II: Hierarchical Bayesian Regression 
Model for SN Ia Colors and 

Spectroscopic Velocities
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Astronomer’s Definition:
Color = Numerical 

difference in brightness 
magnitude in two 

passbands

e.g. B - V Color

Observed Color = Intrinsic Color + Dust Reddening
+ Measurement Error

More Positive = “Redder”
More Negative = “Bluer”
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Dust Absorption vs. 
Wavelength of Light

• Absorption depends on λ 
(reddening)

• Interstellar lines of sight to SN in 
different galaxies can pass through 
different random amounts of dust

• Key Parameters of Interstellar Dust 
(different for each SN)

• AV ~ Amount of Dust Absorption 
(only positive!)

• RV ~ Wavelength Dependence of 
Dust Absorption

• Don’t really know a priori which 
SN are unaffected by dust; must 
model probabilistically

I will show you fear 
in a handful of dust

21Tuesday, September 17, 2013



Si II λ6355 line
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Si II λ6355 line
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SN Ia Ejecta Velocities and Optical Colors

• Foley & Kasen (2011): Si II velocity is 
correlated with Peak Intrinsic B-V color

• High Ejecta Velocity : Broader Absorption 
Lines in B-band :  Redder SN color

• Velocity can help determine intrinsic color, 
improve SN Ia dust and distance estimates
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Supernova SED Toy Model
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Supernova SED Toy Model
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Theoretical Model

• Asymmetric SN Ia 
Explosion Model

• Predicts Linear 
relation between 
intrinsic color and 
velocity

6 Foley et al.
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Fig. 7.—

.

E0 hosts, respectively. Neither object had indications of
significant reddening. From these objects, we find

E(B − V )true = −0.06 + 1.06E(B − V )host (7)

and

E(B − V )true = 0.03 + 1.02E(B − V )host (8)

for the normal and high-velocity objects, respectively.
With the “true” measurements of E(B − V ), we can

attempt an analysis similar to that of W09 to determine
the relationship between MV

max, ∆m15, and E(B−V ) for
each sample. Using their formalism, we fit Equation 1
to the entire sample and those with E(B − V )true <
0.35 mag both separately for the subsamples and with
them combined finding the parameters listed in Table 1.
We also plot the results in Figure 7.

In Figure 7, we replot the data from W09, except us-
ing the values of E(B − V )true found from the above
relationships. The figure shows that our treatment of
the extinction gives a similar distribution of E(B − V )
for both samples.

The values for Mzp and α are similar for all fits. The
value of RV differs somewhat depending on sample and
restriction on E(B − V ). Unlike what was seen with the
analysis of W09, once we make the separate reddening
measurements for the two samples, separating the ob-
jects does not significantly reduce the scatter in the rela-
tionship. Therefore, the differences between the samples
can be treated as strictly an intrinsic color difference and
not a difference in reddening, especially for objects with
relatively low reddening.

3. ADDITIONAL DATA FROM THE CFA SAMPLE

4. THEORETICAL UNDERSTANDING

4.1. Model Light Curves & Spectra

Using the KP07 models, we seek to further examine the
correlations between various observables with the hope
of understanding the physics behind our emprical find-
ings. KP07 already noted that B − V color evolution
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Fig. 8.— Si II λ6355 (circles) and Ca H&K (squares) velocity as
a function of color for the KP07 model spectra. Each viewing angle
is represented by a different color with the mapping shown by the
color bar at the top. The best-fit lines for each feature are shown as
black solid lines. The dashed line represents the velocity that W09
used to differentiate the normal and high-velocity subsamples. It
also roughly separates the models between viewing angles in the
two hemispheres.

.

and Si II velocity depend on viewing angle. However,
they did not examine the maximum-light values of these
two quantities and their correlation. In Figure 8, we show
the (B − V )max color and Si II velocity at maximum as
a function of viewing angle. The two values are highly
correlated, and a linear fit produces

v = (−11.1 − 28.0(B − V )max) 103 km s−1. (9)

We find a similar relationship for the Ca H&K feature,
with

v = (−17.8 − 22.7(B − V )max) 103 km s−1. (10)

Not surprisingly, the velocity of the Si and Ca features
are highly correlated in the models. However, unlike the
Si II λ6355 feature where we were able to fit the line
profile with a Gaussian to determine the minimum of the
feature, the Ca H&K feature had a very complex profile
for some viewing angles, and we instead simply measured
the velocity from the minimum of the profile. This is not
practical for real data which may have significantly more
noise, but this method still shows the trend of the model.

Kasen & Plewa (2007) showed that there was a small
variation in MB as a function of viewing angle; however,
there is very little variation in MV . Despite this small
variation, ∆m15(B) varied from ∼1.0 to ∼1.4 over all
viewing angles, and it was claimed that this could ac-
count for a large amount of the scatter in the WLR.

Using the spectral models, we reddened the model
spectra using a Cardelli et al. (1989) dust model, sim-
ilar to what was performed in Section 2.4. Light-curve

Foley & Kasen 2011
26Tuesday, September 17, 2013



Testing Theoretical Explosion Models
2D SN Ia model comparison 17

Figure 18. Absorption velocity of the the Si II !6355 line at maximum light
vs. intrinsic B − V colour at B-band maximum, in the 2D models of
KRW09 (upper panel) and in data from the CfA SN Program (lower panel).
The colour-coding is the same as in Fig. 9. In both cases, we show a linear
fit to the entire sample (dashed black line) and report the Pearson correla-
tion coefficient (r) of vabs,max with intrinsic B −V colour. We also show
the linear relations obtained from fits to individual models (dashed colour
lines).

tween Si II !6355 absorption velocity and maximum-light B − V
colour is a generic feature of this type of explosion. This is ap-
parently not the case for delayed-detonation models of SNe Ia, al-
though Fig. 18 once again shows that the 2D models of KRW09
lie in a different region of parameter space than the data (larger
Si II !6355 blueshifts and redder B − V colours).

One possible explanation resides in the different distributions
of iron-group and intermediate-mass elements in both DFD and
delayed-detonation models. In the DFD model, the deflagration is
ignited on one side of the ejecta, but detonates on the opposite
side, causing both IGE and IME to be ejected at high velocities on
the ignition side. In delayed-detonation models, the IGE and IME
are preferentially ejected in opposite directions (see Fig. 1, bottom
row). Since the distribution of IGE sets the B−V colour to a large
extent (see, e.g. Kasen & Woosley 2007), one might expect the two
detonation models to show opposite trends for |vabs| and B − V .

5.2 Spectral evolution

The comparison of maximum-light spectral properties in the pre-
vious section has several practical advantages: more data are avail-
able at this age and they are of better quality (the use of a Monte
Carlo radiative transfer code means this is also true of the model
spectra, which consist of a higher number of photon packets at
maximum light). Any thorough validation of a SN Ia model should,
however, include a comparison of the time evolution of its spectra

with observations. As the supernova expands, the layers where the
spectrum is formed recede to deeper regions of the ejecta, where
the composition is different and the expansion velocity smaller. By
measuring various parameters of individual spectral features and
their evolution with time, one has a complete census of a model’s
failures and successes: a poor model might reproduce certain spec-
tral features at certain times, but a good model should reproduce all
features at all times.

5.2.1 Overall evolution

In Fig. 19 we show the spectral evolution of model
DD2D iso 06 dc2 viewed along θ = 88◦ (see Fig. 3 for the
corresponding UBV RIJHKs light curves), in five-day incre-
ments between −10 and +20 d from B-band maximum (i.e.
between ∼ 10 d and ∼ 40 d past explosion), compared to observa-
tions of SN 2003du. Both models and observations correspond to
a SN Ia with∆m15(B) ≈ 1.

At −10 d, the model spectrum displays a much bluer (hot-
ter) SED with weaker features than SN 2003du. The absorption
due to Ca II H&K (∼ 3700 Å) is much weaker, and that due to
the Ca II IR triplet (∼ 8000 Å) is non-existent, both clear signs of
over-ionization in the ejecta. The weak Ca II H&K line certainly
contributes to the excess of U -band flux inferred from comparisons
of U − B colour curves (Fig. 12), but most of the discrepancy ap-
pears to originate blueward of this, in a region dominated by ab-
sorption by iron-group elements (grey highlighted region). This is
most clearly seen in the +5 d spectrum of SN 2003du, which un-
like the earlier ones extends blueward of 3600 Å. As noted earlier
based on the U − B colour curves, this excess of U -band flux re-
mains important up until +5 d, at which point the absorption due
to Ca II H&K has significantly strengthened in the models though
remains weaker than in SN 2003du. The S II doublet (∼ 5400 Å),
well fit at −5 d is too weak in the models between +0 d and +10 d.
The same is true of the two iron-group dominated absorption com-
plexes at ∼ 4300 Å and ∼ 4800 Å, which also reveal some of
the model shortcomings from maximum light onwards. The ve-
locity offset in the Si II !6355 absorption (broader yet shallower
in the models; red dotted line) also becomes apparent at maximum
light. Interestingly, the Si II !6355 absorption velocity appears to
remain almost constant between−10 d and +10 d while it decreases
steadily in SN 2003du.

From +10 d onwards, we highlight several discrepancies in
other wavelength regions. The model appears to lack an absorption
around ∼ 5000 Å, which in SN 2003du and other SNe Ia is part
of a complex Fe II/Co II absorption feature. The pseudo equivalent
width of this feature at +10 d is systematically ∼ 50 Å smaller in
all the models with respect to observations. It is difficult to dis-
entangle the effects of temperature (if too hot, as clearly the case
before maximum light, this would delay the III→II recombination
timescale of iron-group elements), the impact of the LTE approx-
imation (non-LTE effects are particularly important in treating the
Fe II/Co II opacities; see Baron et al. 1996), and the high ejecta
velocities (as clearly seen from the large blueshift of the Ca II IR
triplet absorption)– which would enhance line overlap and smear
out small-scale absorption features.

Another striking feature is the lack of emission in the model
around 5800 Å. This feature is commonly attributed to the Na I D
doublet. The absence of a strong 5800 Å feature is a generic feature
of these models, and not just particular to model DD2D iso 06 dc2.
The radiative transfer calculations we have at our disposal do not
extend beyond +25 d or so past B-band maximum, so we cannot

c© 2011 RAS, MNRAS 000, 1–23

Other models do not show 
a clear relation between

Si II velocity vs Intrinsic B-V 
color

 Blondin, Kasen, Röpke, Kirshner & Mandel. 2011

Want to estimate trend 
from the data
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Estimating the Population Intrinsic 
Color-Velocity Relation

• C = Intrinsic Color, O = Observed Color

• If have measurements (C, v) for each individual 
SN, then just regress C against v

• But we measure (O, v) where O = C + Dust 
Reddening + Error

• How do we estimate population relation between 
C vs v using (O, v) as data?
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What is Hierarchical Bayes?
Simple Bayes:

P (θ| D) ∝ P (D| θ)P (θ)

Hierarchical Bayes:

D| θ ∼ Model(θ) + �

θi| α,β ∼ P (θ| α,β)
Di|θi ∼ Model(θi) + �

P ({θi}, α, β|{Di}) ∝
� N�

i=1

P (Di| θi)P (θi|α,β)
�
P (α,β)

Posterior:

Joint Posterior:

Build up complexity by layering conditional probabilities

θi = Individual
α,β = Group or Population
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Graphical Model for Color-Velocity 
Hierarchical Model

s = 1, . . . , NSNDust
Pop

SN Ia
Pop

As
V

AppColorssIntrColorss

ObsColorssLineVelocitys
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Mathematical Details

• Pick a form for population mean intrinsic color-
velocity function: 

• Individual Intrinsic Colors:

• Observed Colors:

• Dust Distribution: 

– 3 –

In §4, we apply this method to a set of color-velocity data for a sample of nearby SN Ia. Using

the linear model, we find significant trends of intrinsic B−V and B−R colors versus Si II velocity.

With the step function model, we find significant differences between the mean intrinsic B − V ,

B−R, B− I and V −R colors of the high velocity and normal velocity groups. Using the DIC to

evaluate the fits, we find that the information criteria significantly favor these simple trends over

the model with no trend with velocity, while higher order polynomial fits are disfavored. We show

that the inclusion of Si II velocity information and the modeling of its relation to intrinsic color

results in significant velocity-dependent changes in dust extinction estimates. We conclude in §5.

2. Statistical Model

2.1. Modeling Assumptions: Linear Intrinsic Color-Velocity Correlation

We have a vector of measurements Os of the nC apparent colors at TBmax (e.g. apparent B−V ,

V − R, V − I) for supernova s for s = 1 . . . NSN SN Ia. We also have well-measured estimates of

their Si II velocities vs, so that their error may be ignored. The apparent colors are related to the

intrinsic colors through dust, measurement error:

Os = Cs +As
V γ(RV ) + �s. (1)

We assume that the color measurement error � is Gaussian with known covariance: �s ∼ N(0,Ws).

The middle term on the left describes the effect of dust extinction AV on each color through the

assumed reddening law (CCM): γ(RV ) = (∆α+∆β/RV ).

The dust extinction AV is assumed to arise from an exponential distribution with average τA:

As
V ∼ Expon(τA). This has a probability density of P (AV |τ) = τ−1 exp(AV /τ) for AV > 0 and

zero otherwise.

We model the mean relation µC(v;θ) between the intrinsic colors Cs and the velocity, with

some scatter about the average trend:

Cs = µC(vs;θ) + �Cs . (2)

If the mean intrinsic colors are linear functions of velocity, then θ = (c0, b) and

µC(v;θ) = c0 + b(v − v0). (3)

This function models the conditional mean of the intrinsic colors given the known covariate v. A

characteristic Si II velocity is v0 = −12, 000 km s−1. The expected intrinsic colors at vs = v0 are

given by the offsets c0, and the slopes of intrinsic colors versus velocity are b. The trend may not

be exact, and we expect some intrinsic scatter about the trend. We assume that the scatter term

is Gaussian distributed about the linear trend: �Cs ∼ N(0,ΣC). The residual scatter covariance

matrix ΣC allows for the scatter about the linear trend to be correlated between different colors.

– 3 –

In §4, we apply this method to a set of color-velocity data for a sample of nearby SN Ia. Using

the linear model, we find significant trends of intrinsic B−V and B−R colors versus Si II velocity.

With the step function model, we find significant differences between the mean intrinsic B − V ,

B−R, B− I and V −R colors of the high velocity and normal velocity groups. Using the DIC to

evaluate the fits, we find that the information criteria significantly favor these simple trends over

the model with no trend with velocity, while higher order polynomial fits are disfavored. We show

that the inclusion of Si II velocity information and the modeling of its relation to intrinsic color

results in significant velocity-dependent changes in dust extinction estimates. We conclude in §5.

2. Statistical Model

2.1. Modeling Assumptions: Linear Intrinsic Color-Velocity Correlation

We have a vector of measurements Os of the nC apparent colors at TBmax (e.g. apparent B−V ,

V − R, V − I) for supernova s for s = 1 . . . NSN SN Ia. We also have well-measured estimates of

their Si II velocities vs, so that their error may be ignored. The apparent colors are related to the

intrinsic colors through dust, measurement error:

Os = Cs +As
V γ(RV ) + �s. (1)

We assume that the color measurement error � is Gaussian with known covariance: �s ∼ N(0,Ws).

The middle term on the left describes the effect of dust extinction AV on each color through the

assumed reddening law (CCM): γ(RV ) = (∆α+∆β/RV ).

The dust extinction AV is assumed to arise from an exponential distribution with average τA:

As
V ∼ Expon(τA). This has a probability density of P (AV |τ) = τ−1 exp(AV /τ) for AV > 0 and

zero otherwise.

We model the mean relation µC(v;θ) between the intrinsic colors Cs and the velocity, with

some scatter about the average trend:

Cs = µC(vs;θ) + �Cs . (2)

If the mean intrinsic colors are linear functions of velocity, then θ = (c0, b) and

µC(v;θ) = c0 + b(v − v0). (3)

This function models the conditional mean of the intrinsic colors given the known covariate v. A

characteristic Si II velocity is v0 = −12, 000 km s−1. The expected intrinsic colors at vs = v0 are

given by the offsets c0, and the slopes of intrinsic colors versus velocity are b. The trend may not

be exact, and we expect some intrinsic scatter about the trend. We assume that the scatter term

is Gaussian distributed about the linear trend: �Cs ∼ N(0,ΣC). The residual scatter covariance

matrix ΣC allows for the scatter about the linear trend to be correlated between different colors.

– 3 –

In §4, we apply this method to a set of color-velocity data for a sample of nearby SN Ia. Using

the linear model, we find significant trends of intrinsic B−V and B−R colors versus Si II velocity.

With the step function model, we find significant differences between the mean intrinsic B − V ,

B−R, B− I and V −R colors of the high velocity and normal velocity groups. Using the DIC to

evaluate the fits, we find that the information criteria significantly favor these simple trends over

the model with no trend with velocity, while higher order polynomial fits are disfavored. We show

that the inclusion of Si II velocity information and the modeling of its relation to intrinsic color

results in significant velocity-dependent changes in dust extinction estimates. We conclude in §5.

2. Statistical Model

2.1. Modeling Assumptions: Linear Intrinsic Color-Velocity Correlation

We have a vector of measurements Os of the nC apparent colors at TBmax (e.g. apparent B−V ,

V − R, V − I) for supernova s for s = 1 . . . NSN SN Ia. We also have well-measured estimates of

their Si II velocities vs, so that their error may be ignored. The apparent colors are related to the

intrinsic colors through dust, measurement error:

Os = Cs +As
V γ(RV ) + �s. (1)

We assume that the color measurement error � is Gaussian with known covariance: �s ∼ N(0,Ws).

The middle term on the left describes the effect of dust extinction AV on each color through the

assumed reddening law (CCM): γ(RV ) = (∆α+∆β/RV ).

The dust extinction AV is assumed to arise from an exponential distribution with average τA:

As
V ∼ Expon(τA). This has a probability density of P (AV |τ) = τ−1 exp(AV /τ) for AV > 0 and

zero otherwise.

We model the mean relation µC(v;θ) between the intrinsic colors Cs and the velocity, with

some scatter about the average trend:

Cs = µC(vs;θ) + �Cs . (2)

If the mean intrinsic colors are linear functions of velocity, then θ = (c0, b) and

µC(v;θ) = c0 + b(v − v0). (3)

This function models the conditional mean of the intrinsic colors given the known covariate v. A

characteristic Si II velocity is v0 = −12, 000 km s−1. The expected intrinsic colors at vs = v0 are

given by the offsets c0, and the slopes of intrinsic colors versus velocity are b. The trend may not

be exact, and we expect some intrinsic scatter about the trend. We assume that the scatter term

is Gaussian distributed about the linear trend: �Cs ∼ N(0,ΣC). The residual scatter covariance

matrix ΣC allows for the scatter about the linear trend to be correlated between different colors.

– 3 –

In §4, we apply this method to a set of color-velocity data for a sample of nearby SN Ia. Using

the linear model, we find significant trends of intrinsic B−V and B−R colors versus Si II velocity.

With the step function model, we find significant differences between the mean intrinsic B − V ,

B−R, B− I and V −R colors of the high velocity and normal velocity groups. Using the DIC to

evaluate the fits, we find that the information criteria significantly favor these simple trends over

the model with no trend with velocity, while higher order polynomial fits are disfavored. We show

that the inclusion of Si II velocity information and the modeling of its relation to intrinsic color

results in significant velocity-dependent changes in dust extinction estimates. We conclude in §5.

2. Statistical Model

2.1. Modeling Assumptions: Linear Intrinsic Color-Velocity Correlation

We have a vector of measurements Os of the nC apparent colors at TBmax (e.g. apparent B−V ,

V − R, V − I) for supernova s for s = 1 . . . NSN SN Ia. We also have well-measured estimates of

their Si II velocities vs, so that their error may be ignored. The apparent colors are related to the

intrinsic colors through dust, measurement error:

Os = Cs +As
V γ(RV ) + �s. (1)

We assume that the color measurement error � is Gaussian with known covariance: �s ∼ N(0,Ws).

The middle term on the left describes the effect of dust extinction AV on each color through the

assumed reddening law (CCM): γ(RV ) = (∆α+∆β/RV ).

The dust extinction AV is assumed to arise from an exponential distribution with average τA:

As
V ∼ Expon(τA). This has a probability density of P (AV |τ) = τ−1 exp(AV /τ) for AV > 0 and

zero otherwise.

We model the mean relation µC(v;θ) between the intrinsic colors Cs and the velocity, with

some scatter about the average trend:

Cs = µC(vs;θ) + �Cs . (2)

If the mean intrinsic colors are linear functions of velocity, then θ = (c0, b) and

µC(v;θ) = c0 + b(v − v0). (3)

This function models the conditional mean of the intrinsic colors given the known covariate v. A

characteristic Si II velocity is v0 = −12, 000 km s−1. The expected intrinsic colors at vs = v0 are

given by the offsets c0, and the slopes of intrinsic colors versus velocity are b. The trend may not

be exact, and we expect some intrinsic scatter about the trend. We assume that the scatter term

is Gaussian distributed about the linear trend: �Cs ∼ N(0,ΣC). The residual scatter covariance

matrix ΣC allows for the scatter about the linear trend to be correlated between different colors.

31Tuesday, September 17, 2013



Simulated Data from Hierarchical Model
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Gibbs Sampling the Posterior Distribution

1. Sample Individual 
SN parameters 
given data and 
population 
hyperparameters

2. Sample 
hyperparameters 
given individual 
parameters
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Application to Color-Velocity Data
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Leveraging Intrinsic Color-Velocity info 
changes the Dust Estimates
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Posterior Inferences:
Step Intrinsic Color-Velocity Function
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Model Comparison using 
Deviance Information Criterion

• How complex a model to 
fit?

• Penalize the posterior 
average deviance (-2x log 
likelihood) by the effective 
number of parameters

• Uses MCMC samples

– 45 –

Table 3. Information Criteria for Color-Velocity Data

Model D̂ �D� pD DIC ∆0
a

Const/Gaussian -780.3 -775.0 5.4 -769.6 0.0
Linear -790.9 -783.1 7.8 -775.3 -5.7
Step -791.6 -783.7 7.9 -775.8 -6.2
Quadratic -799.5 -788.8 10.7 -778.1 -8.5
Cubic -799.1 -785.6 13.5 -772.1 -2.5

aDifference in DIC relative to that of the Gaussian (con-
stant mean intrinsic color) model

Note. — D̂ is the deviance at the posterior mean, �D� is
the posterior mean of the deviance, and pD is the effective
number of hyperparameters. See §C for details.
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Conclusion

• Two Applications of Bayesian Modeling 
applied to Supernova Data

• Naive Bayes Classification of SN using 
Galaxy Data

• Modeling Intrinsic Color-Velocity trends in 
presence of dust 
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