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Aim: to evaluate and develop general Bayesian model
comparisons for arbitrary models through posterior likelihood
ratios/posterior deviance differences.

Two aspects:
• Non-nested models – compute distribution of ratio of

posterior likelihoods
• Nested models – compute posterior distribution of likelihood

ratio

Book treatment:
Murray Aitkin (2010) Statistical Inference: an Integrated
Bayesian/Likelihood Approach. Chapman and Hall/CRC
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The galaxy recession velocity study

• The data are the recession velocities of 82 galaxies from 6
well-separated sections of the Corona Borealis region
(Postman, Huchra and Geller, The Astronomical Journal
1986).

• Do these velocities clump into groups or clusters, or does
the velocity density increase initially and then gradually tail
off?

This had implications for theories of evolution of the
universe. If the velocities clump, the velocity distribution
should be multi-modal.

• Investigated by fitting mixtures of normal distributions to the
velocity data; the number of mixture components necessary
to represent the data – or the number of modes – is the
parameter of particular interest.
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Recession velocities in km/sec (/1000) of 82 galaxies

99
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92
91
86
86 99
85 88
66 85 91
55 82 89
54 80 75 71
53 63 75 71
47 42 50 67
44 22 96 37 54 99

78 34 22 92 31 54 72
56 93 34 20 81 25 48 37
48 60 33 18 70 24 26 29
35 41 17 55 07 18 49 21 24 29 99 79
17 23 08 42 05 17 14 19 21 13 63 96 07 28
------------------------------------------------------------------------------
9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.

velocity/1000
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Could these come from a single normal distribution?
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Clearly not!
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Clumping by mixtures

Mixture distributions are widely used to represent heterogeneity;
mixtures of normals are the most common for data on a
continuous scale.

The general model for a K-component normal mixture has
different means µk and variances σ2

k in component k, which
makes up a proportion πk of the population:

f(y) =
∑K

k=1 πkf(y|µk, σk),
where

f(y|µk, σk) =
1√
2πσk

exp
{

− 1
2σk

2 (y − µk)
2
}

,

and the πk are positive with
∑K

k=1 πk = 1.

Fitting by ML is straightforward with an EM algorithm.
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Two normals
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µ̂1 = 21.35, σ̂1 = 1.88, π̂1 = 0.740

µ̂2 = 19.36, σ̂2 = 8.15, π̂2 = 0.260

Astrostatistics – p. 7



Three normals
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A good fit?
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Four normals
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A very close fit!
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Six normals
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Is this really a better fit?
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Roeder’s analysis

Roeder computed a nonparametric estimate of the velocity
density by optimizing a goodness-of-fit criterion based on
spacings between the ordered observations.

A simple kernel density estimate suggested three or more
components; histograms gave inconsistent impressions
depending on the bandwidth and limits.

A surface generated by bandwidth variations suggested three or
more components.
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Roeder kernel density graph
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Roeder histograms graph
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Roeder density surface graph
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Model assessment and comparison

How do we decide whether four components are needed, more
than four, or less than four?

The most common frequentist methods are AIC, BIC and the
bootstrap likelihood ratio test.
These don’t work well (see references for explanation).

The most common Bayesian method uses the integrated
likelihood.
This doesn’t work well either.
The DIC is used but is widely criticised.

We consider first the simplest case of completely specified
models.
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Model comparisons – completely specified models

We have a random sample of data y = (y1, ..., yn) from a
population which may be either of two completely specified
distributions: Model 1 – f1(y|θ1) and Model 2 – f2(y|θ2), where
θ1 and θ2 are known.
The likelihoods and priors for the two models are:

• L1 =
∏

i f1(yi|θ1) and π1,

• L2 =
∏

i f2(yi|θ2) and π2 = 1− π1.

Then by Bayes’s theorem, the posterior odds (ratio of posterior
probabilities) for model 1 over model 2 is

π1|y
π2|y

=
L1

L2
·
π1
π2

.

For equal prior probabilities π1 = π2, the RHS is the likelihood
ratio, so a likelihood ratio of 9 gives a posterior probability of
9/(9+1) = 0.9 for Model 1.
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Model comparisons – general models

The models are Model 1 – f1(y|θ1) and Model 2 – f2(y|θ2) as
before, but now θ1 and θ2 are unspecified except for priors π1(θ1)
and π2(θ2).
The likelihood ratio now depends on θ1 and θ2.
We eliminate this dependence by integrating out the unknown
parameters with respect to their priors, to give integrated
likelihoods:
L̄1 =

∫

L1(θ1)π1(θ1)dθ1, L̄2 =
∫

L2(θ2)π2(θ2)dθ2.

The Bayes factor (for the relative support for Model 1 over Model
2) is defined to be L̄1/L̄2, and the posterior odds on Model 1
over Model 2 is defined to be

L̄1

L̄2
·
π1
π2

,

as though the integrated likelihoods are from completely
specified models.
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Integrated likelihood difficulties

This approach to model comparisons is not restricted to two
models: it can handle any number of competing models in the
same way.

However, it has well-known difficulties:
• Improper priors cannot be used, as the integration leaves

an arbitrary constant in the integrated likelihood.
• Proper priors are informative, depending on prior

parameters φ.

• Then the integrated likelihood L̄(φ) depends explicitly on the
prior parameter φ –

• A change in the value of the prior parameter will change the
value of the integrated likelihood.
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Bayes analysis of mixtures

Bayesian and ML analyses are greatly simplified by the
introduction of a set of latent Bernoulli variables {Zik} for
membership of observation i in component k.

This allows the complete data representation (with the Zik

counterfactually observed)

f∗(yi, {Zik}) =
∏K

k=1 f(yi|µk, σk)
Zik · πZik

k

We can then write the complete data likelihood as

L∗(Z, θ, π, k) =
∏n

i=1

∏K
k=1 f(yi|µk, σk)

Zik · πZik

k .

This allows simple conditional distributions in the MCMC
algorithm, as in the EM algorithm.
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Posterior model probabilities for the galaxy data

• All the Bayes analyses used some form of Data
Augmentation or Markov chain Monte Carlo analysis, with
◦ updating of the successive conditional distributions of

the set of parameters and
◦ the set of latent component membership variables
◦ given the other set and the data y.

• Most of the analyses
◦ took K initially as fixed,
◦ obtained an integrated likelihood over the other

parameters for each K depending on the settings of the
prior parameters,

◦ and used Bayes’s theorem to obtain the posterior
probabilities of each value of K.
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Bayes analysis

More complex analyses (Richardson and Green 1997) used
Reversible Jump MCMC (RJMCMC) in which K is included
directly in the parameter space, which changes as K changes,
as jumps are allowed across different values of K.

The choice of prior distributions (including for K) varied among
Bayes analyses of the galaxy data by

• Escobar and West (1995)
• Carlin and Chib (1995)
• Phillips and Smith (1996)
• Roeder and Wasserman (1997)
• Richardson and Green (1997) and
• Nobile (2004).
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Prior distributions for K

K 1 2 3 4 5 6 7 8 9 10

EW .01 .06 .14 .21 .21 .17 .11 .06 .02
CC - .33 .33 .33 - - - - -
PS .16 .24 .24 .18 .10 .05 .02 .01
RW .10 .10 .10 .10 .10 .10 .10 .10 .10 .10
RG .03 .03 .03 .03 .03 .03 .03 .03 .03 .03...
N ?
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Posterior distributions for K

K 3 4 5 6 7 8 9 10 11 12 13

EW1 .03 .11 .22 .26 .20 .11 .05 .02

EW2 .02 .05 .14 .21 .21 .16 .11 .06 .03 .01

CC1 .64 .36 - - - - - - - - -

CC2 .004 .996 - - - - - - - - -

PS .03 .39 .32 .22 .04

RW .999 .00

RG .06 .13 .18 .20 .16 .11 .07 .04 .02 .01 .01

N .02 .13 .16 .25 .20 .13 .06 .03 .01 .01
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Conclusions?

Most posteriors were diffuse, with modes at 6 or 7 components.

Carlin and Chib found 3 or 4 depending on their priors.

Roeder and Wasserman found 3 with probability almost 1.

So how many components are there?

“Explanation: the results are different because of the different
priors."

This is not the solution: it is the problem.
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Solution: posterior likelihoods/deviances

We give the general approach, originally due to Dempster.

The model likelihoods are uncertain, because of our uncertainty
about the parameters in these models.

The parameter uncertainty is expressed through the posterior
distributions of each model’s parameters θk, given the data and
priors.

The model k likelihood Lk(θk) is a functional – a function of both
θk and the observed data, so we map the posterior distribution
of θk into that of Lk(θk).

This is very simply done by simulation, making random draws
from the posteriors and substituting them in the likelihoods.
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Non-informative priors and MCMC for finite mixtures

For each K = 1, 2, ... we use a diffuse Dirichlet prior on the
component proportions πk and diffuse conjugate priors on the
means µk and inverse variances 1/σ2

k, for k = 1, 2, ...K.

For computational MCMC analysis these have to be proper, so
slightly informative.

• The MCMC sampler is run till convergence of the joint
posterior distribution of the parameter set for each K.

• Then we sample M = 10, 000 values θ
[m]
k for each

component from this posterior distribution, and
• compute the K-component mixture likelihood

L
[m]
K = LK(θ

[m]
1 , ..., θ

[m]
K ) for each parameter set.

This study was done for the galaxy data by Celeux et al (2006),
in an evaluation of various rules for penalizing the posterior
mean deviance in the DIC of Spiegelhalter et al (2002).
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Asymptotics for likelihoods and deviances

We generally work with posterior deviances rather than posterior
likelihoods – their asymptotics are much better behaved.

For regular models f(y | θ) with flat priors, giving an MLE θ̂
internal to the parameter space, the second-order Taylor
expansion of the deviance D(θ) = −2 logL(θ) = −2ℓ(θ) about θ̂
gives:

−2ℓ(θ)
.
= −2ℓ(θ̂)− 2(θ − θ̂)

′

ℓ
′

(θ̂)− (θ − θ̂)
′

ℓ
′′

(θ̂)(θ − θ̂)

= −2ℓ(θ̂) + (θ − θ̂)
′

I(θ̂)(θ − θ̂) quadratic log − likelihood

L(θ)
.
= L(θ̂) · exp[−(θ − θ̂)

′

I(θ̂)(θ − θ̂)/2] normal likelihood

π(θ|y)
.
= c · exp[−(θ − θ̂)

′

I(θ̂)(θ − θ̂)/2] normal posterior

The quadratic form (θ− θ̂)
′

I(θ̂)(θ− θ̂) is (asymptotically) a pivotal
(function of data and parameters) which has (asymptotically) a
known (χ2) distribution, Bayesian or frequentist.
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Asymptotic distributions

So asymptotically, given the data y and a flat prior on θ, we have
the posterior distributions:

θ ∼ N(θ̂, I(θ̂)−1),

(θ − θ̂)
′

I(θ̂)(θ − θ̂) ∼ χ2
p,

D(θ) ∼ D(θ̂) + χ2
p,

L(θ) ∼ L(θ̂) · exp(−χ2
p/2).

• The deviance D(θ) has a shifted χ2
p distribution, shifted by

the frequentist deviance D(θ̂), where p is the dimension of θ.

• The likelihood L(θ) has a scaled exp(−χ2
p/2) distribution.

With even moderate data sets, likelihoods become extremely
small and cause underflow in computations – we evaluate
deviances instead.

Astrostatistics – p. 28



Posterior deviances

The frequentist deviance is an origin parameter for the posterior
deviance distribution: no random draw can give a smaller
deviance value than the frequentist deviance.

For the comparison of models with different numbers of
components, we compute the sets of posterior deviance draws
for K = 1, 2, ...7:

D
[m]
K = −2 logL

[m]
K .

The M values for each K define the posterior distributions: we
order them to give the empirical cdfs.
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Deviance distributions
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Interpretation

• The deviance distribution for K = 1 is far to the right of the
others – the 1-component mixture (single normal
distribution) is a very bad fit relative to the others.

• Its deviance distribution is stochastically larger than all the
others.

• The fit improves substantially from K = 1 to 2.
• The improvement continues from K = 2 to 3.
• The distribution for K = 3 is the stochastically smallest –
• as the number of components increases beyond 3 the

deviance distributions move steadily to the right, to larger
deviance values (lower likelihoods).

• They also become more diffuse, with decreasing slope.

With more parameters there is less information about each
parameter, and therefore about the likelihood and deviance, so
their posterior distributions become more diffuse.
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Consistency with data

The conclusions from the deviance distributions are consistent
with

• the appearance of the data empirical cdfs;
• the results of Roeder and Wasserman;
• the DIC results of Celeux et al (whatever the choice of

function of the deviance draws, or the penalty, DIC always
chose 3 components for the galaxy data).
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Graphs
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Does this prove anything?

Bayesian methods for determining the number of mixture
components have not previously been supported by simulation
studies.

Aitkin, Vu and Francis (2015) report studies based on galaxy-like
data sets, and compare model choice by posterior deviances
with choice by DIC (which has a penalty on the mean deviance
for each model – Spiegelhalter et al 2002).

The deviance distribution comparison was uniformly more
accurate than the DIC comparison, especially for large numbers
of components.

The 5- and 7-component mixtures were particularly difficult to
identify.
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Simulations

n 82 164 328 656

K DIC Dev DIC Dev DIC Dev DIC Dev

1 100 100 100 99 100 100 100 100
2 85 98 100 100 100 100 100 97
3 51 99 98 99 100 99 100 99
4 3 9 11 67 30 99 17 99
5 0 18 0 9 0 37 1 89
6 2 9 0 10 56 100 78 100
7 0 1 0 15 4 3 4 32

Percentages of correct model identification in 100 data sets of
size n using DIC and posterior deviance
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