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Background on LIGO
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Gravitational Waves

● Caused by disturbances to a 
stable spacetime manifold

● Expected to propagate at speed 
of light

● Expected to have 2 independent 
polarizations

● Sources
– Unmodeled bursts 

– Binary Coalescence

– Periodic Sources

– Stochastic Background

http://www.johnstonsarchive.net/relativity/pictures.html

http://mucholderthen.tumblr.com/post/55970198303/gravitational-waves-patterns-in-space-time-a
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LIGO-VIRGO Interferometer Network

● Observatories are large Michelson 
interferometers (to 0th order)

● LIGO: Two observatories with 4 km 
arms in US (Hanford, Washington & 
Livingston, Louisiana)

● Virgo:  One observatory with 3km 
arms (Cascina, Italy)

http://phys.columbia.edu/~millis/1900/readings/LIGO.pdf

http://www.ligo.caltech.edu/LIGO_web/PR/scripts/draw_lg.html
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Signal Detection and Analysis

● Matched filtering
– Assume data is of form:

● h(t) is gravitational wave signal
● n(t) is detector noise

– Define noise-weighted inner product

● Assuming stationary Gaussian noise, can write 
likelihood (under hypothesis H) as

where
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MCMC Approach
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LALInference Burst

● Used MCMC-based nested sampling to explore 
parameter space
– Uses a Sine-Gaussian template to model waveform

– Calculates evidence Z directly

– Parameter posteriors can be obtained by 
resampling MCMC points



  8

Nested Sampling (Skilling 2004)

● Reparametrize evidence                                   with

● Scatter “live points” through initial Monte Carlo (i.e., draw  from prior)θθ

● Calculate likelihood at each live point

● By drawing from prior, replace lowest likelihood live point with new live point

– New point of higher likelihood: forms nested likelihood contours

● Algorithm calculates Z while converging to max likelihood

Skilling 2004
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Parameter estimation and posteriors

● If live points are recorded, have access to the 
posterior through

  Q parametrizes 
number of 

waveform cycles

f0 is oscillation 
frequency in t-domin, 
central frequency in f-

domain

Courtesy of R. Essick
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Bayes Factors and Signal Detection

● Write Bayes' theorem as:
● Taking the “odds ratio” of two hypotheses we 

find the important quantity to be the Bayes 
factor:

● Signal vs. Gaussian Noise:

● Coherent Signal vs. Incoherent Glitches: 

where

Useful because 
coherent prior is 

more sharply 
peaked in 

parameter space
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Signals vs. False Alarms

Signals

Glitches

Ln Bh,0 

Ln
 B

C
, I 
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Low-latency sky localization
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Single Detector Sensitivity

Single detectors have very 
poor sky localization 

capabilities

“Null” spots when 
source is in plane 

of detector

Effective 
polarization to 
which single 
detector is 
sensitive

Most sensitive 
when source is 

overhead

http://docuserv.ligo.caltech.edu/docs/public/T/T970101-B.pdf
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Network Sensitivity

● For 2-detector (HL) case:

Max Sensitivity Eigenvalue Min Sensitivity Eigenvalue

Max eigenvalue similar to 
sensitivity of single detector

Min eigenvalue much smaller in 
magnitude across most of sky

Motivation 
for priors!
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Performing Sky Localization

– Time-of-arrival measurements give rings on sky for each 
pair of detectors

Courtesy of R. Essick
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Performing Sky Localization

● Triangulation:

● Priors and amplitude consistency can provide 
modulation along timing rings

2 Detectors (HL) 3 Detectors (HLV)
Ring-like 

localization 
for 2 

detectors

Intersection 
of rings -> 
point-like 

localization 
for 3 

detectors

Courtesy of R. Essick
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Burst Sky Localization

● Some gravitational wave signals expected to have EM 
counterparts and afterglows

● Challenge:  Need accurate localization with low latency
– Searching over entire sky is computationally expensive

– Sky location posteriors tend to be fragmented and non-
localized

– How to model burst signals and search over parameter 
space?

For BNS 
CBC 

events

http://arxiv.org/abs/1404.5623
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Low-latency Bayesian Approach

● Can do full parameter estimation and sky localization 
follow-up with LIB on timescales of hours

● Our goal: design a low-latency, all-sky sky 
localization pipeline
– Allow for varying degree of signal strain ( h(f) ) modeling

● Marginalize over all strain amplitudes through Gaussian 
integration

● This requires expansion of prior in terms of Gaussians

– Make search coherent among detectors:  enables 
amplitude consistency 
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Likelihood

● Define Likelihood ratio as:

– d(f) is the detected data

– hj (f) is gravitational wave strain (jth polarization)

– Fx,+(θ, Φ) are antennae patterns

– t0 is signal's central time

– S(f) is noise PSD

● Expansion reveals useful a quantity to be:

– Sensitivity matrix:

Ratio of Gaussian 
noise realizations 
with and without 
signal present

Beta signifies 
the detector,
i,j signify the 
polarization

Defined for 
each sky pixel
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Strain Model

● Model strain as independent “rectangular” functions over 
specified frequency intervals

– hi(f) = ai for f1 < f < f2 , else 0 

● In limit Nintervals → 1, we get a “rectangular” template

● In limit Nintervals → Nfreq bins, we have a completely unmodeled 
signal
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Prior on strain
● For narrow-band signals with sources uniform in 

volume:
– Energy flux:  

– Marginalize over energy and distance:

● Find best fits of coefficients for Gaussian expansion:

Blue is hrss
-4

Red is Gaussian model
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Final Formulation

● Assume 

● Marginalize over each hj(f) by performing Gaussian integral:

● Can marginalize over t0 using discrete fast Fourier transforms

● Dilemmas:
– In “unmodeled” limit:  determinant term acts as Occam factor that penalizes 

us for overfitting the data 
– In single “rectangular” limit: don't want to include frequency bins without 

signal

Determinant term

Not necessarily true!
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Model selection
● Integrate over sky position to get a Bayes factor for signal vs. noise
● Can use prior to set h(f) to zero at any frequency bin

– Creates “window” where signal is allowed to live

– Reduces number of parameters

● The proper thing to do would be to marginalize over a grid of 
“window” models

● In favor of computational speed, currently just maximize over a set of 
“windows” designed to converge on true signal
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Preliminary Results (“Rectangular”)

● Threshold events:

2-detector (HL) network 3-detector (HLV) network
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Preliminary Results (“Rectangular”)

● Loud events

2-detector (HL) network 3-detector (HLV) network
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Preliminary Results (“Unmodeled”)

● Threshold events:

2-detector (HL) network 3-detector (HLV) network

Overfitted data!
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Conclusions and Future Outlook

● LIB
– Already proven as parameter estimation tool (arXiv:1409.2435)

– Detection pipeline using Bayes factor cuts looks promising, 
statistical study in the works

– Should understand trade-offs with number of live points (latency, 
accuracy of evidence, accuracy of posterior)

● Low-latency pipeline
– Preliminary results appear to be consistent with LIB with 

latencies of  ~ (30 minutes) / (# CPUs)

– Can implement better priors, strictly speaking 

– Need to perform statistical tests to optimize model selection and 
compare to LIB results
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