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Overview: Basic Setup

Assume 1D, non-parametric
generalized linear model (GLM)

Goal is to characterize inhomogeneous regression
function from discrete observations.
In particular, we wish to extract information on

scale of local components, and
trend of local components.
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Overview: Proposed Method

Our framework combines

Recursive partitioning of the dataspace.
⇒ Captures scale of local components.

Piecewise polynomials, w/ support on partition
intervals.
⇒ Captures smooth trends in local components.

Model selected by complexity penalized likelihood.
⇒ Insures parsimony of representation.
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Characteristics of Method

Calculations may be performed using efficient,
polynomial-time algorithms.

Estimators of regression function have properties of
near-optimality and adaptivity.

⇒ Constitutes an extension of wavelet-based
methods for Gaussian data to context of
non-parametric GLMs.
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Wavelets and GLMs

Posed as “challenge problem” by Bernard Silverman
in his Special Invited Paper presentation at
JSM 1999.

Previous answers to this challenge consist of:
Antoniadis and Sapatinas (2002).
Extension of wavelet shrinkage to NEFs with quadratic
variance functions; risk theory only for Sobolev spaces.

Sardy, Antoniadis, and Tseng (2004).
Wavelet reparameterization of ‘natural’ parameter;
L1-penalized likelihood procedure; computationally
intensive; no risk theory.
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A Peek at the End Product: Gamma-Ray Burst 1425
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Nonparametric GLM’s.

Independent observations y1, . . . , yn

Each yi has exponential family distribution

pθ(yi) = exp

{

yi θi − b(θi)

τ
+ c(yi, τ)

}

,

Natural parameters θ1, . . . , θn related through an unknown

function θ(t) ∈ Θ, t ∈ [0, 1].

Dispersion parameter τ considered fixed and known.

GOAL: Estimate mean vector µi ≡ G−1(θi).
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Examples: Poisson and Binomial

1. Poisson:

Pr(Y = y) =
e−µµy

y!
∝ exp{y log µ − µ}

⇒ θ = G(µ) ≡ log µ.

2. Binomial

Pr(Y = y) =

(

m

y

)

( µ

m

)y
(

m − µ

m

)m−y

∝ exp{y log[µ/(m − µ)] − m log(m − µ)}

⇒ θ = G(µ) ≡ log[µ/(m − µ)].
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Basic Model Class: RDP’s and PP’s.

Let P∗
Dy be a complete recursive dyadic partition (C-RDP) of

the interval (0, 1], composed of n equi-length intervals Ii.

[0, 1) → { (0, 0.5] , (0.5, 1] } → · · · → P∗
Dy = {Ii}

n
i=1

Let P � P∗
Dy denote an intermediate, recursive dyadic

partition (RDP) encountered between (0, 1] and P∗
Dy.

Model θ(·) by members of the class

PP (P ;D) ≡ {Piece-wise polynomials, of order D,

with components supported on I ∈ P } .
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Example: Piecewise exponential models

Consider y1, . . . , yn a Poisson time series. If for ti ∈ I ∈ P

θi = log(µi) =
K

∑

k=1

αk(ti − tI)
k

Then

⇒ µi ≈ exp{αK(ti − tI)
K)}

Result: A class of piecewise exponential models.

Compare

Norris et al. (1996)

Connors (2003)
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Model Selection

Let

`(θ) ≡ log pθ(y) ≡
n

∑

i=1

log pθ(yi ) ,

#(P) ≡ Number of intervals I ∈ P ,

and

λ = λ(D;n) ≡ (D/2) log(n) .

Estimate θ by the complexity-penalized likelihood estimator

θ̂RDP ≡ arg max
P�P∗

Dy

max
θ′∈PP (P;D)

{ `(θ′) − 2λ#(P) } .
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What’s up with the penalty?

The penalty

pen(P) = (D/2) log(n) × #(P)

is chosen to satisfy the condition
∑

P�P∗

Dy

exp{−pen(P)} ≤ 1 .

Derives from role in underlying risk theory; connections with coding
theory; essentially an unnormalized prior.
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Implementation

For a given candidate partition P , and fixed I ∈ P , the

polynomial piece of θ̂RDP can be fit using standard GLM

software.

Partitions P � P∗ possess certain

redundancies

hereditary properties

that enable θ̂RDP to be computed using an O(n) bottom-up,

optimal tree-pruning algorithm (e.g., as in CART).

Run time for n = 256 on 3.2GHz machine: ∼ 2 seconds.

HAstro, 03/08/05 – p. 14/30



Illustration: θ̂RDP w/ GRB’s

θ(t) ≈ log(µ(t)) piece-wise linear in t.

Reasonably good match between estimated regression function

(red) and fitted FRED model (black).
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Extension to Arbitrary C-RP’s

Let L be the library of all (n − 1)! possible
complete recursive partitions (C-RP) P∗ = {Ii}

n
i=1.

Define PP (P; D) as before, for all P � P∗,
and all P∗ ∈ L.

Estimate θ by the complexity-penalized estimator

θ̂RP ≡ arg max
P∗∈L

max
P�P∗

max
θ′∈PP (P;D)

{ `(θ′) − 2λ #(P) } .
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Practical Implications

End result is piecewise polynomial fit with segmentation at any

of the n − 1 interior points.

Estimator is multiscale, in that there are no restrictions on

extent of segments.

Redundancies and hereditary properties among C-RPs may be

exploited to calculate θ̂RP in O(n3) steps.

Run time for n = 256 on 3.2GHz machine: ∼ 4 minutes.
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Illustration: GRBs
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[Left: Linear; Right: Quadratic]

HAstro, 03/08/05 – p. 18/30



Illustration: Packet Loss Data.

Packets transmitted every 160ms from UMass-Amherst to

Sweden.

Interest in estimating packet loss rates.

0/1 loss data subsampled at 1000ms, and binned over 5 minute

intervals.

Modeled as binomial time series.

θ(t) ≈ log[p(t)/(1 − p(t))] modeled as piecewise linear in t.
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Packet Loss Data: Results

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25
P

ac
ke

t L
os

s 
R

at
e

Hours

HAstro, 03/08/05 – p. 20/30



Risk Theory.

Define loss in estimation through (squared) Hellinger
distance i.e.,

H2
n

(

pθ, pθ̂

)

=

∫

{

√

pθ(y) −
√

pθ̂(y)
}

νn(y) .

and measure risk as
Rn ≡ E

[

H2
n

(

pθ, pθ̂

)]

.

Let Bα
p,q be a Besov space with parameters 0 < α < D

and 1 ≤ p < ∞ such that 1/p < α + 1/2, and q > 0.
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Risk Theory (cont)

Theorem 1 Suppose

1. f ∈ Bα
p,q ([0, 1]),

2. |f(t)| ≤ C for all t ∈ [0, 1], for C > 0

3. G and G−1 are Lipschitz.

Then the risk of our estimators behaves like

Rn ∼ (logc n/n)2α/(2α+1) ,

where c = 2 for RDP and c = 1 for RP.
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And that’s important because . . .

Optimal rates are O
(

n−2α/(2α+1)
)

Classical wavelet-based estimators have the same properties of

near-optimality and adaptivity in the standard ‘signal plus

noise’ models.

Simplicity and performance of our method derive

simultaneously from use of piecewise polynomial system with

same approximation theoretic properties as orthonormal

wavelet systems.

Competing methods fail to achieve either or both.
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Simulation

Simulated ‘smooth’ and ‘burst-like’ functions, using ‘medium’

SNR, for each of Poisson and binomial models.

M = 100 trials for each case.

Signals of length n = 256

Compared RDP and RP methods to methods of

Antoniadis and Sapatinas (AS)

Donoho (D)

Sardy, Antoniadis, and Tseng (AST)
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Simulation Results
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Another Look at GRBs (linear)
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Another Look at GRBs (quadratic)
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Extensions

Deconvolution: EMS or EM-MAP straightforward.

Images: ‘Platelets’ of Willett & Nowak.

Variable Degree: Easy (in practice; theory hard)

Beyond GLMs:

Multiscale, multigranular image segmentation.

(Kolaczyk, Ju, and Gopal)

Segmentation of binary genomic signals (?)

(joint work Kasif and Lee)
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Final Comments.

Assumption of GLMs only necessary for underlying risk

theory.

Can show wavelet-like risk properties for estimators because

1. general bound on Hellinger risk, due to extension of recent

work of Li and Barron;

2. piece-wise polynomials and orthonormal wavelet bases

have the same approximation properties.

Too much emphasis put on “smooth” estimators?

(If desired, discontinuities can be smoothed without loss of

properties using moment-interpolating techniques, like those of

Donoho et al.)
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Final Comments (cont.)

Uncertainty bands would be nice!

Asymptotic confidence bands a possibility

(Likely hard . . . need to extend work of Genovese &

Wasserman, or Baraud.)

Bootstrapping possible (e.g., Young 2003)

Massage prior into proper form and use MCMC?
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