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I. Poisson likelihood

Consider N counts uniformly distributed over an 
interval !

Constant rate R = N/!

What is the probability of finding k counts in "t?
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I. Poisson likelihood
consider a randomly selected interval δt

# = "t/! $ R"t/N

finding k counts in that interval (given there are N total)
NCk ρk (1-ρ)N-k
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II. Bayesian Analysis
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II. Bayesian Analysis
a calculus for conditional probabilities
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II. Bayesian Analysis

Notation
p(..)
p(A) – probability of a proposition
p(AB) – probability of A and B
p(A|B) – probability of A given B
p(x)dx – probability density (without the dx)

All you need to remember
p(A or B) = p(A) + p(B) - p(A and B)
p(A and B) = p(A given B)·p(B)

a calculus for conditional probabilities
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II.a Bayes’ Theorem
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II.a Bayes’ Theorem
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II.a Bayes’ Theorem

model parameters Data

likelihood

prior

normalization
posterior probability
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II.b Priors

“Extraordinary claims require extraordinary evidence.”

- Carl Sagan
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II.b Priors

“Extraordinary claims require extraordinary evidence.”

- Carl Sagan

Why?
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II.b Priors

“Extraordinary claims require extraordinary evidence.”

- Carl Sagan

Why?

Because priors.
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Unfairly maligned as “subjective”, but actually a mechanism 
to explicitly encode your assumptions

When your data are weak, your prior beliefs don’t change; 
when your data are strong, your prior beliefs don’t matter.

You update your prior belief with new data, using Bayes’ 
Theorem.  Lets you daisy-chain analyses.

When your prior is informative, takes more data to make a 
large change.

Technically, the biggest difference between likelihood 
analysis and Bayesian analysis: converts p(D|θ) to p(θ|D)

II.b Priors
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Highly flexible distribution, defined on non-negative reals, 
[0,∞)

Conjugate prior to the Poisson distribution

γ(x;α,β) = xα-1 e-βx · βα/ Γ(α)
α = mean2/variance, β = mean/variance

As α→1,β→0, approaches a flat, non-informative prior

For non-trivial α,β, acts as an informative prior where you 
expect to observe α counts in β “exposure”

II.b Example: γ-Priors
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II.b Example: γ-Priors

γ(x;α,β) = xα-1 e-βx · βα/ Γ(α)
mean=α/β     variance=α/β2
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II.c Confidence Ranges
The uncertainty in a parameter is defined 
by the width of its probability distribution.
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II.c Confidence Ranges

Frequentist confidence interval:
Intervals computed at some significance p will contain the true 
value a fraction p of the times the experiment is repeated 

Bayesian credible range:
An interval at significance p will contain the true value of the 
parameter with probability p

The uncertainty in a parameter is defined 
by the width of its probability distribution.
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II.c.1 Credible Ranges

Not unique!

Set bounds on parameters

many types: Equal-tail, Highest Posterior-density, Gaussian-
equivalent σ, mode-outward, etc.
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II.c.1 Credible Ranges

Not unique!

Set bounds on parameters

many types: Equal-tail, Highest Posterior-density, Gaussian-
equivalent σ, mode-outward, etc.

Equal-tail is transformation invariant

HPD guaranteed to include mode; also smallest

Using Gaussian-equivalent ±σ is often a very bad idea
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II.c.2 Confidence Interval

Invert a hypothesis test: ask what is the likelihood of 
the data for different possible parameter values, and 
define a confidence region at level 1-γ as that set of 
parameters which are not rejected at significance γ.
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II.c.2 Confidence Interval
Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and 
define a confidence region at level 1-γ as that set of parameters which are not rejected at significance γ.

e.g., Poisson when n counts are observed:

upper bound, s=su such that 

1-γ = p(k≤n; s) = ∑k=0..n sk e-s / Γ(k+1) 

lower bound, s=sl such that 

1-γ = p(k>n; s) = 1 - ∑k=0..n-1 sk e-s / Γ(k+1)
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II.c.2 Confidence Interval

e.g., Poisson (n counts) with background (b, known)

upper bound, find s=su (for given b) such that 

1-γ = p(k≤n; s,b) = ∑k=0..n (s+b)k e-(s+b) / Γ(k+1) 

lower bound, find s=sl (for given b) such that 

1-γ = p(k>n; s,b) = 1 - ∑k=0..n-1 (s+b)k e-(s+b) / Γ(k+1)

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and 
define a confidence region at level 1-γ as that set of parameters which are not rejected at significance γ.
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Confidence intervals for given background (λB) and when different counts (nS) are observed.  Width 
of boxes are 95% intervals.  Height of boxes are p(nS|λSλB).  Dashed vertical line is true value of λS.
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II.c.3 Feldman-Cousins Confidence Interval

But: sometimes intervals can be empty (e.g., if n « b)

invert the ratio of likelihoods,

l(s) = L(n|s,b) / L(n|ŝ,b)

unique, unified intervals where the lower bound automatically 
drops to 0 for small n – no need to select between one-sided 
and two-sided intervals

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and 
define a confidence region at level 1-γ as that set of parameters which are not rejected at significance γ.
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III. Aperture Photometry
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III. Aperture Photometry
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III. Aperture Photometry
Given measured counts

C      B

Infer expected counts
!S , !B

C ∼ Pois(!S + !B)
B ∼ Pois( r !B )
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III. Aperture Photometry

C ∼ Pois(θS + θB)
B ∼ Pois( r θB )

γ(x;α,β) = xα-1 e-βx · βα/ Γ(α)
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III. Aperture Photometry
 p(θS) = θSαS-1 e–βS θS βSαS / Γ(αS)

 p(θB) = θBαB-1 e–βB θB βBαB / Γ(αB)

C ∼ Pois(θS + θB)
B ∼ Pois( r θB )

γ(x;α,β) = xα-1 e-βx · βα/ Γ(α)
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III. Aperture Photometry

p(θSθB|C,B) ∝ p(C,B|θBθS) p(θS) p(θB)
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III. Aperture Photometry
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IV. Upper Limits

A confidence interval or a credible range gives a range 
of values that a parameter can have for a specified 
significance.

The interval has two ends.  A lower bound, and an 
upper bound.  The true value is likely higher than the 
lower bound.  And lower than the upper bound.

Why is this not an upper limit?
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IV. Upper Limit

The largest intensity a source can have without being 
detected.

The smallest intensity a source should have to be 
detected.
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IV. Upper Limit

We define an upper limit in the context of detection

Something is detected when some measurable statistic that is 
a function of the observed data exceeds a pre-set threshold

e.g., test statistic S≡nS and threshold S*≡5 counts.  If more 
than 5 counts are seen, claim detection.  If fewer are seen, the 
source must be less bright than some value, aka Upper Limit

Need both Type I and Type II errors to define Upper Limits
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IV. Upper Limit

Suppose the threshold S* is defined by a false positive 
probability of α (e.g., the probability that a background 
fluctuation results in test statistic value S>S*)

A source with intensity θS will produce a signal that falls below 
the threshold S* with false negative probability 1-β

U(α,β) is the upper limit on θS such that

Pr(S>S*(α)|θS,θB) ≥ β
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Upper limits for different choices of α, S*, and βmin, for a background of 5 counts in 10x source 
area.  Curves are for S*=5,α=0.1 (solid), S*=6,α=0.05 (dashed), S*=8,α=0.01 (dash-dotted).  
Intercepts are for βmin=0.5 (top), 0.9 (middle), 0.95 (bottom).
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IV. Upper Limit – Properties

Depends on the detection process (wavdetect will 
produce different upper limits than celldetect)

Does not depend on the number of counts in source 
region

Does depend on the background and exposure
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IV. Upper Limit – Recipe
1. Define a test statistic S for measuring the strength of a source 

signal

2. Set the max probability of a false detection, α (e.g., α=0.003 
for a “3σ” detection) and compute the corresponding detection 
threshold S*(α)

3. Compute the probability of detection β(θS) for S*

4. Define the min probability of detection βmin (e.g., βmin=0.5)

5. Compute upper limit as value of θS such that β(θS) ≥ βmin.
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