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|. Poisson likelihood

Consider N counts uniformly distributed over an
interval ©

Constant rate R = N/t

What is the probability of finding k counts in 6t7
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|. Poisson likelihood

consider a randomly selected interval ot
0= 0t/T = Rot/N
finding & counts in that interval (given there are N total)

NCi p* (1p)Nh
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|. Poisson likelihood

consider a randomly selected interval ot
0= 0t/T = Rot/N
finding & counts in that interval (given there are N total)

NCi p* (1p)Nh
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|. Poisson likelihood

finding k counts in that interval (given there are N total)
Y pt (Ip)t

R 6t)" Rt

(ki oty = 50
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|. Poisson likelihood

finding k counts in that interval (given there are N total)
Y pt (Ip)t

NE - (REENS (0 RotN
(N-k)k! \ N N
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(N = k)INk K N N
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p(k|R6t) = |
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[. Bayesian Analysis

a calculus for conditional probabillities




[. Bayesian Analysis

a calculus for conditional probabillities

Notation

= p()

x p(A) — probability of a proposition

» p(AB)— probability of Aand B

x p(A|B)— probability ot A given B

= p(x)dx — probability density (without the dx)

All you need to remember
x p(AorB)=p(A)+pB)-plA and B)
» (A and B) = p(A given B):p(B)
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l.a Bayes’ Theorem

p(AB) = p(A|B) - p(B) = p(B|4) - p(A)
p(BlA) - p(A)

p(A|B) =

p(B)




l.a Bayes’ Theorem




l.a Bayes’ Theorem




1.0 Priors

“Extraordinary claims require extraordinary evidence.”

- Carl Sagan
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1.0 Priors

“Extraordinary claims require extraordmary: evidence.”

- Carl Sagan
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1.0 Priors

“Extraordinary claims require extraordmary: evidence.”

- Carl Sagan

Why?
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1.0 Priors

“Extraordinary claims require extraordmary: evidence.”

- Carl Sagan

Why?

Because priors.
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_ p(DIf) - p(6)

1.0 Priors

x Unfairly maligned as “subjective”, but actually a mechanism
to explicitly encode your assumptions

x \When your data are weak, your prior beliefs don’t change;
when your data are strong, your prior beliefs don’t matter.

x You update your prior belief with - new data, using Bayes’
Theorem. Lets you daisy-chain analyses.

x \When your prior is informative, takes more data to make a
large change.

x [echnically, the biggest difference between likelihood
analysis and Bayesian analysis: converts p(D|6) to p(6|D)
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I.b Example: y-Priors

x Highly flexible distribution, defined on-non-negative reals,
[0,0)

x (Conjugate prior to the Poisson distribution
vix:oPB) = x%Lebr - B (o)
® (o = mean?/variance, [ = mean/variance

x As o—1,/—0, approaches a flat, non-informative prior

» For non-trivial o, 5, acts as an informative prior where you
expect to observe a counts in f “exposure”
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I.b Example: y-Priors
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I.c Confidence Ranges

The uncertainty 1n a parameter is defined
by the width of its probability distribution.
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I.c Confidence Ranges

The uncertainty 1n a parameter is defined
by the width of its probability distribution.

x Frequentist confidence interval:

= |ntervals computed at some significance p will contain the true
value a fraction p of the times the experiment is repeated

x Bayesian credible range:

x An interval at significance p will contain the true value of the
parameter with probability p
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I.c.1 Credible Ranges

= Not unique!
x Set bounds on parameters

x many types: Equal-tail,; Highest Posterior-density, Gaussian-
equivalent o, mode-outward, etc.
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I.c.1 Credible Ranges

= Not unique!
x Set bounds on parameters

x many types: Equal-tail,; Highest Posterior-density, Gaussian-
equivalent o, mode-outward, etc.

» Equal-tail'is transformation invariant

» HPD guaranteed to include mode; also smallest

x Using Gaussian-equivalent £o is often a very bad idea

Friday, January 31, 14




l.c.2 Confidence Interval

Invert a hypothesis test: ask what is the likell
the data for different possible parameter valu

NOod oOf
es, and

define a confidence region at level 1-y as tha

- set of

parameters which are not rejected at significance y.
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l.c.2 Confidence Interval

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and
define a confidence region at level /-y as that set of parameters which are not rejected at significance .

® e.g., Poisson when n counts are observed:

» upper bound, s=s, such that
L=y = plksn;s) = Yi=o.ns e/ T(k+t1)
x lower bound, s=s; such that

l-y=pltk>n;s) =1-Yion15es/T(ktl)
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l.c.2 Confidence Interval

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and
define a confidence region at level /-y as that set of parameters which are not rejected at significance .

® e.9., Poisson (n counts) with-background (b, known)

» upper bound, find s=s; (for given b) such that
1=y = plk<n;s;b) = >k=0.n (sTb)c e/ [(k+1)
» lower bound, find s=s; (for given b) such that

[y =plk>n; s,b) = 1= 5=0.n-1 (D) 670/ I'(k+1)
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Confidence intervals for given background (As) and when different counts (ns) are observed. Width
of boxes are 95% intervals. Height of boxes are p(ns|Asis). Dashed vertical line is true value of As.
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l.c.3 Feldman-Cousins Confidence Interval

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and
define a confidence region at level /-y as that set of parameters which are not rejected at significance .

x But: sometimes intervals can be empty.(€.9., if n « b)
® nvert the ratio of likelihoods,
l(s) = Ln|s,b)/Ln|s;b)

® Unigue, unified intervals where the lower bound automatically
drops to 0 for small z — no need to select between one-sided
and two-sided Intervals
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. Aperture Photometry
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. Given measured counts
“‘ . ' . . | C . . | | . .. |

Infer expected Counts

:, ' : 68 - ., . |

Friday, January 31, 14



----------------------------------------------------------------------------------

% “ A \
[ n i . 1
 (R&* gt p(D|0) - p(6) i S | C ~ Pois(0s + 0p)

----------------------------------------------------------------------------------

. Aperture Photometry
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----------------------------------------------------------------------------------

E ~ (R&)* _gs E it p(D|0) - p(0) E . i | C ~ Pozs((95+(93)
sl = , p(9|D) (D) :y(x,a,/f) Hd /f/r(a), B Pois(10s)

----------------------------------------------------------------------------------

. Aperture Photometry

p(Os) = 057 LePs s %/ Tas)
p(Op) = Op%sl e Ps Vs Bp% /T (0p)
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----------------------------------------------------------------------------------

_ (Rd) R6 E P(D|9)P(9) E $ | C ~ POlS(@S‘F(gB)
p(k|Rot) = “— e , p(9|D) (D) :y(xa/f) xelied ’“”“):B = Pois(+05) !

----------------------------------------------------------------------------------

. Aperture Photometry

p(0s) = 0% e s U5 B/ T (as)

p(O) = O e 7.0 g% /T {ap)

D(Bl03) = (r05)8 ¢ / T(B+1)
p(Cl0s0p) = (Os+0p)c e Vst /) T(C+1)
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----------------------------------------------------------------------------------

_ (Rd) R6 E P(D|9)P(9) E $ | C ~ POZS(QS‘F@B)
p(k|Rot) = “— e , p(9|D) (D) :y(xa/f) xelied ’“”“):B = Pois(+05) !

----------------------------------------------------------------------------------

. Aperture Photometry

p(0s) = 0% e s U5 B/ T (as)

p(O) = O e 7.0 g% /T {ap)

D(Bl03) = (r05)8 ¢ / T(B+1)
p(Cl0s0p) = (Os+0p)c e Vst /) T(C+1)

p(0s08|C,B) X p(C,B|0zbs) p(Os) p(0s)
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----------------------------------------------------------------------------------

D|0) - p(6) = | C ~ Pois(0s + @B)

Ey(xaﬂ) i ’B/F(a)lB ~ Pois(r0p)

----------------------------------------------------------------------------------

1E Aperture Photometry

p(0s) = 0% e s U5 B/ T (as)

p(O) = O e 7.0 g% /T {ap)

D(Bl03) = (r05)8 ¢ / T(B+1)
p(Cl0s0p) = (Os+0p)c e Vst /) T(C+1)

p(0s08|C,B) X p(C,B|0zbs) p(Os) p(0s)
p(0s0s|C,B) < p(C\086s) p(B|0s) p(6s) p(6s)
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----------------------------------------------------------------------------------

D|0) - p(6) = | C ~ Pois(0s + @B)

Ey(xaﬂ) i ’B/F(a)lB ~ Pois(r0p)

----------------------------------------------------------------------------------

1E Aperture Photometry

p(0s) = 0% e s U5 B/ T (as)

p(O) = O e 7.0 g% /T {ap)

D(Bl03) = (r05)8 ¢ / T(B+1)
p(Cl0s0p) = (Os+0p)c e Vst /) T(C+1)

p(0s08|C,B) X p(C,B|0zbs) p(Os) p(0s)
p(0s0s|C,B) < p(C\086s) p(B|0s) p(6s) p(6s)
p(0s|C.B) % | dbs p(C\|650s) p(B|6s) p(0s) p(0s)
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. Aperture Photometry

1
(C DB+ 1)

p(6s|C, B) dbs =dbs -

C
X Z(TB+193ke_93
k=0
e+ +B—-k+1)

Tt DIC —k+ D1 1 o8~




POISSON (source) GAUSSIAN (src—bkq)
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V. Upper Limits

x A confidence interval or a credible range gives a range

of values that a parameter can have for a specified
significance.

» [he interval has two ends. A lower bound, and an

upper bound. The true value Is likely higher than the
lower bound. -And lower than the upper bound.

x \Why is this nhot an upper imit’?
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V. Upper Limit

The largest intensity a source can have without being
detected.

The smallest intensity:-a source should have to be
detected.
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V. Upper Limit

x \\Ve define an upper limit in the context of detection

®x Something Is detected when some measurable statistic that is
a function of the observed data exceeds a pre-set threshold

x €.0., test statistic $=ns and threshold $*=5 counts. If more

than 5 counts are seen, claim detection. If fewer are seen, the
source must be less bright than some value, aka Upper Limit

x Need both Type I and Type I errors to define Upper Limits
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V. Upper Limit

x SUppose the threshold 8§* Is defined by a false positive

probability of a (e.9., the probability- that a background
fluctuation results in test statistic value $>87)

® A source with intensity s will-produce a signhal that falls below
the threshold §* with false negative probabillity 7-f

x U(o,p) s the upper limit-on s such that
Pr(8>8'(a)|0s,08) = p
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Upper limits for different choices of a, 8*, and i, for a background of 5 counts in 10x source
area. Curves are for 8*=5,a=0.1 (solid), 8*=6,a=0.05 (dashed), 8*=8,a=0.01 (dash-dotted).
Intercepts are for fnin=0.5 (top), 0.9 (middle), 0.95 (bottom).
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V. Upper Limit — Properties

x Depends on the detection process (wavdetect will
oroduce different upper:limits than celldetect)

x [Does not depend on the numiber of counts In source
region

x [oes depend on the background and exposure
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V. Upper Limit — Recipe

1. Define a test statistic § for measuring the strength of a source
signal

2. Set the max probability:of a false detection, a (e.9., a=0.003
for a “3o” detection) and compute the corresponding detection

threshold S*(a)
3. Compute the probability of detection f(@s) for §°

4. Define the min probability of detection Bumin (€.9., Bmin=0.5)
5. Compute upper limit as value of s such that B(@s) > Buin.
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Further Reading

» Loredo 1990, Maximum Entropy and Bayesian Methods, Kluwer, Dordrecht,
81-142 :

http:/ /bayes.wustl.edu/ gregory/articles.pdf

» Isobe, Feigelson, & Nelson, 1986, ApJ 306,490 :

» Feldman & Cousins, 1998, Phys. Rev: D, 57, 3873 :

» van Dyk, Connors, Kashyap, & Siemiginowska, 2001, Ap]J 548, 224 :
» Protassov, van Dyk, Connors, Kashyap, & Siemiginowska, 2002, Ap]J, 571, 545 :

« Park, Kashyap, Siemiginowska, van Dyk, Zezas, Heinke, & Wargelin, 2006, Ap],
652, 610 :

» Kashyap, van Dyk, Connors, Freeman, Siemiginowska, Xu, & Zezas, 2010, Ap]J,
719,900 :

» Primini & Kashyap, 2014, circulated :
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