

### Dan Foreman-Mackey

Flatiron Institute // dfm.io // github.com/dfm // @exoplaneteer

### Resources

- gaussianprocess.org/gpml
- b george.readthedocs.io
- dfm.io/gp.js
- d github.com/dfm/gp
- e foreman.mackey@gmail.com

1

## Gaussian Processes











alternative approach to regression problems. This post ...

#### 1.7. Gaussian Processes — scikit-learn 0.19.1 documentation

scikit-learn.org/stable/modules/gaussian\_process.html ▼

Gaussian Processes (GP) are a generic supervised learning method designed to solve regression and probabilistic classification problems. The advantages of Gaussian processes are: The prediction interpolates the observations (at least for regular kernels).

# Today

- 1 Why?
- 2 What?
- 3 How?

2

# The importance of correlated noise

a motivating example















## The true covariance matrix



$$\log p(\{y_n\} \mid \theta) = -\frac{1}{2} \sum_{n=1}^{N} \left[ \frac{[y_n - m_n]^2}{\sigma_n^2} + \log(2\pi \sigma_n^2) \right]$$

$$\log p(\{y_n\} \mid \theta) = -\frac{1}{2} \mathbf{r}^{\mathrm{T}} C^{-1} \mathbf{r} - \frac{1}{2} \log \det C - \frac{N}{2} \log(2\pi)$$

if..

$$m{r} = \left( egin{array}{c} y_1 - m_1 \ dots \ y_N - m_N \end{array} 
ight) \quad ext{and} \quad C = \left( egin{array}{ccc} \sigma_1^{\ 2} & & 0 \ & \ddots & \ 0 & & \sigma_N^{\ 2} \end{array} 
ight)$$

$$\log p(\{y_n\} \mid \theta) = -\frac{1}{2} \sum_{n=1}^{N} \left[ \frac{[y_n - m_n]^2}{\sigma_n^2} + \log(2\pi\sigma_n^2) \right]$$

$$\log p(\{y_n\} \mid \theta) = -\frac{1}{2} \mathbf{r}^{\mathrm{T}} C^{-1} \mathbf{r} - \frac{1}{2} \log \det C - \frac{N}{2} \log(2\pi)$$

if...

$$m{r} = \left( egin{array}{c} y_1 - m_1 \ dots \ y_N - m_N \end{array} 
ight) \quad ext{and} \quad C = \left( egin{array}{ccc} \sigma_1^{\ 2} & & 0 \ & \ddots & \ 0 & & \sigma_N^{\ 2} \end{array} 
ight)$$

$$\log p(\{y_n\} \mid \theta) = -\frac{1}{2} \sum_{n=1}^{N} \left[ \frac{[y_n - m_n]^2}{\sigma_n^2} + \log(2\pi\sigma_n^2) \right]$$

$$\log p(\{y_n\} \mid \theta) = -\frac{1}{2} \mathbf{r}^{\mathrm{T}} C^{-1} \mathbf{r} - \frac{1}{2} \log \det C - \frac{N}{2} \log(2\pi)$$

if...

$$m{r} = \left( egin{array}{c} y_1 - m_1 \ dots \ y_N - m_N \end{array} 
ight) \quad ext{and} \quad C = \left( egin{array}{c} & & & \ & & \ & & \ & & \ & & \ \end{array} 
ight)$$







Excellent.

But: we don't know



3

The math of Gaussian processes



Rasmussen & Williams gaussianprocess.org/gpml





This is the equation for an N-dimensional Gaussian\*

\* hint: this is where the name comes from...



This is the equation for an N-dimensional Gaussian\*

\* hint: this is where the name comes from...



 $[K_{\alpha}]_{nm} =$ 

$$[K_{\alpha}]_{nm} = \sigma_n^2 \delta_{nm}$$

$$[K_{\alpha}]_{nm} = \sigma_n^2 \delta_{nm} + k_{\alpha}(\boldsymbol{x}_n, \, \boldsymbol{x}_m)$$

$$[K_{\alpha}]_{nm} = \sigma_n^2 \delta_{nm} + k_{\alpha}(\boldsymbol{x}_n, \boldsymbol{x}_m)$$

the "kernel" function

for example\*:  $k_{\alpha}(\boldsymbol{x}_{n}, \, \boldsymbol{x}_{m}) = a^{2} \, \exp\left(-\frac{(x_{n} - x_{m})^{2}}{2\,\tau^{2}}\right)$ 

















$$\log p(\{y_n\} | \theta, \alpha) = -\frac{1}{2} \mathbf{r}_{\theta}^{\mathrm{T}} K_{\alpha}^{-1} \mathbf{r}_{\theta} - \frac{1}{2} \log \det K_{\alpha} - \frac{N}{2} \log(2\pi)$$

a drop-in replacement for  $\chi^2$ 

### A fully functional GP implementation in Python

```
import numpy as np

def gp_log_like(params, x, y, yerr):
    K = params[0]**2 * np.exp(-0.5*(x[:, None]-x[None, :])**2/params[1]**2)
    K[np.diag_indices_from(K)] += yerr**2
    ll = np.dot(y, np.linalg.solve(K, y))
    ll += np.linalg.slogdet(K)[1]
    return -0.5*ll
```

+ scipy.optimize or emcee

# Using GPs in Python

- 1 george
- 2 scikit-learn
- GPy
- 4 PyMC3
- 5 etc.

# Using GPs in Python

- 1 george
- 2 scikit-learn
- 3 GPy
- 4 PyMC3
- 5 etc.

4

Why? The problems with Gaussian processes

 $\log p(\{y_n\} | \theta, \alpha) = -\frac{1}{2} \mathbf{r}_{\theta}^{\mathrm{T}} K_{\alpha}^{-1} \mathbf{r}_{\theta} - \frac{1}{2} \log \det K_{\alpha} - \frac{N}{2} \log(2\pi)$ 

a Choosing the kernel

$$\log p(\lbrace y_n \rbrace \mid \theta, \alpha) = -\frac{1}{2} \boldsymbol{r}_{\theta}^{\mathrm{T}} \boldsymbol{K}_{\alpha}^{-1} \boldsymbol{r}_{\theta} - \frac{1}{2} \log \det \boldsymbol{K}_{\alpha} - \frac{N}{2} \log(2\pi)$$

a Choosing the kernel

$$\log p(\lbrace y_n \rbrace \mid \theta, \alpha) = -\frac{1}{2} \boldsymbol{r}_{\theta}^{\mathrm{T}} \boldsymbol{K}_{\alpha}^{-1} \boldsymbol{r}_{\theta} - \frac{1}{2} \log \det \boldsymbol{K}_{\alpha} - \frac{N}{2} \log(2\pi)$$

**b** Scaling to large datasets

**Scaling to large datasets** 



- a Approximation
- **Structure**

## Approximation methods

- Subsample
- Sparsity
- Low-rank approximations (see HODLR solver in george)
- (iv) etc.

#### Structured models

- Kronecker products
- Evenly sampled data
- Semi-separable kernels (see celerite)
- (iv) etc.

### celerite.readthedocs.io



5

Recap

if there is **correlated noise** (instrumental or astrophysical) in your data\*, try a **Gaussian process**:

$$\log p(\{y_n\} | \theta, \alpha) = -\frac{1}{2} \mathbf{r}_{\theta}^{\mathrm{T}} K_{\alpha}^{-1} \mathbf{r}_{\theta} - \frac{1}{2} \log \det K_{\alpha} - \frac{N}{2} \log(2\pi)$$

to do this in **Python**, try:

## import george

george.readthedocs.io

#### Resources

- gaussianprocess.org/gpml
- b george.readthedocs.io
- dfm.io/gp.js
- d github.com/dfm/gp
- e foreman.mackey@gmail.com



#### Dan Foreman-Mackey

Flatiron Institute // dfm.io // github.com/dfm // @exoplaneteer