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Gaussian Processes
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In probability theory and statistics, a Gaussian process is
a particular kind of statistical model where observations
occur in a continuous domain, e.g. time or space. In a
Gaussian process, every point in some continuous input
space is associated with a normally distributed random
variable.
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interpolates the observations (at least for regular kermnels).
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Why?
What?

How?
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The importance of correlated noise
a motivating example



0.5-

0.0-

—0.5-

—1.0-

gt
* * * ““““““““““
gt i
“““““““““ p
I* H | | |
—5.0 —2.5 0.0 2.5 5.0




: H *H } Y
TRt
T *
O.O_ * * “““““““
ey
_05_ “““““““““ ** ++
N
_1-0,* ! I I I I
~50 =25 0.0 s J



0.5-
0.0-

.
.
.
.
.
.
.
.
.
.
.
— ‘
— .
“
u .
| 3

—1.0-

)
“

assuming independent noise

_ D5

0.0

X

05

5.0



* H assuming independent noise
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What happened??
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The true covariance matrix

datapointm ——

«—— datapoint n
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log p({yn } | 0) % >

n=1 - -

1 1 N
logp({ynt|0) = —5 r-Ctr 5 logdet C 5 log(2 )
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* Note: this part has everything to do with Gaussian processes
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Excellent.



But: we don't know

*we need to fit for it.
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The math of Gaussian processes



Carl Edward Rasmussen and Christopher K. |. Williams

Rasmussen & Williams
gaussianprocess.org/gpml
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parameters of covariance
mean model maitrix
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1 N
logp({ynt |0, a) = —5 rot Ko ' ry — 5 log det K, > log(2 )

parameters of residual
covariance model vector

This is the equation for an N-dimensional Gaussian™



generative covariance
model matrix

| |

Yy ~ N(m97 Ka)

mean
model

This is the equation for an N-dimensional Gaussian™
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nrTrrn

— Unz 5nm 1 ka(mna mm)

the "kernel” function

ko(Zn, Tm)

= a? exp

for example™:

(

272

(Tn — fL‘m)2>

* Note: this part has nothing to do with the name Gaussian process
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1 1 N
logp({ynt |0, a) = —5 rot Ko ' ry — 5 log det K, > log(2 )

a drop-in replacement for x-



A falty functional GP implementation in Python

import numpy as np

def gp_log_Llike(params, x, y, yerr):
K = params[0]**2 * np.exp(-0.5%(x[:, None]-x[None, :])**2/params[1]**2)
K[np.diag_indices_from(K)] += yerr**2
Ll = np.dot(y, np.linalg.solve(K, y))
Ll += np.linalg.slogdet(K)[1]
return -0.5*11

+ Scipy.optimize or emcee



Using GPs in Python

george
scikit-learn
GPy
PyMC3

etc.



Using GPs in Python

george
scikit-learn
GPy
PyMC3

etc.
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Why? The problems with Gaussian processes
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Choosing the kernel

1 1 N
logp({ynt |0, a) = —5 rol Ko ' 1rp — 5 log det K, > log(2 )




Choosing the kernel

1 1 N
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Scaling to large datasets



Scaling to large datasets
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Approximation

Structure



Approximation methods

Subsample

Sparsity

Low-rank approximations
(see HODLR solver in george)

etc.



Structured models

Kronecker products

Evenly sampled data

Semi-separable kernels
(see celerite)

etc.



celerite.readthedocs.Io
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Recap



if there is correlated noise (instrumental or astrophysical)
in your data*, try a Gaussian process:

1 1 N
logp({ynt |0, a) = —5 rot Ko ' ry — 5 log det K, 5 log(2 )

to do this in Python, try:
umport george

george.readthedocs.io

*Hint: there is!
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