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ABSTRACT

A common problem in astrophysics is determining how bright a source could be and still not be detected in
an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated
statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has
never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe
the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion
of false positives (background fluctuations that are claimed as detections, or Type I error), and we invoke the
complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical
power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity
that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities
of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified
Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit
is a characteristic of the detection procedure rather than the strength of any particular source. It should not be
confused with confidence intervals or other estimates of source intensity. This is particularly important given the
large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples,
the differences between these upper limits and confidence bounds. Both measures are useful quantities that should
be reported in order to extract the most science from catalogs, though they answer different statistical questions:
an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection
process. We provide a recipe for computing upper limits that applies to all detection algorithms.

Key words: methods: data analysis – methods: statistical

1. INTRODUCTION

When a known or suspected source remains undetected at
a prescribed statistical significance during an observation, it
is customary to report the upper limit on its intensity. This
limit is usually taken to mean the largest intrinsic intensity
that a nominal source can have with an appreciable chance
of going undetected. Or equivalently, it is the smallest intrinsic
intensity the source could have before its detection probability
falls below a certain threshold. We emphasize that the upper
limit is not meant to be an estimate or even a bound on
the intensity of the source, but rather it is a quantification
of the power of the detection procedure to detect weak sources.
Thus, it is a measure that characterizes the detection process.
The endpoints of the confidence interval, by contrast, provide
ranges of possible values for the source intensity rather than
quantify the sensitivity of the procedure. While the concept of
upper limits has generally been well understood by astronomers
as a form of censoring (Isobe et al. 1986) with an intrinsic
connection to the detectability of a source (Avni et al. 1980),
there has not been a statistically meaningful description that
encapsulates its reliance on detectability as well as statistical
significance.

Moreover, while the term “upper limit” has been traditionally
used in this manner, it has also been used in cases where a
formal detection process is not applied (e.g., when a source
is known to exist at a given location because of a detection

made in some other wavelength). In such cases, the upper edge
of the confidence interval is derived and noted as the upper
limit, regardless of the detectability of that source. In order
to prevent confusion, we shall henceforth refer to the upper
edge of a confidence interval as the “upper bound.” Despite
the intrinsic differences, numerous studies have described the
computation of the upper bound as a proxy for the upper limit
in increasingly sophisticated ways. The parameter confidence
interval is statistically well understood and is in common use.
Kraft et al. (1991) and Marshall (1992), for example, applied
Poisson Bayesian-likelihood analysis to X-ray counts data to
determine the credible range and thus set an upper bound on the
source intensity. Feldman & Cousins (1998) recognized that the
classical confidence interval at a given significance is not unique,
and devised a scheme to determine intervals by comparing
the likelihoods of obtaining the observed number of counts
with the maximum likelihood estimate of the intensity and
a nominal intensity; this procedure produces unique intervals
where the lower edge overlaps with zero when there are very
few counts, and the upper edge stands as a proxy for an
upper limit. Variations in the background were incorporated
via a sophisticated Bayesian analysis by Weisskopf et al.
(2007).

The similarity of nomenclature between upper limits and
upper bounds has led to considerable confusion in the literature
on the nature of upper limits, how to compute them, and what
type of data to use to do so. Many techniques have been used
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to determine upper limits. It is not feasible to list all of these,6

but for the sake of definiteness, we list a few methods culled
from the literature: the techniques range from using the root-
mean-square deviations in the background to set the upper limit
(Gilman et al. 1986; Ayres 1999, 2004; Perez-Torres et al.
2009), adopting the source detection threshold as the upper
limit (Damiani et al. 1997; Erdeve et al. 2009; Rudnick &
Lemmerman 2009), computing the flux required to change a
fit statistic value by a significant amount (Loewenstein et al.
2009), computing the p-value for the significance of a putative
detection in the presence of background (Pease et al. 2006;
Carrera et al. 2007), and identifying the upper limit with the
parameter confidence bound (Schlegel & Petre 1993; Hughes
et al. 2007). Here, we seek to clarify these historically often
used terms in a statistically rigorous way.

Our goal here is to illustrate the difference between upper
limits and upper bounds, and to develop a self-consistent de-
scription for the former that can be used with all extant detec-
tion techniques. Bounds and limits describe answers to different
statistical questions, and usually both should be reported in de-
tection problems. We seek to clarify their respective usage here.
We set out the requisite definitions and statistical foundations
in Section 2. In Section 3, we discuss the critical role played by
the detection threshold in the definition of an upper limit and
compare upper limits with upper bounds of confidence intervals.
In Sections 2 and 3, we use a simple Poisson detection problem
as a running example to illustrate our methods. In Section 4, we
apply them to a signal-to-noise detection problem. Finally, we
summarize in Section 5.

2. STATISTICAL BACKGROUND

Here we begin by describing our notation, and then discuss
the nuances of the familiar concepts of confidence intervals,
hypothesis testing, and statistical power. A glossary of the
notation used is given in Table 1.

2.1. Description of the Problem

Our study is carried out in the context of background-
contaminated detection of point sources in photon counting de-
tectors, as in X-ray astronomical data. We set up the problem
for the case of uncomplicated source detection (i.e., ignoring
source confusion, intrinsic background variations, and instru-
mental effects such as vignetting, detector efficiency, PSF struc-
ture, bad pixels, etc). However, the methodology we develop is
sufficiently general to apply in complex situations.

There is an important, subtle, and often overlooked distinction
between an upper limit and the upper bound of a confidence
interval, and the primary goal of this paper is to illuminate this
difference. The confidence interval is the result of inference
on the source intensity, while the upper limit is a measure
of the power of the detection process. We can precisely state
this difference in the context of an example. Suppose that
we have a typical case of a source detection problem, where
counts are collected in a region containing a putative or possible
source and are compared with counts from a source-free region

6 An ADS query on astronomy abstracts, within the past year (excluding
arXiv), containing “upper limit,” yields roughly two papers per day (759). A
quick survey shows this term used in several disparate ways: some are upper
bounds of confidence regions, often convolved with physics information to get
the upper bound of a confidence region on (say) mass; others are clearly the
theoretical power of a suggested test; yet others use “upper limits” from
previous work to obtain, e.g., line slopes.

Table 1
Symbols and Notation

Symbol Description

nS Counts observed in source area
nB Counts observed in background area
λS Source intensity
λB Background intensity
ΛB Range in background intensity λB

τS Exposure time
τB Exposure time for the background
r Ratio of background to source area
S Statistic for hypothesis test

S�
Detection threshold value of statistic S

n�
S Detection threshold value of statistic nS

U Upper limit
α The maximum probability of false detection
β The probability of a detection
βmin The minimum probability of detection of a source with λS = U
Pr(.) Probability of
n ∼ f (.) Denoting that n is sampled from the distribution f (.)
Poisson(λ) Poisson distribution with intensity λ

N (μ, σ ) Gaussian (i.e., normal) distribution with mean μ and variance σ 2

that defines the background. If the source counts exceed the
threshold for detection, the source is considered to be detected.
This detection threshold is usually determined by limiting the
probability of a false detection. If the threshold were lower,
there would be more false detections. Given this setup, we might
ask how bright must a source be in order to ensure detection.
Although statistically there are no guarantees, the upper limit
is the minimum brightness that ensures a certain probability
of detection. Critically, this value can be computed before the
source counts are observed. It is based on two probabilities,
(1) the probability of a false detection which determines the
detection threshold and (2) the minimum probability that a
bright source is detected. Although the upper limit is primarily
of interest when the observed counts are less than the detection
threshold, it does not depend on the observed counts. This is in
sharp contrast to a confidence interval for the source intensity,
that is typically of the form “source intensity estimate plus or
minus an error bar,” where the estimate and error bars depend
directly on the observed source counts in the putative source
region. Of course, the functional form of the confidence interval
may be more complicated than in this example, especially in low
count settings, but any reasonable confidence interval depends
on the source counts, unlike upper limits. The fact that upper
limits do not depend on the source counts while confidence
intervals do should not be viewed as an advantage of one
quantity or the other. Rather it reflects their differing goals.
Upper limits quantify the power of the detection procedure
and confidence intervals describe likely values of the source
intensity. These distinctions are highlighted with illustrative
examples in Section 3.1.1.

To formalize discussion, suppose that a known source has
an intrinsic intensity in a given passband of λS and that the
background intensity under the source is λB . Further suppose
that the source is observed for a duration τS and that nS counts
are collected, and similarly, a separate measurement of the
background could be made over a duration τB and nB counts
are collected. If the background counts are collected in an area
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r times the source area,7 we can relate the observed counts to
the expected intensities,

nB |(λB, r, τB ) ∼ Poisson(rτBλB)

nS |(λS, λB, τS) ∼ Poisson
(
τS(λS + λB)

)
, (1)

in the background and source regions respectively, where nB and
nS are independent. For simplicity, we begin by assuming that
λB is known.

2.2. Confidence and Credible Intervals

Confidence intervals give a set of values for the source
intensity that are consistent with the observed data. They are
typically part of the inference problem for the source intensity.
The basic strategy is to compute an interval of parameter
values so that on repeated observations a certain proportion
of the intervals contain the true value of the parameter. It is
in this “repeated-observation” sense that a classical confidence
interval has a given probability of containing the true parameter.
Bayesian credible intervals have a more direct probabilistic
interpretation. They are computed by deriving the posterior
probability distribution of the source intensity parameter given
the observed counts and finding an interval with nominal
probability of containing the true rate (see, e.g., Loredo 1992;
van Dyk et al. 2001; Kashyap et al. 2008). In summary,
confidence intervals are frequentist in nature meaning that they
are interpreted in terms of repeated observations of the source.
Credible intervals, on the other hand, are Bayesian in nature
meaning that they represent an interval of a certain posterior (or
other Bayesian) probability.

2.2.1. Confidence Intervals

From a frequentist point of view randomness stems only
from data collection—it is the data, not the parameters that
are random. Often we use a 95% interval, but intervals may be
at any level and we more generally refer to an L% confidence
interval. Thus, the proper interpretation of a given interval is

L% of experiments (i.e., observations) with intervals com-
puted in this way will result in intervals that contain the
true value of the source intensity.

In frequentist terms, this means that in any given experiment
one cannot know whether the true source intensity is contained
in the interval but if the experiment is repeated a large number
of times, about L% of the resulting intervals will contain the true
value. Strictly speaking, the more colloquial understanding that
there is an L% chance that the “source intensity is contained in
the reported confidence interval,” is incorrect.

Put another way, a confidence interval for the source intensity
gives values of λS that are plausible given the observed counts.
Suppose that λB = 3 and that for each value of λS , we construct
an interval I(λS) of possible values of the source counts that
has at least an L% chance: Pr(nS ∈ I(λS)|λS, λB, τS) � L%.

7 For clarity, we assume that the expected intensities are in units of counts per
unit time and that the source and background counts are collected over
pre-specified areas in an image. However, our analysis is not restricted to this
scenario. The nominal background-to-source area ratio r could include
differences in exposure duration and instrument effective area. Furthermore,
the nominal exposure duration could also incorporate effective area, e.g., to
have units [photons count−1 cm2 s], which implies that the expected intensity
λS will have units [photons s−1 cm−2]. Regardless of the units of λS and λB ,
the likelihood is determined by the Poisson distribution on the expected and
observed counts as in Equation (1).

Once the source count is observed and assuming λB is known,
a confidence interval can be constructed as the set of values of
λS for which the observed count is contained in I(λS),

{λS : nS ∈ I(λS)} . (2)

In repeated observations, at least L% of intervals computed in
this way cover the true value of λS .

The frequency coverage of confidence intervals is illustrated
in Figure 1, where the confidence intervals of Garwood (1936)
for a Poisson mean are plotted as boxes of width equal to
the interval for various cases of observed counts (see van
Dyk’s discussion in Mandelkern 2002). For given values of
λS and λB , the probability of the possible values of the
observed counts can be computed using Equation (1); for each
of these possible values, there will be a different confidence
interval. Thus, the confidence intervals themselves have their
own probabilities, which are represented as the heights of
the boxes in Figure 1. Because these are 95% confidence
intervals, the cumulative heights of the boxes that contain the
true value of λS in their horizontal range must be at least 0.95.
It is common practice to only report confidence intervals for
detected sources so that only intervals corresponding to nS
above some threshold are reported. Unfortunately, this upsets
the probability that the interval contains λS upon repeated
observations. Standard confidence intervals are designed to
contain the true value of the parameter (say) 95% of time,
i.e., in 95% of data sets. If some of the confidence intervals
are taken away (i.e., are not reported because, e.g., the counts
are too small), there is no reason to expect that 95% of those
remaining will contain the true value of the parameter. This is
because instead of summing over all the values of nS to get
a probability that exceeds 95%, we are summing over only
those values that are greater than the detection threshold. This
results in a form of Eddington bias and is discussed in detail in
Section 3.4.

2.2.2. Credible Intervals

In a Bayesian setting, probability is used to quantify uncer-
tainty in knowledge and in this regard parameters are typically
viewed as random quantities. This distinction leads to a more
intuitive interpretation of the credible interval. A credible inter-
val at the L% level, for example, is any interval that contains
the true value of the parameter L% of the time according to
its posterior distribution. (See Park et al. 2008 for a discussion
on interval selection.) Thus, from a Bayesian perspective, it is
proper to say that there is an L% chance that the source intensity
is contained in the reported credible interval. The correspond-
ing credible intervals look similar to the confidence intervals in
Figure 1, at least in high count scenarios.8

So far we have considered a very simple problem with only
one unknown parameter, λS . The situation is more complicated
if there are unknown nuisance parameters, such as λB . In
this case, frequency based intervals typically are constructed
using asymptotic arguments and/or by conditioning on ancillary
statistics that yield a conditional sampling distribution that does
not depend on the nuisance parameter. Identifying ancillary
statistics can be a subtle task and the resulting intervals may not
be unique. Bayesian intervals, can be constructed using a simple

8 In small count scenarios, Bayesian credible intervals may not exhibit their
nominal frequency coverage. They do however have the proper Bayesian
posterior probability.
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Figure 1. Confidence intervals for λS , computed for cases with different source and background intensities. The true value of λS is shown as a vertical dashed line and
noted in the legend along with the true value of λB . We assume that λB is known exactly and adopt a nominal exposure τS = 1 and background scaling r = 10. Each
box corresponds to a different value of nS. The horizontal width of each box denotes the width of the 95% confidence interval and the height denotes the probability of
observing that many counts for a given λS . Top row: λS = 1 and for λB = 1, 3, 5 for the left, middle, and right columns, respectively. Middle row: as for the top row,
for λS = 3. Bottom row: as for the top row, for λS = 5. The figure illustrates that if the models are correctly specified, very short intervals should be rare. Bayesian
credible intervals (not shown) look similar, at least in high count scenarios.

and clear principle known as marginalization. For example, if λB

is unknown, the marginal posterior distribution of λS is simply

p(λS |nS, nB, τS, τB, r) =
∫

p(λS, λB |nS, nB, τS, τB, r)dλB

=
∫

p(λS |λB, nS, τS)p(λB |nB, τB, r)dλB . (3)

Credible intervals for λS are computed just as before, but using
the marginal posterior distribution.9

9 A popular frequentist alternative to the marginal posterior distribution is the
profile likelihood function (see Park et al. 2008). Rather than averaging over
nuisance parameters, the profile likelihood optimizes the likelihood over
nuisance parameters for each value of the parameter of interest.
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Figure 2. α-level detection threshold S� as a function of the background
intensity λB , for the given α levels. Note that this is calculated assuming that
the source intensity λS = 0. The detection threshold increases with increasing
λB for a given α, and increases with decreasing α for a given λB .

2.3. Hypothesis Testing and Power

We emphasize that neither confidence nor credible intervals
directly quantify the detection sensitivity of an experiment. To
do this, we consider the detection problem in detail, which
from a statistical point of view is a test of the hypothesis that
there is no source emission in the given energy band,10 i.e.,
a test of λS = 0. Formally, we test the null hypothesis that
λS = 0 against the alternative hypothesis that λS > 0. The
test is conducted using a test statistic that we denote by S.
An obvious choice for S is the counts in the source region, nS;
larger values of nS are indicative of a detection of a source, since
they become increasingly less likely to have been obtained as
a random fluctuation from the background. Other choices for S
are the signal-to-noise ratio (as in the case of sliding-cell local-
detect algorithms; see Section 4) or the value of the correlation
of a counts image with a basis function (as in the case of wavelet-
based algorithms) or a suitably calibrated likelihood-ratio test
statistic (as in the case of γ -ray detectors like Fermi; see Mattox
et al. 1996). The count in the source region is an example of
a test statistic that is stochastically increasing11 in λS . For any
fixed S�, λB , τS , τB , and r, the probability that the test statistic
S is less than the threshold S� decreases as λS increases, i.e.,
Pr(S � S�|λS, λB, τS, r) decreases as λS increases. We assume
that S is stochastically increasing in λS throughout.12

Because larger values of S indicate a source, we need to
determine how large S must be before we can declare a source
detection. This is done by limiting the probability of a false
detection, also known as a Type I error. Thus, the detection
threshold S� is the smallest value such that

Pr(S > S�|λS = 0, λB, τS, τB, r) � α, (4)

10 There is a close relationship between confidence intervals and hypothesis
testing. If the interval includes zero, this indicates that there is a real possibility
of no source emission above the background and if the source has not been
otherwise detected there may be no source at all. Conversely, in Appendix A
we discuss how a hypothesis test can be inverted to construct a confidence
interval.
11 The term “stochastically increasing” means that there is a parameter (here
λS ) that defines a distribution of observable values (here nS), and that all of the
quantiles of nS increase as λS increases. There is no guarantee that at any
single instance of observation, a higher λS should lead to a higher nS.
12 In principle, the test statistic is only required to have different distributions
under the alternative and null hypotheses. For simplicity, we assume that it
tends to be larger under the alternative.

where α is the maximum allowed probability of a false detec-
tion13 and we declare a detection if the observed value of S is
strictly greater than S�:

If S � S� we conclude there is insufficient evidence to
declare a source detection.

IfS > S� we conclude there is sufficient evidence to declare
a source detection.

We call S� the α-level detection threshold and sometimes write
S�(α) to emphasize its dependance on α (see Figure 2). Note
that α is a bound on the probability of a Type I error; the actual
probability of a Type I error is given by the probability on the
left-hand side of Equation (4). Due to the discrete nature of the
Poisson distribution, the bound is generally not achieved and
the actual probability of a Type-I error is less than α.

Although its role in the definition of the detection threshold
indicates that it is viewed as the more important concern, a false
detection, also known as a “false positive,” is not the only type
of error. A false negative, or Type II error, occurs when a real
source goes undetected (see Figure 3). The probability of a false
negative is quantified through the power of the test to detect a
source as a function of its intensity,

β(λS) = Pr(S > S�|λS, λB, τS, τB, r) . (5)

Equation (5) gives the probability of a detection. For any λS > 0,
this is the power of the test or one minus the probability of a false

13 In the simple Poisson counts case, the probability of a Type I error given in
Equation (4) is computed as

Pr(S > S�|λS = 0, λB, τS, τB, r)

=
∑ {

e−τSλB (τSλB )n
′
S

n′
S !

· e−rτBλB (rτBλB )n
′
B

n′
B !

}
,

where the summation is over the set of values of (n′
S, n′

B ) such that
S(n′

S, n′
B ) > S� and we substitute λS = 0 into the mean of nS given in

Equation (1). Each term in the summation is a product of the likelihood of
obtaining the specified counts in the absence of a source, given the background
intensity and other observational parameters. In the simple case where S is the
counts in the source region, nS, and λB is known (i.e., nB is not measured), this
reduces to

Pr(S > S�|λS = 0, λB, τS ) =
∞∑

n′
S
=S�+1

e−τSλB (τSλB )n
′
S

Γ(n′
S + 1)

= 1 −
S�∑

n′
S
=0

e−τSλB (τSλB )n
′
S

Γ(n′
S + 1)

= γ (S� + 1, τSλB )

Γ(S� + 1)
,

where

γ (S� + 1, τSλB ) = Γ(S� + 1)
∫ τSλB

0
e−t tnS dt

is the incomplete gamma function (see Equations (8.350.1) and (8.352.1) of
Gradshteyn & Ryzhik 1980). In large count scenarios we may use continuous
Gaussian distributions with their variances equal to their means in place of the
discrete Poisson distributions in Equation (1); see Equation (13) in Section 4.
In this case, we compute

Pr(S>S�|λS = 0, λB, τS, τB, r)

=
∫ { exp

[
− (n′

S
−τSλB )2

τSλB

]
√

2πτSλB

·
exp

[
− (n′

B
−rτBλB )2

rτBλB

]
√

2πrτBλB

}
dn′

Sdn′
B,

where the integral is over the region of values of (n′
S, n′

B ) such that
S(n′

S, n′
B ) > S�.
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negative.14 For λS = 0, Equation (5) gives the probability of a
false detection (cf. Equation (4)) and consequently, β(0) � α.
This reflects the trade-off in any detection algorithm: the
compromise between minimizing the number of false detections
against maximizing the number of true detections. That is, if the
detection threshold is set low enough to detect weaker sources,
the algorithm will also produce a larger number of false positives
that are actually background fluctuations. Conversely, the more
stringent the criterion for detection, the smaller the probability
of detecting a real source (this is illustrated by the location of
the threshold S� that defines both α and β in Figure 3). Note that
although our notation emphasizes the dependence of the power
on λS , it also depends on λB , τS , τB , and r.

The power calculation is shown for the simple Poisson case in
Figure 4, where β(λS) is plotted for different instances of λB and
for different levels of the detection threshold S�. As expected,
stronger sources are invariably detected. For a given source
intensity, an increase in the background or a larger detection
threshold (i.e., lower α) both cause the detection probability
to decrease. In a typical observation, the background and the
detection threshold are already known, and thus it is possible
to state precisely the intensity λS at which the source will be
detected at a certain probability. We may set a certain minimum
probability, βmin of detecting a “bright” source by setting the
exposure time long enough so that any source with intensity
greater than a certain pre-specified cutoff has probability βmin
or more of being detected. Conversely, we can determine how
bright a source must be in order to have probability βmin or
more of being detected with a given exposure time. This allows
us to define an upper limit on the source intensity by setting

14 Here we use β to represent the power of the test, or one minus the
probability of a Type II error. The statistical literature uses the notation β to
denote either the Type II error (i.e., accepting the null hypothesis when it is
false; e.g., Eadie et al. 1971) or for the power of the test itself (as we have done
here; e.g., Casella & Berger 2002). As in the case of calculating α (see
footnote 13), we can calculate β as

Pr(S > S�|λS, λB, τS, τB, r)

=
∑{

e−τS (λS +λB )(τS (λS + λB ))n
′
S

n′
S !

· e−rτBλB (rτBλB )n
′
B

n′
B !

}
,

where again the summation is over the set of values of (n′
S, n′

B ) such that
S(n′

S, n′
B ) > S�. In the simple case where S = nS , λB is known, and nB is not

measured, we find

Pr(S > S�|λS, λB, τS ) = γ (S� + 1, τS (λS + λB ))

Γ(nS + 1)
.

Figure 3. Illustration of Type I and Type II errors. A sketch of the probability
distribution of test statistic S for specified values of the source and background
intensities is shown for the simple case where S ≡ nS and the background
is known (see footnotes 13 and 14). The top panel depicts the probability
Pr(S = nS |λS = 0, λB = 2, τS = 1) and the bottom panel shows Pr(S =
nS |λS = 5, λB = 2, τS = 1). The vertical dashed line is a nominal detection
threshold S� that corresponds to a significance of α � 0.1, i.e., S� = 5. The
Type I error, or the probability of a false positive, is shown by the shaded region
to the right of the threshold. (The actual Type I error for the adopted parameters
is 0.05; values of S� less than 5 will cause the Type I error to exceed the specified
significance.) The Type II error is the probability of a false negative and is shown
(for λS = 5) by the shaded region to the left of the threshold in the lower panel.
The detection probability of a source with intensity λS = 5 is β = 0.7 for this
choice of α, for the given background intensity, and for the exposure time.

a minimum probability of detecting the source. This latter
calculation is the topic of Section 3.1 and the basis of our
definition of an upper limit.

Power calculations are generally used to determine the min-
imum exposure time required to ensure a minimum probability
of source detection (see Appendix B). In Section 3, we use them
to construct upper limits.

3. UPPER LIMITS

In this section, we develop a clear statistical definition of
an upper limit that (1) is based on well-defined principles,
(2) depends only on the method of detection, (3) does not
depend on prior or outside knowledge about the source intensity,
(4) corresponds to precise probability statements, and (5) is
internally self-consistent in that all values of the intensity below
the upper limit are less likely to be detected at the specified
Type I error rate and values above are more likely to be
detected.
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Figure 4. Power of the test, β, to detect a source as a function of the source intensity, λS , and detection threshold, S�. The curves are calculated for different values of
the background intensity (same values as in Figure 1), λB = 1 (left), λB = 3 (middle), and λB = 5 (right). The individual curves show β(λS ) for different S�, each of
which corresponds to a different bound on the probability of a Type I error, α, see Figure 2. The solid, dashed, and dash-dotted lines correspond to increasing detection
thresholds, and decreasing values of α. As one would expect, β is higher for larger λS and lower λB , i.e., if the source is stronger or the background is weaker, it is
easier to detect.
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Figure 5. Upper limit with no background contamination. The figure plots
Pr(nS > 0|λS, λB = 0, τS ) as a function of τSλS , thus giving U(α, βmin) for any
given τS and every value of βmin. For example, reading across the line plotted at
β = 0.8, gives τSU(α = 0.05, βmin = 0.8) = 1.6, which can be solved for the
upper limit for any value of τS . Note that the upper limit decreases in inverse
proportion to τS .

3.1. Definition

In astronomy, upper limits are inextricably bound to source
detection: by an upper limit, an astronomer means

The maximum intensity that a source can have without
having at least a probability of βmin of being detected under
an α-level detection threshold.

or conversely,

The smallest intensity that a source can have with at least
a probability of βmin of being detected under an α-level
detection threshold.

Unlike a confidence interval, the upper limit depends directly
on the detection process and in particular on the maximum
probability of a false detection and the minimum power of the
test, that is on α and βmin, respectively. In this way, an upper
limit incorporates both the probabilities of a Type I and a Type II
error. Formally, we define the upper limit, U(α, βmin) to be the
smallest λS such that

Pr(S > S�(α)|λS, λB, τS, τB, r) � βmin. (6)

Commonly used values for βmin throughout statistics are 0.8
and 0.9. If βmin ≈ 1, U(α, βmin) represents the intensity of a
source that is unlikely to go undetected, and we can conclude
that an undetected source is unlikely to have intensity greater
than U(α, βmin).

The simplest example occurs in the hypothetical situation
when λB is known to be zero and there is no background
observation. In this case, we set S = nS and note that
Pr(nS > 0|λS = 0, λB = 0, τS) = 0 so the detection threshold
is zero counts and we declare a detection if there is even a single
count. (Recall, we declare a detection only if S is strictly greater
than S�.) The upper limit in this case is the smallest value of λS

with probability of detection greater than βmin. Figure 5 plots
Pr(nS > 0|λS, λB = 0, τS) as a function of τSλS , thus giving
U(α, βmin) for any given τS and every value of βmin. Note that
the upper limit decreases in inverse proportion to τS .

When λB is greater than zero but well determined and
can be considered to be known, the detection threshold using
S = nS is given in Equation (4). With this threshold in hand
we can determine the maximum intensity a source can have
with significant probability of not producing a large enough

fluctuation above the background for detection. This is the upper
limit.

In particular, U(α, βmin) is the largest value of λS such that
Pr(nS � S�(α)|λS, λB, τS) > 1 − βmin. This is illustrated for
three different values of βmin (panels) and three different values
of α (line types) in Figure 6. Note that the upper limit increases
as βmin increases and as α decreases.

3.1.1. Illustrative Examples

To illustrate the difference between confidence bounds and
upper limits, in the context of a detection process, we consider
two simple examples. The first is an extreme case where the
background intensity is known to be identically zero, and even
one count in the source region would be classified as a detection.
In this case, the upper limit is the smallest source intensity that
can produce one count at a specified probability, e.g., a source
with intensity of 5 generates one or more counts at a probability
of ≈99.7% (see Section 3.1). In contrast, if one count is seen
in the source region, the upper bound of an equal-tail 99.7%
interval on the source intensity is 8.9 (Gehrels 1986). Thus,
while similar in magnitude, it can be seen that upper bounds
and upper limits are different quantities, describing different
concepts.

Second, consider a more realistic case where the background
is measured in a large region thought to be free of sources and
scaled to the area covered by the source. Suppose that 800 counts
are observed in an area 400 times larger than the source area
and 3 counts are seen in the putative source region itself. The
credible interval for the source intensity may be calculated at
various significance levels (Section 2.2; see also van Dyk et al.
2001), and for this case we find that 68% credible interval with
the lower bound at 0 is [0, 2.1], and the 99.7% interval is [0, 8.3].
But the question then arises as to whether the counts seen in the
source region are consistent with a fluctuation of the observed
background or not. Since at a minimum 7 counts are needed
for a detection at a probability of 0.997 (corresponding to a
Gaussian-equivalent “3σ” detection), it is considered that the
source is not detected. The question then becomes how bright
the source would have to be in order to be detected with a certain
probability. Since a source of intensity 5.7 would have a 50%
probability of producing sufficient counts for a detection, this
sets an upper limit U(α = 0.003, βmin = 0.5) = 5.7 counts on
the undetected source’s intensity (for a Type I error α = 0.003
and a Type II error β = 0.5; see Section 3.1). Note that this
limit is the same regardless of how many counts are actually
seen within the source region, as expected from a quantity that
calibrates the detection process. In contrast, the inference on the
source intensity is always dependent on the number of observed
source counts.

3.2. Unknown Background Intensity

So far our definition of an upper limit assumes that there are
no unknown nuisance parameters, and in particular that λB is
known. Unfortunately, the probabilities in Equations (4) and
(6) cannot be computed if λB is unknown. In this section, we
describe several strategies that can be used in the more realistic
situation when λB is not known precisely.

The most conservative procedure ensures that the detection
probability of the upper limit is greater than βmin for any possible
value of λB . Generally speaking, the larger λB is, the larger λS

must be in order to be detected with a given probability, and thus
the larger the upper limit. Thus, a useful upper limit requires
a finite range, ΛB , to be specified for λB . Given this range, a
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Figure 6. Computing upper limits based on the probability of detecting a source. The figure illustrates how upper limits may be defined for different probabilities of
source detection under a given detection threshold. The curves correspond to β(λS ) for different values of S� and α: 5 and 0.1 (solid), 6 and 0.05 (dashed), and 8 and
0.01 (dash-dotted), and were all computed with λB = 3, as in the middle panel of Figure 4. Upper limits are computed by first adopting an acceptable probability
for a source detection and then computing the intercept on λS of the β(λS ) curves. The panels show the value of the upper limits for the different values of S� for
βmin = 0.5 (top), βmin = 0.9 (middle), and βmin = 0.95 (bottom).

conservative upper limit can be defined as the smallest λS that
satisfies

inf
λB∈ΛB

Pr(S > S�(α)|λS, λB, τS, τB, r) � βmin. (7)

(We use the term infimum (inf) rather than minimum to allow
for the case when the minimum may be on the boundary of,
but outside, the range of interest. It is the largest number that
is smaller than all the numbers in the range. For instance, the
minimum of the range {x > 0} is undefined, but the infimum
is 0.) Unfortunately, unless the range of values ΛB is relatively
precise, this upper limit will often be too large to be useful.

In practice, there is a better solution. The background count
provides information on the likely values of λB that should be
used when computing the upper limit. In particular, the distri-
bution of λB given nB can be computed using standard Bayesian

procedures15 and used to evaluate the expected detection prob-
ability,

β(λS) =
∫

Pr(S > S�(α)|λS, λB, τS, τB, r)p(λB |nB, τB, r)dλB,

(8)
where S�(α) is the smallest value such that∫

Pr(S > S�(α)|λS = 0, λB, τS, τB, r)p(λB |nB, τB, r)dλB

� α. (9)

15 In the presence of a nuisance parameter, frequentist procedures are more
involved and typically require conditioning on an ancillary statistic, see, e.g.,
Appendix C. In the Bayesian case, the posterior distribution,
p(λB |nB, τB, r) ∝ p(λB )p(nB |λB, τB, r), is the product of a prior distribution
and the likelihood, normalized so that the posterior distribution integrates to 1.
There are many choices of prior distributions available for λB , ranging from
uniform on λB , to γ , to uniform in log(λB ) (see, e.g., van Dyk et al. 2001).
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Figure 7. Upper limit with unknown background intensity. The left panel plots a Bayesian posterior distribution for λB , p(λB |nB, τB, r) ∝ λ6.5
B e−λB/2.5, that is used

in Equations (8) and (9) to compute β, the expected detection probability, as a function of λS with τS = τB = r = 1. The right panel plots β(λS ) for three values of α

and their corresponding detection thresholds.

The upper limit is then computed as the smallest λS that satisfies
β(λS) � βmin. Unlike the upper limit described in Section 3.1,
these calculations require data, in particular, nB. For this reason,
we call the smallest λS that satisfies Equation (8) the background
count conditional upper limit or bcc upper limit. An intermediate
approach that is more practical than using Equation (7) but more
conservative than using Equation (8) is to simply compute a
high percentile of p(λB |nB), perhaps its 95th percentile. The
procedure for known λB can then be used with this percentile
treated as the known value of λB . This is a conservative strategy
in that it assumes a nearly worst case scenario for the level of
background contamination.

As an illustration, suppose the uncertainty in λB given the
observed background counts can be summarized in the posterior
distribution plotted in the left panel of Figure 7. This is a gamma
posterior distribution of the sort that typically arises when data
are sampled from a Poisson distribution. Using this distribution,
we can compute S� for any given value of α as the smallest
value that satisfies Equation (9); the results are given for three
values of α in the legend of Figure 7. We then use Equation (8)
to compute β(λS) as plotted in the right panel of Figure 7. The
upper limit can be computed for any βmin using these curves just
as in Figure 6.

3.3. Confidence Intervals versus Upper Limits

Although the form of a confidence interval makes it tempting
to use its upper bound in place of an upper limit, this is
misleading and blurs the distinction between the power of the
detection procedure and the confidence with which the flux is
measured. As an illustration, we have computed the upper limit
for each of the nine panels in Figure 1 (using the true values
of λB reported in each panel). The results are plotted as solid
vertical lines in Figure 8. Note that unlike the upper bound of
the confidence interval the upper limit does not depend on nS
and takes on values that only depend on λB . Using the upper
bound of the confidence interval sometimes overestimates and
sometimes underestimates the upper limit. In all but one of the
nine cases with the highest λS/λB (i.e., λS = 5, λB = 1) the
upper limit for λS is larger than λS . Of the nine cases, this is
the one that is mostly likely to result is a source detection and
is the only one with a probability of detection greater than
βmin = 0.8.

Alternatively, we can compute the value of βmin required
for the upper bound of Garwood’s confidence interval to be
interpreted as an upper limit. Figure 9 does this for the three
values of λB used in the three columns of Figures 1 and 8.
Consider how the upper bound of Garwood’s confidence interval

increases with nS in Figure 8. Each of these upper bounds
can be interpreted as an upper limit, but with an increasing
minimum probability of a source detection, βmin. The three
panels of Figure 8 plot how the required βmin increases with
nS for three values of λB . Note that a source with intensity equal
to the upper bound of Garwood’s confidence interval can have
a detection probability as low as 20% or essentially as high as
100%. Thus, the upper bound does not calibrate the maximum
intensity that a source can have with appreciable probability of
going undetected in any meaningful way.

3.4. Statistical Selection Bias

As mentioned in Section 2.2.1, it is common practice to only
report a confidence interval for detected sources. Selectively
deciding when to report a confidence interval in this way
can dramatically bias the coverage probability of the reported
confidence interval.16 We call this bias a statistical selection
bias. Note that this is similar to the Eddington bias (Eddington
1913) that occurs when intensities are measured for sources
close to the detection threshold. For sources whose intrinsic
intensity is exactly equal to the detection threshold, the average
of the intensities of the detections will be overestimated because
downward statistical fluctuations result in non-detections and
thus no intensity measurements. In extreme cases, this selection
bias can lead to a nominal 95% confidence interval having a
true coverage rate of well below 25%, meaning that only a small
percentage of intervals computed in this way actually contain
λS . As an illustration, Figure 10 plots the actual coverage of the
nominal 95% intervals of Garwood (1936) for a Poisson mean
when the confidence intervals are only reported if a source is
detected with α = 0.05. These intervals are derived under the
assumption that they will be reported regardless of the observed
value of nS. Although alternative intervals could in principle be
derived to have proper coverage when only reported for detected
sources, judging from Figure 10 such intervals would have to
be wider than the intervals plotted in Figure 1. It is critical that
if standard confidence intervals are reported they be reported
regardless of the observed value of nS and regardless of whether
a source is detected.17

16 A similar concern was raised by Feldman & Cousins (1998) who noticed
that deciding between a one-sided and a two-sided confidence interval can bias
the coverage probability of the resulting interval, if the decision is based on the
observed data.
17 Though this is usually not feasible when sources are detected via an
automated detection algorithm such as celldetect or wavdetect. However,
in many cases, source detectability is determined based on a pre-existing
catalog, and in such cases, both limits and bounds should be reported in order
to not introduce biases into later analyses.
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Figure 8. Illustrating the difference between confidence intervals and upper limits. This figure is identical to Figure 1, with an additional solid vertical horizontal line
showing the location of the upper limit computed with βmin = 0.8. The legend denotes the true value of λS , the assumed known value of λB , and the computed upper
limit, U . Note that unlike the confidence interval, which depends strongly on the number of observed source counts, nS, the upper limit is fixed once the detection
threshold S� (which depends on λB ) and the minimum detection probability βmin are specified.

3.5. The Detection Threshold as an Upper Limit

As discussed in Section 1, the detection threshold is some-
times used as an upper limit. Under certain circumstances, this
can be justified under our definition of an upper limit. Suppose
that some invertible function f (S) can be used as an estimate
of λS and that for any λB , the sampling distribution of f (S) is
continuous with median equal to λS . That is,

Pr(f (S) > λS |λS, λB, τS, τB, r) = 0.5. (10)

Because Equation (10) holds for any λS , it holds for λS = f (S�).
That is,

Pr(f (S) > f (S�)|λS = f (S�), λB, τS, τB, r) = 0.5. (11)

Inverting f and integrating over p(λB |nB, τB, r), we have∫
Pr(S > S�|λS = f (S�), λB, τS, τB, r)p(λB |nB, τB, r)dλB

= 0.5. (12)

Comparing Equation (12) with Equation (8), we see that
f (S�) = U(α, βmin = 0.5). Thus, if f is an identity function the
detection threshold is an upper limit. Although the assumption
that the sampling distribution of f (S) has median λS for every
λB , is unrealistic in the Poisson case, it is quite reasonable
with Gaussian statistics. Even if this assumption holds, f (S�)
is a weak upper limit in that half the time a source with this
intensity would go undetected and there is a significant chance



910 KASHYAP ET AL. Vol. 719

0 1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

1.
0

nS

β m
in

0 1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

1.
0

nS

β m
in

0 1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

1.
0

nS

β m
in

Figure 9. Interpreting upper bounds as upper limits. The three panels plot the probability or source detection for a source with λS equal to the upper bound of
Garwood’s confidence intervals. Because the confidence intervals depend on nS, the detection probability, βmin increases with nS. The three panels correspond to
λB = 1 (left), λB = 3 (middle), and λB = 5 (right), as in the columns of Figure 8. All calculations were preformed with τS = τB = r = 1. Because a source with
intensity equal to the upper bound can have a detection probability as low as 20% or as high as 100%, the upper bound does not calibrate the maximum intensity that
a source can have with appreciable probability of going undetected in any meaningful way.

that sources with intrinsic intensity larger than f (S�) would
remain undetected.

It should be emphasized that even when the detection thresh-
old is used as an upper limit, it is not an “upper limit on the
counts,” but an upper limit on the intrinsic intensity of the
source. The counts are an observed, not an unknown quan-
tity. There is no need to compute upper bounds, error bars,
or confidence intervals on known quantities. It is for the un-
known source intensity that these measures of uncertainty are
useful.

3.6. Recipe

Our analysis of upper limits and confidence interval assumes
that the observables are photon counts that we model using
the Poisson distribution. However, the machinery we have de-
veloped is applicable to any process that uses a significance-
based detection threshold. Here, we briefly set out a general
recipe to use in more complicated cases. For complex detec-
tion algorithms, some of the steps may require Monte Carlo
methods.

1. Define a probability model for the observable source
and background data set given the intrinsic source and
background strengths, λS and λB , respectively. For the
simple Poisson case, this is defined in Equation (1). In many
applications, these could be approximated using Gaussian
distributions. It is typically required that a background data
set be observed but in some cases λB may be known a
priori. The source could be a spectral line, or an extra model
component in a spectrum, or possibly even more complex
quantities that are not directly related to the intensity of a
source.

2. Define a test statistic S for measuring the strength of
the possible source signal. In the simple Poisson case,
we set S = nS . The “source” could be a spectral line
or any extra model component in a spectrum, or a more
complex quantity that is not related to the intensity of a
source.

3. Set the maximum probability of a false detection, α, and
compute the corresponding α-level detection threshold, S�.
Although S� depends on λB , we can compute the expected
S� by marginalizing over λB using p(λB |nB) when λB is
not known exactly. Likewise, if λS is defined as a function

λS
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Figure 10. Conditional coverage probability of confidence interval reported only
for detected sources. When confidence intervals are only reported for detected
sources the coverage probability may be very different than the nominal level of
the interval. This plots shows the true coverage of the 95% nominal intervals of
Garwood (1936) when they are only reported for sources detected with α = 0.05
(with λB = 3). For small values of λS the coverage can be very low and as λS

grows, the coverage probability converges to 95%. Far fewer intervals contain
λS than one would expect given the nominal level. Confidence intervals must
be reported regardless of nS and regardless of whether a source is detected. The
jagged appearance of curve stems from the discrete nature of Poisson data.

of several parameters, the same marginalization procedure
can be used to marginalize over any nuisance parameters. In
this case, we typically marginalize over p(η|nB) or perhaps
p(η|nS, nB ), where η is the set of nuisance parameters.
In this regard, we are setting α to be a quantile of the
posterior predictive distribution of S, under the constraint
that λS = 0; see Gelman et al. (1996) and Protassov et al.
(2002).

4. Compute the probability of detection, β(λS), for the adopted
detection threshold S�.

5. Define the minimum probability of detection at the upper
limit, βmin. Traditionally, βmin = 0.5 has been used in
conjunction with α = 0.003 in astronomical analysis (see
Section 3.5).

6. Compute the smallest value of λS such that β(λS) � βmin.
This is the upper limit.
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4. EXAMPLE: SIGNAL-TO-NOISE RATIO

We focus below on signal-to-noise (S/N)-based detection
at a single location as an example application. The S/N was
the primary statistic used for detecting sources in high-energy
astrophysics before the introduction of maximum-likelihood
and wavelet-based methods. Typically, S/N = 3 was used as the
detection threshold, corresponding to α = 0.003 in the Gaussian
regime. Here, we apply the recipe in Section 3.6 to derive an
upper limit with S/N-based detection. Our methods can also
be applied to more sophisticated detection algorithms such as
sliding-cell detection methods such as celldetect (Harnden
et al. 1984; Dobrzycki et al. 2000; Calderwood et al. 2001), and
wavelet-based detection methods such as pwdetect (Damiani
et al. 1997), zhdetect (Vikhlinin et al. 1997), wavdetect
(Freeman et al. 2002), etc. Implementation of our technique
for these methods will vary in detail, and we leave these
developments for future work.

We begin with a Gaussian probability model for the source
and background counts (Step 1 in Section 3.6)

nB |(λB, r, τB ) ∼ N (μ = rτBλB, σ =
√

rτBλB)

nS |(λS, λB, τS) ∼ N (μ = τS(λS + λB), σ =
√

τS(λS + λB)) ,

(13)

where λB and λS are non-negative. We assume that the source is
entirely contained within the source cell and that the PSF does
not overlap the background cell. We can estimate λB and λS by
setting nB and nS to their expectations (method of moments), as

λ̂B = nB

rτB

and λ̂S = nS

τS

− nB

rτB

. (14)

The variance of λ̂S is

var(λ̂S) = λS

τS

+
(τS + rτB)λB

rτSτB

(15)

which we can estimate by plugging in λ̂S and λ̂B as

v̂ar(λ̂S) = nS

τ 2
S

+
nB

r2τ 2
B

. (16)

To use the S/N as a detection criterion, we define (Step 2 in
Section 3.6)

S = λ̂S√
v̂ar(λ̂S)

= rτBnS − τSnB√
r2τ 2

BnS + τ 2
S nB

. (17)

Step 3 in Section 3.6 says that the maximum probability of
a false detection should be set and S� computed accordingly.
Instead we adopt the standard detection threshold, S� = 3, used
with the S/N and compute the corresponding α,

α(λB) =
∫
R

p(n′
B |λB, r, τB )p(n′

S |λS = 0, λB, τS)dn′
Bdn′

S,

(18)
where R is the region where S(n′

S, n
′
B ) > S� = 3 (see footnote

13). For given values of λB and r, the integral in Equation (18)
can be easily evaluated via Monte Carlo. Alternatively, we can
compute α by marginalizing over λB if it is unknown,

α =
∫ ∞

0
α(λB)p(λB |nB, r, τB )dλB, (19)

where nB is the observed background count and α(λB) is
computed in Equation (18). The probability of detection, β(λS)
is computed (Step 4 in Section 3.6) by evaluating the same
integral as in Equation (18) except that λS is not set to zero.
We can make the same substitution in Equation (19) if λB is
unknown. With βmin in hand (Step 5 in Section 3.6), we can find
the value of λS such that β(λS) = βmin (Step 6 in Section 3.6).
This is the upper limit.

Figure 11 illustrates the use of Equation (18) to compute
β(λB) for several values of λB , with r = τS = τB = 1.
The upper limit is computed as the value of λS such that
β(λS) = βmin. The three panels of Figure 11 report the resulting
upper limits for βmin = 0.5, 0.9, and 0.95, respectively.

5. SUMMARY

We have carefully considered the concept of upper limits in
the context of undetected sources, and have developed a rigor-
ous formalism to understand and express this concept. Despite
its seeming simplicity, upper limits are not treated in a uni-
form fashion in astronomical literature, leading to considerable
variations in meaning and value. We formally define an up-
per limit to the source intensity as the maximum intensity it
can have without exceeding a specified detection threshold at
a given probability. This is defined by the statistical power of
the detection algorithm. This is equivalent to defining it as the
largest source intensity that remains undetected at the specified
probability, and is defined by the probability of Type II error.
Thus, if the detection probability is computed for a variety of
source intensities, the upper limit is then identified by deter-
mining the intercept of the required probability with this curve.
Thus, an upper limit is dependent only on the detection cri-
terion, which is generally a function only of the background,
and independent of the source counts. This is different from
the upper bound (i.e, the upper edge of a confidence interval),
which is obtained when the probability distribution of the source
intensity is computed given that some counts are observed in
the putative source region. We distinguish between the upper
bound of the confidence interval and the upper limit of source
detectability. Unlike a confidence interval (or Bayesian credible
interval), an upper limit is a function of the detection proce-
dure alone and does not necessarily depend on the observed
source counts.

The primary goals of this paper are to clearly define an upper
limit, to sharpen the distinction between an upper limit and an
upper bound, and to lay out a detailed procedure to compute
the former for any detection process. In particular, we have
shown how to compute upper limits for the simple Poisson case.
We also provide a step-by-step procedure for deriving it when
a simplified significance-based detection method is employed.
To extract the most science from catalogs, we argue for using a
consistent, statistically reasonable recipe of an upper limit being
related to the statistical power of a test. In addition, we illustrate
the peril of using an upper bound in place of an upper limit
and of only reporting a frequentist confidence interval when a
source is detected. Conversely, including confidence bounds,
even for non-detections, is a way to avoid the Eddington bias
and increase the scientific usefulness of large catalogs.

We also describe a general recipe for calculating an upper
limit for any well-defined detection algorithm. Briefly, the de-
tection threshold should be first defined based on an accept-
able probability of a false detection (the α-level threshold), and
an intensity that ensures that the source will be detected at a
specifed probability (the β-level detection probability) should
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Figure 11. Computing upper limits based on the probability of S/N detection of a source. The curves in each panel correspond to the probability of source detection as
a function of λS using an S/N detection threshold of S� = 3. The curves were computed with r = 1, τS = 1, τB = 1, and with λB = 10, 20, and 50 (dashed, dotted,
and dash-dotted lines, respectively). Upper limits are computed by first adopting an acceptable probability for a source detection, and then computing the intercept
on λS of the β(λS ) curves. The panels show the value of the upper limits for the different values of λB for βmin = 0.5 (top), βmin = 0.9 (middle), and βmin = 0.95
(bottom).

be computed; this latter intensity is identified with the upper
limit. We recommend that when upper limits are reported in the
literature, both the corresponding α and β values should also be
reported.
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APPENDIX A

CONSTRUCTING A CONFIDENCE INTERVAL BY
INVERTING A HYPOTHESIS TEST

Here we discuss the relationship between confidence intervals
and hypothesis tests and in particular how a hypothesis test can
be used to construct a confidence interval.

A confidence interval reports the set of values of the parameter
that are consistent with the data. When this set includes λS = 0

it means that the data are consistent with no source and we
expect the null hypothesis not to be rejected and no source
to be detected. There is a more formal relationship between
confidence intervals and hypothesis testing and we can use a
detection method to generate a confidence interval. Suppose
that rather than testing the null hypothesis that λS = 0, we
are interested in testing the more general null hypothesis that
λS � λ�

S , where λ�
S is any non-negative number. That is, we

are interested in detecting only sources of at least a certain
brightness. In this case, the detection threshold, S�(λ�

S), is
defined as the smallest value such that

Pr(S > S�(λ�
S)|λS = λ�

S, λB, τS, τB, r) � α. (A1)

Given an observed value of S, we can construct the set of values
λ�

S for which we cannot reject the null hypothesis that λS � λ�
S .

This is a set of values of λS that are consistent with the data and
they form a 100(1 − α)% confidence interval. This particular,
confidence interval, however is of the form (a, +∞): For any
observed count there is a λ�

S large enough so that we cannot
reject the null hypothesis that λS � λ�

S . By reversing the null
hypothesis to λS � λ�

S we can obtain an interval of the form
(0, a) and by setting up a two-sided test of the null hypothesis
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that λS = λ�
S against the alternative hypothesis that λS �= λ�

S we
can obtain an interval of the more common form (a, b).

APPENDIX B

THE RELATIONSHIP BETWEEN UPPER LIMITS AND
THE POWER OF THE TEST

An upper limit turns around the usual use of the power
of a test. Power is ordinarily used to determine the exposure
time required to be sure that a source with intensity λSmin or
greater has at least probability βmin of being detected. That
is, the smallest τS is found that satisfies Equation (6) for any
λS � λSmin and with λSmin fixed in advance. Thus, power is
used to design an observation so that we have at least a certain
probability of detecting a source of given brightness. With an
upper limit on the other hand τS is fixed and Equation (6) is
solved for λS . This is illustrated in Figure 12 which plots τS

versus λS with fixed λB , τB , r, α, and βmin and shows what
values of τS and λS satisfy Equation (6) in the simple Poisson
case. The shaded area above and to the right of the curve is
where the detection probability exceeds βmin = 0.90. Thus the
curves give the upper limit (on the horizontal scale) as a function
of the exposure time. The upper limit generally decreases as the
exposure time τS increases, but not monotonically. Due to the
discrete nature of Poisson data, the threshold value S� changes
in integer steps to allow for the inequality in Equation (4) to
be satisfied. This behavior may be graphically illustrated by
considering the sketch of the relevant quantities in Figure 3. As
τS increases, S� increases in steps, causing the probability of
false detection to abruptly fall and then smoothly increase to α.
As the expected background in the source region increases, the
upper curve shifts to the right, thereby increasing the shaded
area that lies above the threshold value. However, when the area
of the shaded region in the upper plot becomes larger than the
tolerable probability of a Type I error, S� must be increased
by one to reduce that probability. As τS increases, the lower
curve remains stationary while S� is unchanging. At this stage,
the upper limit, U(β) is set as that value of λS which ensures
that the Type II error is β (see Equation (6)), and thus slowly
decreases as τS increases. When S� increases as a step function,
the lower curve shifts to the right in order to maintain the same
value of β, and the upper limit abruptly increases.

APPENDIX C

AN ALTERNATIVE METHOD FOR AN UNKNOWN
BACKGROUND CONTAMINATION RATE

In the body of the article, we suggested conditioning on nB in
order to effectively estimate λB when it is unknown. A different
strategy conditions instead on the total count nS + nB in order to
remove λB from the model. This method is based on the simple
probabilistic result that if X and Y are independent Poisson
variables with means λX and λY , respectively, then given X +Y ,
the variable X follows a binomial distribution. Applying this
result to nS and nB with Poisson models given in Equation (1),
we have

nS | (nS + nB, λS, λB, r, τS, τB )

∼ Binomial

(
nS + nB,

τS (λS + λB )

τSλS + (τS + rτB )λB

)
, (C1)

a binomial distribution with nS + nB independent counts each
with probability τS(λS + λB)/(τSλS + (τS + rτB)λB) of being a
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Figure 12. Dependence of the upper limit on the exposure time. The shaded area
above and to the right of the curve is where the detection probability exceeds
βmin = 0.90. Thus, the curves give the upper limit (on the horizontal scale)
as a function of the exposure time. The plot was made with λB = 3, r = 5,
τS = τB , and α = 0.05 and shows how the upper limit generally decreases as
the exposure time increases. Because of the discrete nature of Poisson data, the
probability of type one error can not be set exactly equal to α. This results in
the step function nature of α in Figure 2 and the non-monotonic decrease of the
upper limit as a function of exposure time here.

source count. Reparameterizing (λS, λB) via ξSλB = λS + λB ,
Equation (C1) becomes

nS | (nS + nB, λS, λB, r, τS, τB )

∼ Binomial

(
nS + nB,

ξS

ξS + rτB/τS

)
, (C2)

which does not depend on the unknown background intensity.
Here ξS = (λS +λB)/λB , which is equal to 1 if there is no source
and grows larger for brighter sources. Because Equation (C2)
does not depend on λB it can be used for direct frequency based
calculations even when λB is unknown. In particular, a detection
threshold can be computed based on a test of the null hypothesis
that ξS = 1, which is equivalent to λS = 0. This is done
using Equation (4) with S = nB and using distribution given in
Equation (C2) with ξS = 1. In particular, we find the smallest
S� such that Pr(nS > S�|nS + nB, ξS = 1, r, τS, τB ) � α.
With the detection threshold in hand, we can compute an
upper limit for ξS using Equation (6). The upper limit is the
smallest ξS such that Pr(nS > S�|nS + nB, ξS, r, τS, τB ) � βmin.
Unfortunately, this upper limit cannot be directly transformed
into an upper limit for λS without knowledge of λB since
λS = λB(ξS − 1).
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