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ABSTRACT OF THE DISSERTATION

Causal Inference and Model Selection in Complex Settings

By

Shandong Zhao

Doctor of Philosophy in Statistics

University of California, Irvine, 2014

Professor David A. van Dyk, Co-Chair

Associate Professor Yaming Yu, Co-Chair

Propensity score methods have become a part of the standard toolkit for applied researchers

who wish to ascertain causal effects from observational data. While they were originally

developed for binary treatments, several researchers have proposed generalizations of the

propensity score methodology for non-binary treatment regimes. In this article, we firstly

review three main methods that generalize propensity scores in this direction, namely, inverse

propensity weighting (IPW), the propensity function (P-FUNCTION), and the generalized

propensity score (GPS), along with recent extensions of the gps that aim to improve its ro-

bustness. We compare the assumptions, theoretical properties, and empirical performance of

these methods. We propose three new methods that provide robust causal estimation based

on the P-FUNCTION and GPS. While our proposed p-function-based estimator pre-

forms well, we generally advise caution in that all available methods can be biased by model

misspecification and extrapolation. In a related line of research, we consider adjustment for

posttreatment covariates in causal inference. Even in a randomized experiment, observa-

tions might have different compliance performance under treatment and control assignment.

This posttreatment covariate cannot be adjusted using standard statistical methods. We

review the principal stratification framework which allows for modeling this effect as part

xiii



of its Bayesian hierarchical models. We generalize the current model to add the possibility

of adjusting for pretreatment covariates. We also propose a new estimator of the average

treatment effect over the entire population.

In a third line of research, we discuss the spectral line detection problem in high energy

astrophysics. We carefully review how this problem can be statistically formulated as a

precise hypothesis test with point null hypothesis, why a usual likelihood ratio test does not

apply for problem of this nature, and a doable fix to correctly quantify the p-value using

the likelihood ratio test statistic via posterior predictive p-values. However, as p-values

(including posterior predictive p-values) tend to overstate the evidence for the alternative

hypothesis for precise hypothesis testing, we review a Bayesian alternative method to do the

line detection problem using the Bayes factor. Although Bayes factors are generally criticized

to be sensitive to the choice of prior distributions, we show that such prior dependence

can reflect different scientific questions and thus be sensible. In fact, p-values have similar

“subjective influence” in that testing for the existance of a line at a fixed location or in an

area with broad range can lead to very different conclusions. This is usually known as the

look elsewhere effect in astrophysics.
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Chapter 1

Background

In this Chapter, we discuss the background of the three scientific problems studied in this

thesis; proposing two robust propensity score based methods to do causal inference for

fixed non-binary treatment in observational studies; generalizing the principal stratification

framework to adjust for the influence of different compliance performance under treatment

and control group in a randomized experiment; and a careful study of the sensitivity of

the Bayes Factors to the choice of prior distributions when testing for spectral lines in high

energy astrophysics of Chapter 2, 3, and 4. A more complete review of the relevant literature

for each of the three topics is included in the early sections of each chapter.

1.1 Causal Inference with Propensity Score

Accessing the causal effect from observational studies is a challenging task. The problem

is that without randomization, you cannot expect balance for any covariate so that you

have to adjust for all of them. Doing so using a parametric model like regression is prone

to misspecification while doing so non-parametrically (e.g, matching) is difficult because of
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the curse of dimensionality. When the treatment is binary, the propensity score methods of

Rosenbaum and Rubin (1983) solved this fundamental problem by reducing the dimension,

so you can match or subclassify. They show that under the assumption of unmeasured

confounding, adjusting for the one-dimensional propensity score, rather than potentially

high-dimensional covariates, is sufficient for unbiased estimation of causal effect.

Despite their popularity, the original propensity score method is only applicable to a binary

treatment. Over the past decade, several methods have been proposed to allow the applica-

tion of the propensity score for non-binary treatment regimes. Among these, we review the

three primary generalizations, namely, inverse probability weighting (Robins et al., 2000a)

(RHB), propensity function (Imai and van Dyk, 2004) (IvD), and the generalized propensity

score (Hirano and Imbens, 2004) (HI) (including two of its extensions (Flores et al., 2012)

(FFGN)). While HI’s method is designed to estimate the dose response function (DRF), IvD

estimates the average treatment effect (RHB can be used with a variety of estimands). We

introduce an extended method based on IvD that is capable of making robust estimation for

the full DRF.

We review the assumptions and theoretical properties of these methodologies when used to

estimate a DRF and compare their empirical performance via a series of simulation studies,

including one that is based on a real dataset. We demonstrate that the response model

used by HI is less flexible than those typically used with propensity score methods and the

methods proposed by FFGN to address this probelm can exhibit undesirable properties.

We then propose a robust variant of HI’s method. In summary, we find estimating the full

DRF with a continuous treatment in an observational study is challenging, as all available

methods can be biased by model misspecification and extrapolation. Researchers should be

cautious when making such causal estimate.
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1.2 Generalized Principal Stratification Framework

While pretreatment covariates adjustment is a challenging task for observational studies

(see section 1.1), coping with posttreatment covariate such as the compliance rate can be

more demanding even in a double blind randomized experiment. For example, participants

might not always take designated dose of either drug or placebo due to either side-effect or

preference. This covariate cannot be adjusted using standard statistical methods such as

regression, as the treatment might have an effect on the posttreatment variables (Frangakis

and Rubin, 2002).

We encountered problem of this type when evaluating the effectiveness of the READ 180

program based on a recent large implementation study conducted in high-poverty school

district located in southeastern Massachusetts (Hartry et al., 2008). The READ 180 program

is a mixed-method approach designed to help struggling readers in grades 4 to 12. In the

implementation study, participating students are randomly assigned to either the READ 180

program or a district after-school program which serves as a control group. Kim et al. (2010)

conducted ANCOVA on the vocabulary measure using relevant pretreatment information as

covariates and no significant difference were found between the two groups. However, they

found the attendance rate (defined as the percentage of attended days) were significantly

higher for students in the READ 180 group than students in the district after-school group.

To properly adjust for the influence of the attendance rate, we regard it as the compliance

variable and apply the principal stratification method of Jin and Rubin (2008) for causal

effect estimation. Under the principal stratification framework, each observation has two

potential compliance rate: one for the treatment and one for control. These two compli-

ances are considered to be fixed and uninfluenced by the treatment in the same way as such

pretreatment covariates as age and gender. Hence, causal effect can be estimated for obser-

vations with same compliance (defined as principal strata). However, in practice, part of the
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compliance for any observation is always missing and we can only observe his compliance to

the group he is assigned to. To solve this problem, Jin and Rubin model compliance as well

as the response variable conditioned on the compliance using Bayesian hierarchical models.

They use hypothetical data points with complete compliance information (computed under

certain assumptions) as the prior for the compliance parameters.

We review and select valid assumptions of the principal stratification method for the READ

180 analysis, and propose two generalizations to its current framework. First, we allow

adjusting for pretreatment covariates in the conditional model of the response variable given

the compliance information. Accordingly, we design two estimators to access the treatment

effect within each principal stratum after the pretreatment adjustment. Secondly, we propose

a method to compute the average treatment effect over the entire population, which can be

regarded as the weighted average of the within principal strata treatment effect where the

weights are equal to the density of each principal stratum. Lastly, we introduced a way

to do sensitivity analysis for the potentionally influential hypothetical complete-data prior

distribution. After adjusting for the attendance rate, we find that although the treatment

effect is still not significant in all of the principal strata, the average treatment effect over

the entire population does appear significant.

1.3 Bayes Factor for Model Selection in Astrophysics

Distinguishing a faint spectral line from a chance fluctuation in data with low photon counts

is a challenging problem in high energy astrophysics. Statistically, it can be thought of as a

test for the presence of a component in a finite-mixture distribution. In particular, it falls

into the category of precise hypothesis testing as the null hypothesis specifies a point value

of zero for the intensity of the spectral line (Berger and Delampady, 1987). Unforturnately,

the common routine to quantify the evidence via computing a likelihood ratio test (LRT)
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statistic and calibrating it according to its nominal asymptotic distribution does not apply for

this problem as the standard regularity conditions required for the asymptotic theory are not

satisfied. Protassov et al. (2002) provide a detailed discussion of this problem and propose

a doable fix using posterior predictive p-values (ppp-value), which bypass the asymptotic

theory of the LRT, find its posterior predictive distribution empirically, and then calculate

the correctly-calibrated p-value. However, since the ppp-value shares a similar definition

and interpretation of the classical p-value, compared to the posterior probability of the null

hypothesis, it aslo tends to overstate the evidence of the more complicated model when used

for testing precise hypotheses (Berger and Delampady, 1987; Berger and Sellke, 1987).

Bayes factors, on the other hand, provide a principled alternative summary statistic for doing

model selection. However, they are criticized for being “subjective” in that decisions based

on Bayes factors can be sensitive to the choices of the prior distribution. We carefully study

such prior influence for each of the model parameters in a simple yet popular class of spectral

line detection problems via both simulation and real data analysis. We find that the prior

influence can actually be interpreted in a non-subjective manner. Different priors can reflect

different scientific questions such as where and how strong of a spectral line astronomers are

looking for. Moreover, p-values are also prone to similar subjective influence in that testing

for the existance of a spectral line at a known location versus at an unknown location within

a certain energy range will lead to significantly different p-values. This is typically known

as the look elsewhere effect in astronomy and pyhsics (Gross and Vitells, 2010). Overall the

Bayes Factor is usually more conservative for detecting the spectral line compared to the

(overstated) p-value (as well as ppp-values).

We find that for the spectral line detection problem, the prior distributions for the emission

line parameters are expected to be much more important. We suggest plotting the decision

boundary based on the Bayes factor as a function of the hyper-parameters for these prior

distributions. We then compare the set of priors that vote for (i) model with a spectral line;
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(ii) model without a spectral line; (iii) indifference between the two models. If all reasonable

priors correspond to one of these three sets, the model selection is completed. Otherwise, we

cannot clearly enunciate the outcome of the comparison and need to state how the outcome

depends on the choice of the prior distributions.
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Chapter 2

Using Propensity Score based

Methods for Fixed Non Binary

Treatments

2.1 Introduction

Adjusting for observed confounding variables is one of the most common strategies used

across numerous scientific disciplines when making causal infererence in observational stud-

ies. Researchers find that the results based on regression adjustments can be sensitive to

model specification when applied to the data where the treatment and control groups dif-

fer substantially in terms of their pre-treatment covariates. The propensity score methods

of Rosenbaum and Rubin (1983), hereafter RR, aim to address this fundamental problem

by reducing the covariate imbalance between the two groups. RR showed that under the

assumption of no unmeasured confounding, adjusting for the propensity score, rather than

potentially high-dimensional covariates, is sufficient for unbiased estimation of causal effects
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and this can be done by simple nonparametric methods such as matching and subclassifica-

tion.

Despite their popularity, one limitation of the original propensity score methods is that they

are only applicable to a binary treatment. About a decade ago, several researchers pro-

posed generalization of the propensity score methodology for non-binary treatment regimes

(Robins, Hernán, and Brumback, 2000a; Imbens, 2000; Hirano and Imbens, 2004; Imai and

van Dyk, 2004). Such extensions have widened the applicability of propensity score methods

and are indeed becoming increasingly popular themselves, Google Scholar citation counts of

the aforementioned papers are 1174, 800, 240, and 318, respectively, as of Oct 29, 2013).

All of these methods, however, require users to overcome the challenges of first correctly

modeling a treatment variable as a function of a possibly large number of pre-treatment

covariates and second modeling the response variable. These represent significant difficulties

in practice. Standard diagnostics based on the comparison of the covariate distributions

between the treatment and control groups are not directly applicable to non-binary treatment

regimes and the final inference can be quite sensitive to the choice of response model. Flores

et al. (2012), hereafter FFGN, propose two extensions to the method of Hirano and Imbens

(2004) that aim to provide more robust estimation through a move flexible response model.

In this article, we closely examine the three primary propensity score-based methods for

causal inference with non-binary treatements, namely, inverse probability weighting (ipw)

of Robins, Hernán, and Brumback (2000a), hereafter RHB; the propensity function (p-

function) of Imai and van Dyk (2004), hereafter IvD; and the generalized propensity

score (gps) of Hirano and Imbens (2004), hereafter HI, along with the FFGN extensions. We

compare the assumptions and theoretical properties of these alternative methodologies when

used to estimate a dose response function (drf) and examine their empirical performance

in practice. Our primary message is cautionary: estimating the full drf with a continuous

treatment in an observational study is challenging. Researchers should be cautious when
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attempting to do so.

G-estimation (Robins et al., 1992) is also based on propensity scores, in that it involves

the distribution of the treatment given observed covariates. Although it can be used to

estimate the effect of time-varying treatments, it is not commonly used with other non-

binary treatments. Both because of this and because g-estimation is methodologically quite

distinct from the other methods we consider, we do not include it in our detailed comparisons.

The gps and particularly the ipw methods enjoy wide application beyond the estimation of

a drf. Like g-estimates, they can be used, for example, to estimate the effect of time-varying

treatments and with longitudinal data (e.g., Hernán et al., 2002; Hogan and Lancaster, 2004;

Moodie and Stephens, 2012); Ertefaie and Stephens (2010) provides a comparison of the two

approaches in this setting. ipw is a foundational statistical method that dates back at least

to Horvitz and Thompson (1952); its application is endemic to survey sampling, missing-

data methods, and causal inference; reviews include Schafer and Kang (2008), Seaman and

White (2011), and Stuart (2010). Likewise, the methods of IvD and HI each formalize a

framework for inference, but are based on ideas that appear earlier in the literature (Joffe

and Rosenbaum, 1999; Lu et al., 2001; Rosenbaum, 1987; Imbens, 2000). In this article we

focus on the estimation of the drf in an observational study in which both the covariates

and treatment are fixed, as outlined in HI. This is the simplest setting beyond estimating

an average treatment effect and is a well-defined testing ground for the clear comparison

of available methods. As we shall see, even in this simple setting standard methods may

exhibit unacceptable statistical properties.

Section 2.2 reviews the theoretical properties of the original propensity score methodology

and its interrelated generalizations. The gps, for example, is closely related to the prob-

ability weight of ipw, but without stabilized weights (Robins, 1998, 1999); whereas the

p-function uses a completely different quantification of the propensity for treatment.

While the gps is designed to estimate the drf, the p-function estimates the average
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treatment effect, and ipw can be used with a variety of estimands. In Section 2.3, we

compare the methods of RHB, IvD, HI, and FFGN both theoretically and empirically. We

demonstrate that the response model used by HI is less flexible than those typically used

with propensity score methods and that the methods proposed by FFGN to address this

problem can exhibit undesirable properties. We also show that one of FFGN’s methods can

be improved by using the stabilized weights of RHB, effectively implementing ipw to esti-

mate the full drf. In Section 2.4, we compare these methods with a new proposal and show

how the method of IvD can also be extended for robust estimation of the full drf. The

efficacy of the proposed methodology is illustrated through simulation studies in Section 2.4

and an empirically-based study in Section 2.6. Section 2.7 offers concluding remarks and

Appendix 2.5 introduces a robust variant of HI’s method.

2.2 Methods for Estimating the DRF

Suppose we have a simple random sample of size n with each unit consisting of a p-

dimensional column vector of pretreatment covariates, Xi, the observed univariate treat-

ment, Ti, and the outcome variable, Yi. Although IvD’s method can be applied to multi-

variate treatments, here we assume the treatment is univariate to facilitate comparison with

the methods of RHB and HI. We omit the subscript when referring to generic values of Xi,

Ti, and Yi.

We denote the potential outcomes by Y = {Yi(t), t ∈ T for i = 1, . . . , n}, where T is a set of

possible treatment values and Yi(t) is a function that maps a particular treatment level of

unit i, to its outcome. This setup implies the stable unit treatment value assumption (Rubin,

1990) that the potential outcome of each unit is not a function of treatment level of other

units and that the same version of treatment is applied to all units. In addition, we assume

strong ignorability of treamtent assignment, i.e., Y (t) ⊥⊥ T |X and p(T = t |X) > 0 for all
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t ∈ T , which implies no unmeasured confounding (RR).

2.2.1 The propensity score with a binary treatment

RR considered the case of treatment variables that take on only two values, T = {0, 1},

where Ti = 1 (Ti = 0) implies that unit i receives (does not receive) the treatment and

defined the propensity score to be the conditional probability of assignment to treatment

given the observed covariates, i.e., e(X) = p(T = 1 | X). In practice, e(X) is typically

estimated using a parametric treatment assignment model pψ(T = 1 | X) where ψ is a

vector of unknown parameters. The appropriateness of the fitted model can be assessed via

the celebrated balancing property of e(X), namely, that covariates should be independent of

the treatment conditional on the propensity score, X ⊥⊥ T | e(X). In particular, the fitted

model, ê(X) = pψ̂(T = 1 | X) should not be accepted unless adjusting for ê(X) results in

adequate balance.

In order to estimate causal quantities, we must properly adjust for ê(X). RR propose three

techniques: matching, subclassification, and covariance adjustment. We focus on subclas-

sification and covariance adjustment because they are more closely related to the general-

izations for non-binary treatments. The key advantage of propensity scores when applying

these methods, and the inverse weighting method discussed below, is dimension reduction.

They only require adjustment for a scalar variable ê(X) rather than for the entire covariate

vector.

With subclassification (RR), we adjust for ê(X) by dividing the observations into several

subclasses based on ê(X). Individual response models are then fitted within each subclass,

adjusting for ê(X) and sometimesX along with T . The overall causal effect is then computed

as the weighted average of the within-class coefficients of T , with weights proportional to

the size of subclass. The standard error of the causal effect is typically computed by treating
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the within-subclass estimates as independent of one another.

With covariance adjustment (RR), we regress the response variable on ê(X) separately for

the treatment and control groups. Specifically, we divide the data into the treatment and

control groups and fit the regression model, E(Y |X, T = t) = αt + βt · ê(X), seperately for

t = 0, 1. The average causal effect is then estimated as

1

n

n∑
i=1

(
α̂1 + β̂1 · ê(Xi)− α̂0 − β̂0 · ê(Xi)

)
= (α̂1 − α̂0) + (β̂1 − β̂0) · ê(X) (2.1)

where ê(X) is the sample mean of the estimated propensity score.

In addition to the techniques in RR, inverse propensity score weighting can be used to esti-

mate causal quantities (e.g., Rosenbaum, 1987; Robins, 1998; Robins et al., 2000a; Imbens,

2000). Because the equalities

E

{
TY

e(X)

}
= E{Y (1)} and E

{
(1− T )Y

1− e(X)

}
= E{Y (0)},

hold, the inverse weighting estimate,

N∑
i=1

(
TiYi
ê(Xi)

− (1− Ti)Yi
1− ê(Xi)

)

is an unbiased estimate of the average causal effect. Because ê(Xi) may vary greatly with

Xi, its recipoical can be very unstable (e.g., RHB, Kang and Schafer, 2007, Sections 2.3.1–

2.3.2). RHB show that replacing the weight 1/ê(Xi) by the stabilized weight, pψ̂0
(Ti)/ê(Xi),

can substantially mitigate this instability, where pψ̂0
(Ti) is a parameterized model for the

marginal distribution of T . A similar stabilization uses 1
ê(Xi)

/
∑n

i=1
Ti

ê(Xi)
for the treatment

group (Hirano et al., 2003). Robins (1999) proposes a doubly robust augmented ipw esti-

mator which can be more efficient than ipw and can protect against misspecification of the

treatment model, but according to RHB can be more involved to implement, see also Wang
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et al. (2007).

Matching, subclassification, covariance adjustment, and (stabilized) inverse weighting all

aim to provide robust flexible adjustment for ê(X) in the response model. As we shall see

below, the flexibility of the response model is important especially for non-binary treatment

regimes. This is because unlike the treatment assignment model which has an effective

diagnostic tool based on the balancing property of propensity scores, the response model

lacks such diagnostics.

2.2.2 Propensity score: methods for non-binary treatments

Suppose now that T is a more general set of treatment values, perhaps categorical or contin-

uous. It is in this setting that RHB extended ipw, that IvD introduced the p-function

and that HI introduced the gps. (IvD also allow for multi-variate treatments, which we

do not discuss in this paper.) In what follows, we review and compare these generalizations

of propensity score methods. In particular, we consider the following aspects of propensity

score adjustment with binary treatments that RHB, IvD, and HI all generalize:

1. Treatment assignment model: Model the distribution of the treatment assignment

given covariates to estimate the propensity score, i.e., ê(X)

2. Diagnostics: Validate ê(X), by checking for covariate balance, i.e., T⊥⊥X | ê(X)

3. Response model: Model the distribution of the response given the treatment, adjusting

for ê(X) via matching, subclassification, covariance adjustment, or ipw

4. Causal quantities of interest: Estimate the causal quantities of interest and their stan-

dard error based on the fitted response model
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2.2.1 Treatment assignment model. As in the case of the binary treatment, we begin

by modeling the distribution of the observed treatment assignment given the covariates

using a parametric model, pψ(T | X), where ψ is a set of parameters. Common choices of

pψ(T |X) include the Gaussian or multinomial regression models when the treatment variable

is continuous or categorical, respectively. HI define the gps as R = r(T,X) = pψ(T | X).

That is, the gps is equal to the treatment assignment model density evaluated at the

observed treatment variable and covariate for a particular individual. This is analogous

to the propensity score for the binary treatment, which can be written as e(X) = r(1,X) =

pψ(T = 1 |X).

Before HI coined the term gps, the same quantity was used by RHB in ipw. In particular,

RHB considered using weights equal to 1/r(T,X) and then, noting the instability of these

weights, suggested using the stabilized weights W = W (T,X) = pψ0(T )/pψ(T |X) instead.

For example, if we use a normal linear model for pψ(T |X), i.e., Ti |Xi ∼ N (XT
i β, σ

2), we

might use a normal model for pψ0(T ), i.e., Ti ∼ N (µ, τ 2). Although RHB first proposed the

quantity, we use HI’s now standard term, gps, for r(T,X).

IvD summarize pψ(T | X) in a manner that is qualitatively different from RHB and HI.

First, they define the p-function to be the entire conditional density (or mass) function

of the treatment, namely eψ(· | X) = pψ(· | X). This is also analogous to the propensity

score for the binary treatment case because eψ(· | X) is completely determined by e(X) =

pψ(T = 1 | X). In order to summarize the p-function, IvD introduce the uniquely

parameterized propensity function assumption which states that for every value of X, there

exists a unique finite-dimensional parameter, θ ∈ Θ, such that eψ(· | X) depends on X

only through θψ(X). In other words, θ uniquely represents e{· | θψ(X)}, which we may

therefore write as e(· | θ) or simply θ = θψ(Xi). For example, if we model the treatment,

Ti ∼ N (X>i β, σ
2) with ψ = (β, σ2), the scalar θi = X>i β uniquely represents eψ(· |Xi). In

practice, ψ, ψ0, θi, Wi, Ri, and ri are estimated from data; we denote their estimates ψ̂, ψ̂0,
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θ̂i, Ŵi, R̂i, and r̂i.

2.2.2 Diagnostics. Diagnostics for the treatment assignment model rely on balancing

properties of the ipw, p-function and gps. For example, IvD shows that the p-

function is a balancing score, i.e., T ⊥⊥ X | e(· | θ). IvD suggest checking balance by

regressing each covariate on T and θ̂, e.g., using Gaussian and/or logistic regression and

comparing the distribution of the t-statistics for each of the resulting regression coefficients

of T with the standard normal distribution via a normal quantile plot. Improvement in

balance can be assessed by constructing the plot again in the same manner except that θ̂ is

left out of each regression. Although not typical used, this diagnostic is equally applicable

in the binary treatment case.

HI, on the other hand, show that 1{T = t} is independent of X given r(t,X), where

1{·} is an indicator function and the gps is evaluated at t ∈ T . Following the covariate

balancing property for the binary propensity score, HI construct a series of binary treatments

by coarsening the original treatment T in the form {tj < T ≤ tj+1} for some t1, t2, . . . , tJ .

Covariate balance is then checked for these binary treatment variables by first subclassifying

units on r̂(T̃j,X), where T̃j is the median of the treatment variable among units with 1{tj <

T ≤ tj+1} = 1. Then, two-sample t-tests are performed within each subclass to compare

the mean of each covariate among units with 1{tj < T ≤ tj+1} = 0 against that among

units with 1{tj < T ≤ tj+1} = 1. Finally the within-subclass differences in means and the

variances of these differences are combined to compute a single t-statistic for each covariate.

HI suggest repeating this diagnostics for several choices of {t1, . . . , tJ} that cover the range

of observed T .

With ipw T and X constitute a weighted sample from a population where T and X are in-

dependent. Thus, if the weights are correctly specified, the weight-adjusted T and X should

be consistent with independence. This can be checked, for example, by computing weighted
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correlations or multiplying counts of discrete or discretized variables by their weights, see

RHB.

Because the same treatment models are used with all three methods the diagnostics for each

may be used for all. In any case, failure to reject the null hypothesis of perfect balance does

not imply balance and hence the diagnostics must be interpreted carefully. In fact, a small

(within subclass) sample size, may limit the ability to detect a lack of balance (Imai et al.,

2008).

2.2.3 Response model. The response models proposed by RHB, IvD, and HI are quite

different, with HI relying heavily on parametric assumptions. IvD propose two response

models. The first is completely analogous to the subclassification technique proposed by

RR. Individual response models are fitted within each subclass, adjusting for θ̂ and typically

X along with T . The second is a smooth coefficient model (scm), which allows the intercept

and slope to vary smoothly as a function of the p-function

E(Y | T, θ̂) = f(θ̂) + g(θ̂) · T, (2.2)

where f(·) and g(·) are unknown smooth continuous functions. In our numerical illustrations,

we fit this model using the R package mgcv developed by Simon Wood, in which smooth

functions are represented as a weighted sum of known basis functions; and the likelihood is

maximized with an added smoothness penalization term. We use penalized cubic regression

splines as the basis functions, with dimension equal to five.

In contrast, HI propose to estimate the conditional expectation of the response as a function

of the observed treatment, T , and the gps, R̂. They recommend using a flexible parametric

function of the two arguments and give the following Gaussian quadratic regression model,

E(Y | T, R̂) = α0 + α1 · T + α2 · T 2 + α3 · R̂ + α4 · R̂2 + α5 · T · R̂. (2.3)
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This can be viewed as a generalization of RR’s covariance adjustment technique, which in

the binary treatment case involves regressing Y on ê(X) separately for the treatment and

control groups. HI, on the other hand, parametrically estimate the average outcome for all

possible treatment levels simultaneously via the quadratic regression on T given in (2.3).

Non-parametric response models are suggested by FFGN, see Section 2.2.5.

Finally, RHB, illustrate ipw by linearly adjusting for the treatment,

E(Y | T ) = β0 + β1 · T, (2.4)

where (β0, β1) are fit via linear regression with stabilized weights, Ŵi. The model in (2.4)

is just an example, ipw can be used with a variety of flexible response models for robust

estimation of the drf (e.g., Wang et al., 2007; Ertefaie and Stephens, 2010; Bodnar et al.,

2004; Hernán et al., 2002). In our numerical studies we use a kernel-based regression to

facilitate comparison with a gps-based proposal of FFGN, see Section 2.2.5.

2.2.4 Estimating causal quantities. Some methods focus on estimating the drf and

others on the average causal effect. We illustrate how the drf can be estimated with

ipw in Section 2.2.5. Under (2.4), the estimated average treatment effect is the weighted

least squares estimate of β1. The p-function was designed to estimate the average

causal effect. Under (2.2) this involves averaging g(θ̂i) across all units. Bootstrap standard

errors are computed by resampling the data and refitting both the treatment assignment

and response models. With subclassification, computing the estimated average causal effect

proceeds exactly as in the binary case. Because a response model is fit conditional on T

within each subclass, we can also in principle average these fitted models and estimate the

drf. While we illustrate this possibility in our simulations, we advocate a flexible non-

parametric approach in Section 2.4.1.
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In contrast, to estimate the drf, HI computes the average potential outcome on a grid of

treatment values. In particular, at treatment level t, they compute

Ê{Y (t)} =
1

n

n∑
i=1

(
α̂0 + α̂1 · t+ α̂2 · t2 + α̂3 · r̂(t,Xi)+ α̂4 · r̂(t,Xi)

2 + α̂5 · t · r̂(t,Xi)
)
. (2.5)

In (2.5) the mean response had all individuals received dose t is estimated by computing a

dose-specific score: r is evaluated at t, not T . While not unprecedented (Rosenbaum, 1987;

Imbens, 2000), this distinguishes the method from both ipw and the p-function, for

which there is a single score for each individual. This difference has ramifications. When

the inverse gps is used as a weight, it cannot be stabilized in the standard manner because

pψ̂0
(t) does not vary among individuals so that pψ̂0

(t)/r(t,Xi) ∝ 1/r(t,Xi). Standard errors

can be calculated using the bootstrap, taking into account the estimation of both the gps

and model parameters.

In practice, we are often interested in the relative drf, E{Y (t) − Y (0)}, which compares

the average outcome under each treatment level with that under the control, i.e., t = 0. Of

course, in some studies there is no control per se and we revert to E{Y (t)}. In our simulation

studies we report the relative drf while in our applied example we report the drf which

is more appropriate in its particular context.

2.2.5 Extensions of the method of HI and RHB. Unfortunately, the quadratic regres-

sion in (2.3) is not sufficiently flexible for robust estimation of the drf, see Section 2.3. Bia

et al. (2011) and FFGN point out that misspecification of (2.3) can result in biased causal

quantites and FFGN proposes two alternatives. The first generalizes (2.3) with,

E(Y | T, R̂) = β(T, R̂) (2.6)
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where β(T, R̂) is a flexible nonparametric model; in our numerical studies we use a SCM.1

The drf, Ê{Y (t)}, and its standard errors are computed as in(2.5), but with

Ê{Y (t)} =
1

n

n∑
i=1

β̂[t, r̂(t,Xi)] (2.7)

Because the scm is a function of the gps, we refer to this method as scm(gps).

FFGN’s second method involves a gps version of inverse probability weighting. We refer

to this method as ipw0 because it uses naive rather than stabilized weights; recall that

stabilization is not possible when using 1/r̂(t,Xi) as weights, see Section 2.2.4. The ipw0

estimate of the drf is

Ê{Y (t)} =

N∑
i=1

K̃h,X(Ti − t) · Yi
N∑
i=1

K̃h,X(Ti − t)
, (2.8)

where K̃h,X(Ti− t) = Kh(Ti− t)/r̂(t,Xi), K(·) is a kernel function with the usual properties,

h is a bandwidth satisfying h→ 0 and Nh→∞ as N →∞, and Kh(·) = h−1K(·/h). This

is the local constant regression (Nadaraya-Watson) estimator but now with each individual’s

kernel weight being divided by its gps at t. To avoid boundary bias and to simplify derivative

estimation, the ipw0 estimates E{Y (t)} using a local linear regression of Y on T with a

weighted kernel function K̃h,X(Ti − t), i.e.,

Ê{Y (t)} =
D0(t)S2(t)−D1(t)S1(t)

S0(t)S2(t)− S2
1(t)

, (2.9)

where Sj(t) =
N∑
i=1

K̃h,X(Ti − t)(Ti − t)j and Dj(t) =
N∑
i=1

K̃h,X(Ti − t)(Ti − t)jYi. The global

bandwidth can be chosen following the procedure of Fan and Gijbels (1996). We use (2.9)

1FFGN propose a nonparametric kernel estimator with polynomial regression of order 1 (Fan and Gijbels,
1996), but we use the scm to facilitate comparisons of the methods. As with (2.2), we use the mgcv package
with penalized cubic regression splines as the basis functions with dimension equal to five for both T and R̂
along with a tensor product.
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Table 2.1: Estimates of the drf. Methods differ only in their response models, not their treatment models.

Estimate Description

IvD Using θ̂ to form S subclasses, fit a linear model within each subclass
and average the S fitted models to estimate drf.

HI Estimate the drf with (2.3) and (2.5).a

scm(gps) Same as HI, but with the quadratic regressions in (2.3) and (2.5) re-
placed by a scm as in (2.6) and (2.7).

ipw0 Same as HI, but with the quadratic regressions in (2.3) and (2.5) re-
placed by the kernel smoothing regression in (2.8) and (2.9).

ipwSW As in (2.4), but with the linear regression replaced by the kernel smooth-
ing regression in (2.8) and (2.9), but with K̃h,X(Ti − t) = Kh(Ti −
t)Ŵ (Ti,Xi).

scm(p-function) Estimate the drf with (2.12) and (2.13), see Section 2.4.
a In the linear fit of Simulation II, the quadratic models in (2.3) and (2.5) are replaced by linear models.

as the ipw0 estimator in our numerical studies.

Unfortunately, ipw0 can be very unstable, owing to the infinite variance of 1/r(t,Xi),

at least when the treatment is continuous (RHB). To improve ipw0 and to implement

the method of RHB for robust estimation of the drf, we replace 1/r̂(t,Xi) with Robins’

stabilized weight, Ŵ (T,X). We denote this method ipwSW, where the subscript indicates

its stabilized weights. Notice that these weights are evaluated at T rather than t. This is

a fundamental difference from the methods layed out by HI. In this regard ipwSW should

be viewed as a flexible implementation of the method of RHB with (2.4) replaced by kernel

smoothing regression of the form in (2.8), but with K̃h,X(Ti − t) = Kh(Ti − t)Ŵ (Ti,Xi).

Table 2.1 summarizes the specific estimates of the drf that we review in Sections 2.3-2.6.

2.3 Comparing IPW, the GPS, and the P-Function

In this section, we examine the differences between the methods of RHB, IvD, HI, and

FFGN using both simulation studies and theoretical comparisons. The key differences lie in

how the method summarizes p(T |X): the gps and the weights used in ipw both evaluate
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this density at the observed covariate, whereas the p-function uniquely parameterizes

it. As we show below, this difference leads to alternative response models and markedly

divergent results.

2.3.1 Simulation study I

In our first simulation study, we generate 2, 000 observations, each of which includes a single

continuous covariate, X, a continuous univariate treatment, T , and a response variable, Y .

We simulate Xi
ind∼ N (0.5, 0.25) and Ti | Xi

ind∼ N (Xi, 0.25) and assume that the potential

outcome is distributed as Yi(t) | Ti, Xi
ind∼ N (10Xi, 1) for all t ∈ T . In this simulation study

the true treatment effect is zero and the true drf is five for all t. We deliberately choose

this simple setting where any reasonable method should perform well. Fitting a simple linear

regression of Y on T yields a statistically significant treatment effect estimate of roughly five.

However, adjusting for X in the regression model is sufficient to yield an estimate that is

much closer to and is not statistically different from the true effect of zero.

Using the correctly specified treatment assignment model, Ti | Xi
ind∼ N (Xi, 0.25), the

marginal distribution of the the treatment, Ti ∼ N (0.5, 0.5), and the response models given

in Table 2.1, we implement the HI, IvD, scm(gps), ipw0, and ipwSW methods. For

the purposes of illustration, we do not adjust for θ̂ within each subclass when using IvD’s

method. Owing to the linear structure of the generative model, doing so would dramatically

reduce bias even with a small number of subclasses. Here we illustrate, instead, how bias

can be reduced by increasing the number of subclass; we implement IvD with S = 5, 10,

and 50 subclasses. For the methods other than IvD, we use a grid of ten equally spaced

points between −0.5 and 1.5, t1, . . . , tD with D = 10, to compute the relative drf and its

derivative. Standard errors are computed using 1,000 bootstrap replications.

Figure 2.1 presents the results. In the first row, we plot the estimated relative drf while
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Figure 2.1: Results of Simulation Study I. The first row plots the estimated relative drf
with the horizontal solid line representing the true relative drf. For IvD, we use S =
5, 10, 50 subclasses. The solid diagonal line for the method of HI is the unadjusted regression
of Y on T . The second row plots the estimated derivatives of the drf with the solid
line representing the truth. In both rows, the grey shaded areas represent 95% confidence
intervals. The estimated derivative for ipw0 is plotted on a different scale as its standard
error is significantly larger than that of the other methods.

the second row plots the estimated derivative of the drf. For HI, scm(gps), ipw0, and

ipwSW the derivative is computed as

1

2

[
Ê{Y (td+1)} − Ê{Y (td)}

td+1 − td
+
Ê{Y (td)} − Ê{Y (td−1)}

td − td−1

]
(2.10)

for d = 2, . . . D − 1. For d = 1, we simply use the first term in (2.10) and for d = 10 we

use the second term in (2.10). For IvD, the derivative is the weighted average of the within

subclass linear regression coefficient; 95% point-wise confidence intervals are shaded gray.

Figure 2.1 shows that even in this simple simulation, all methods except ipw0 miss the true

relative drf and its derivative, albeit to differing degrees. The behavior of IvD’s estimate
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improves with more subclasses, a luxury we can afford here because of the large sample size.

IvD makes the general recommendation that the within subclass models be adjusted for X

or at least for θ̂. Because of the simple structure of this simulation, doing so would result

in a correctly specified model even with a single subclass, eliminating bias in the estimated

average treatment effect.2 We do not recommend estimating the drf by averaging the

unadjusted within subclass models, but do so here to facilitate comparisons between the

methods. We propose a new estimate of the drf using the p-function in Section 2.4.1.

The performance of HI’s method is particularly poor; it differs only slightly from the un-

adjusted regression. Although scm(gps) offers limited improvement, it also introduces a

cyclic artifact into the fit. We will see this pattern again and discuss it in Section 2.3.6.

ipw0, on the other hand, results in an unstable fit that is characterized by large standard

errors. The performance of these methods are especially troubling both because the gps

was expressly designed to estimate the drf and because the current simulation setup is so

simple. Given their performance here, it is difficult to expect these methods to succeed in

more realistic settings. While ipwSW also misses the mark in Simulation I, it is important

to emphasize that RHB did not propose to use ipw to estimate the full drf. The primary

goal of this paper is to explain why the gps-based methods can fail and to provide a more

robust estimate of the drf.

One reason that gps-based methods can perform poorly is that their response model are

based on overly strong parametric assumptions, especially (2.3). This is illustrated in Fig-

ure 2.2 which compares the fitted mean potential outcome as a function of the gps and T

under the HI model (left panel) and under scm(gps) (middle panel). The fitted potential

2It would also complicate estimation of the drf. Because the treatment assignment mechanism is
strongly ignorable given the propensity function (IvD), we aim to adjust for the propensity function in a

robust manner in the response model. Thus, adjusting for θ̂ within the subclasses poses no conceptional
problem. In practice, however, θ̂ tends to be fairly constant within subclasses and its coefficient tends to be
correlated with the intercept. A solution is to recenter θ̂ within each subclass. Because, we propose a more
robust strategy for estimating the drf using the p-function in Section 2.4.1, however, we do not
purse such adjustment strategies here.
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Figure 2.2: The Varying Flexibility of the Response Models. The plots show the mean
potential outcome as a function of the gps and T under HI’s quadratic response model (left
panel), fitted scm(gps) (middle panel), and covariance adjustment gps (right panel).
Covariance adjustment gps fits a quadratic regression (Y ∼ R + R2) in each of several
subclasses based on T , see Appendix 2.5 for details. We use 10 subclasses but only plot five.
Subclassification is by far the most flexible of the three response models.

outcomes differs substantially and are considerably more constrained under the quadratic

model of HI. To fit an even more flexible response model, we subclassified the data into

10 subclasses based on T , and fit a quadratic regression for Y as a function of the gps

seperately within each of the subclasses. Five out of the 10 within subclass fit are plotted

in the right most plot in Figure 2.2. The results differs substantially from HI and reveals

the considerable constraint of the quadratic response model. Subclassifying on T in this way

leads to a new response model and a corresponding new gps-based estimate of the drf;

this method is discussed in Appendix 2.5.

2.3.2 Simulation study II

Although IvD’s response model in Simulation I is misspecified in terms of its adjustment for

X, the method may benefit from its assumption that the drf is linear in T . We address

this in the second simulation that compares the performance of the methods under several

alternative generative models. We also explore the frequency properties of the methods.

Suppose we have a simple random sample of 2, 000 observations that includes a trivariate
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normal covariate, (X1, X2, X3), with mean vector (1, 1, 4), component variances all equal to

one, Corr(X1, X2) = 0.3, Corr(X1, X3) = −0.4, and Corr(X2, X3) = 0.6. Suppose further

that the treatment is generated according to T | X ind∼ N (X1 − X2
2 + 0.5X3, 1) and the

response according to one of three response models:

Gaussian Linear DRF: Y (t) | t,X ind∼ N (X1 + 2X2 + t, 9),

Gaussian Quadratic DRF: Y (t) | t,X ind∼ N ((X1 + 2X2 + t)2, 9), or

Lognormal DRF: Y (t) | t,X ind∼ exp

{N (X1 + 2X2 + t, 9)

5

}
.

Unlike the Gaussian response models the lognormal model exhibits significant homoscedas-

ticity; the central 95% of the conditional variances range from 0.3 to 17.8.

To isolate the difference between the methods, we use the correctly specified treatment model

in our analyses. (We use the R function density to estimate the marginal distribution of T

for use in stabilized weights.) For the fitted response model under HI and IvD’s methods,

we consider Gaussian regression models that are linear and quadratic in T . In particular for

the method of IvD we fit (i) Y ∼ T and (ii) Y ∼ T + T 2 within each of S = 10 equally

sized subclasses, and for the method of HI we fit (i) Y ∼ T + R + R2 + R · T and (ii)

Y ∼ T + T 2 + R + R2 + R · T . With IvD, the relative drf is computed by averaging

the coefficients of the within subclass models. The response models given in Table 2.1 are

used for scm(gps), ipw0, and ipwSW. For the gps-based methods and ipw, the relative

drf is evaluated at ten equally spaced values of t between −1.9 to 3.4. The entire procedure

was repeated using all methods on each of 1,000 data sets generated with the same covariate

and treatment models and with each of the three response models. All of the fitted response

models are misspecified in their adjustment for X and/or T , as we expect in practice. Thus,

this simulation study investigates the robustness of the methods to typical misspecification

of the response model.
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Figure 2.3: Estimated Relative drfs in Simulation Study II Using the Methods of IvD and
HI. The solid lines plot the true relative drfs, the dashed lines plot the means of the
fitted relative drfs across 1000 simulations, and the gray shaded regions plot two standard
deviation pointwise intervals across the 1000 fits. The evenly-spaced grid of evaluation points
used with HI are also plotted as solid circles. The method of HI shows appreciable bias with
all six combinations of generative and fitted response models. The method of IvD, on the
other hand, is biased only when the fitted model is linear and the generative is not.

Figures 2.3 and 2.4 report the average of the estimated relative drfs across the simulations

(dashed lines) along with their two standard deviation intervals (shaded regions). The true

relative drf functions are plotted as solid lines; rows correspond to the three response
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Figure 2.4: Estimated Relative drfs in Simulation Study II for the scm(gps), ipw0,
ipwSW, and scm(p-function) Methods. Solid lines, dashed lines and gray regions rep-
resent the true relative drfs the means of the 1000 fitted relative drfs and 95% pointwise
intervals. Points represent the evenly-spaced grid points. The scm(p-function) method
is discussed in Section 2.4.1.

models. The left pair of columns in Figure 2.3 give results when the fitted model is linear

under the IvD method (column 1) and the HI method (column 2). The right pair of columns

give results when the fitted model is quadratic under the methods of IvD (column 3) and

HI (column 4).

The IvD method performs reasonably well when the generative model is linear (row 1).

When IvD is fit with a quadratic model (column 3), the drf is estimated with little bias

though the estimate has higher variability. IvD exhibits significant bias only when the fitted
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model is linear and the true drf is non-linear (column 1, rows 2 and 3). The HI method, on

the other hand, exhibits appreciable bias even when the fitted response model matches the

true model in its functional dependence on t. Like the IvD method, the bias is most acute

when the fitted model is linear but the true drf is not. Unlike with IvD, however, the 95%

frequency intervals of HI miss the true value completely across a wide range of treatment

values.

The first three columns of Figure 2.4 give result for scm(gps), ipw0, and ipwSW. All

three improve on HI when the true drf is quadratic, although the variances are larger. For

the linear drf, scm(gps) is comparable to HI while ipw0 exhibits enormous variance, and

ipwSW exhibits moderate variance. Except for the variance of ipw0, the heteroscedasticity

of the lognormal response model does not significantly effect the three methods.

2.3.3 Simulation study III

The simulation study aims to investigate the effect of a heteroscedastic treatment and the

robustness of the methods to misspecification of the treatment model. The simulation setup

is exactly as in Simulation study II (i.e., the same sample size, covariate distribution, and

replication) but we consider a heteroscedastic treatment, T | X ind∼ N (X1 − X2
2 , 0.25X2

3 ).

The response is generated according to the Gaussian quadratic drf of Simulation study II.

This simulation is repeated using two fitted treatment models:

Correctly Specified Treatment Model: T |X ind∼ N (β0 + β1X1 + β2X
2
2 , σ

2X2
3 )

Misspecified Treatment Model: T |X ind∼ N (β0 + β1X1 + β2X
2
2 , σ

2).

(We consider misspecification of both the mean and variance of the treatment model in

Section 2.6.2.) The parameters of both treatment models are fit via maximum likelihood

and the marginal treatment model is fit using the R function density. The estimated drfs
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Figure 2.5: Estimated Relative drfs under the Heteroscedastic Treatment of Simulation
Study III. Solid lines, dashed lines and gray regions represent the true relative drfs the
means of the 1,000 fitted relative drfs and 95% pointwise intervals.

fit with scm(gps), ipw0, and ipwSW using the response models in Table 2.1 appear in

the first three columns of Figure 2.5. Using the bandwidth of Fan and Gijbels (1996) as

suggested by FFGN leads to numerical instability in 708 of the 1000 datasets fit with ipw0

under the correctly specified treatment model. The bandwidth can be tuned to improve

stability; results in Figure 2.5 are based on a single bandwidth that gave stable results in

793 of the 1,000 datasets. Although this procedure would be difficult to implement with a

single dataset, it gives the best possible representation to ipw0. The standard bandwidth of

Fan and Gijbels (1996) was used with the misspecified treatment model. The specification

of the treatment model has little effect on scm(gps). For both of the ipw methods, the

choice of treatment model effects the variance more than the bias of the fitted drf, and,

ipw0 is much more stable with the misspecified model. Of the three methods ipwSW is

clearly best in terms of coverage and stability.
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Taking the results of Simulations I–III together, ipwSW preforms better than the other

methods. The gps methods (HI, scm(gps), and ipw0) are explicitly designed to estimate

the drf but seem ill-suited to the task.

2.3.4 Simulation study III.1

Although the scm(gps) estimate of the drf shows some bias in Simulation studies II and

III, the cyclic bias that it exhibits in Simulation I is much less pronounced in Figures 2.4

and 2.5. To see if the cyclic bias exists in more complex settings, we extend the well-known

simulation study of Kang and Schafer (2007) to a continuous treatment. In particular, we

independently simulate Zij ∼ N(0, 1) for i = 1, . . . , 2000 and j = 1, . . . , 4 and generate

Ti = −Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4 + σi,

where σi ∼ N(0, 1), and

Yi = 210 + 27.4Zi1 + 13.7Zi2 + 13.7Zi3 + 13.7Zi4 + 10Ti + εi

where εi ∼ N(0, 1). We estimate the relative drf by applying the methods of HI, scm(gps),

ipw0, ipwSW, and scm(p-function) to each of 1000 replicated data sets. We use the

correctly specified treatment model and the fitted response models given in Table 2.1. Fig-

ure 2.6 shows that the cyclic bias remains a problem for scm(gps) and that large variances

continue to plague ipw0. The stabilized weights of ipwSW clearly improve its performance,

relative to ipw0. Nonetheless, scm(p-function) dominated the other methods.
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Figure 2.6: Estimated Relative drf in Simulation V. Solid lines, dashed lines and gray
regions represent the true relative drfs the means of the 1000 fitted relative drfs and
95% pointwise intervals. The evaluation points are identical for all plots. scm(gps) exhibits
a cyclic artifact and ipw0 is quite unstable. The scm(p-function) method proposed
in Section 2.4.1 again ourperforms the other methods.

2.3.5 Theoretical considerations and methodological implications

To better understand the simulation results, we consider the tradeoff in assumptions required

by ipw, the gps, and the p-function. All three require a form of conditional inde-

pendence between T and X—after weighting, conditioning on the gps, and conditioning

of the p-function, respectively. While IvD make the strong theoretical assumption of

a uniquely parameterized propensity function, ipw and the method of HI effectively make

the same assumption in that they typically use the same parametric treatment models.

To flesh this out, recall that the three methods generalize RR’s propensity score. In the

binary case, p(T |X) is uniquely determined by e(X) = p(T = 1|X). IvD focus on uniquely

determining the full conditional distribution of T given X, and assume this conditional

distribution is parameterized and can be uniquely represented by θ. RHB and HI, on the

other hand, do not constrain the treatment assignment model in this way and instead,

following the binary propensity score, evaluate p(T |X) to compute propensity weights or

gps. In this way the gps does not uniquely determine p(T |X). There may be multiple

distributions that are equal when evaluated at a particular t. The assumption of a uniquely

parameterized propensity function constrains the choice of treatment model that can be used

for a p-function. In practice, however, the same treatment models are typically used by

all three methods.
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Comparing IvD and HI, the assumption of IvD allows a stronger form of strong ignorability

of the treatment assignment given the propensity function. In particular, Result 2 of IvD

states

Ignorability of IvD: p{Y (t) | T, e(· | θ)} = p{Y (t) | e(· | θ)} for every t,

Whereas, in their Theorem 2.1., HI show

Ignorability of HI: pT{t | r(t,X), Y (t)} = pT{t | r(t,X)} for every t.

In the case where T is categorical, HI’s ignorablity implies that 1{T = t} and Y (t) are

independent given r(t,X), where the gps is evaluated at the particular value of t in the in-

dicator function. Although achieving conditional independence of Y (t) and T would require

conditioning on a family of gps, HI provide an insightful moment calculation to show how

the response model described in Section 2.2.2 can be used to compute the drf. Nonetheless

conditioning on either R or r(t,X), for any particular value of t does not guarantee that T

will be uncorrelated with the potential outcomes. The fact that the gps does not constitute

a single score for each individual restricts the response models that can be used. Subclassi-

fication, for example, is not feasible unless the classifying variable is low dimensional. The

advantage of IvD over HI is that Y (t) and T are conditionally independence given the low-

dimensional score, θ, enabling the use of a wide-range of response models. Similarly, ipw

only requires that Y (t) and T be independent in the weighted sample: any model that allows

for weighting can be used.

2.3.6 Simulation study IV: The potential cyclic bias of SCM(GPS)

The drf fitted with scm(gps) in Simulation I exhibits a cyclic artifact that does not

exist in the underlying drf; Section 2.3.4 provides another simulation study in which this

32



−2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

T

E
st

im
at

ed
 D

R
F

SCM(GPS)

−2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

T

IPWsw

−2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

T

SCM(P−FUNCTION)

Figure 2.7: Estimated DRF for Simulation IV. Solid lines, dashed lines and gray regions rep-
resent the true drfs the means of the 1,000 fitted drfs and 95% pointwise intervals. Only
scm(gps) exhibits the cyclic bias. The scm(p-function) is introduced in Section 2.4.
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Figure 2.8: How the scm(gps) fit can lead to a cyclic artifact in the the fitted drf. The
leftmost panel overlays a scatter plot of T and the gps, R̂, on a heat map of the fitted
scm(gps) response model in Simulation IV. The other three panels overlay scatterplots
of (t, r̂(t,Xi)), with t equal to 0, 0.5, and 1. (We jitter in the T direction to improve
visualization.) The panels show that as t increases the (t, r̂(t,Xi)) clusters move from local
minima to local maxima and back, resulting in a cyclic pattern in the fitted drf.

effect is even more pronounced. Here we present a simulation study that investigates the

origin of this cyclic bias. In particular, we independently generate Zi ∼ Bernoulli(0.5),

Xi ∼ N (Zi, 0.01), Ti ∼ N (Xi, 1), and Yi ∼ N (4Zi, 1), for i = 1, . . . , 2000. Using the correct

treatment model, we estimate the drf using scm(gps) at ten evenly spaced theoretical

percentiles of T . We repeat the entire fitting procedure on each of 1,000 replicated data

sets and plot the average of the estimated drf and their pointwise two standard deviation

intervals in Figure 2.7. For comparison, we also present results for ipwSW. The cyclic bias

of the scm(gps) fit is evident.

To see the source of the cyclic bias, we plot the fitted response model, the scm given in

(2.6), as a heat map along with a scatter plot of the observed (Ti, R̂i) in the leftmost panel
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of Figure 2.8. The two bell-shaped curves that appear in the plotted values of (Ti, R̂i) stem

from the definition of the gps; R̂i is the value of the fitted density function of T . By design,

X clusters around the two values of Z; these two clusters correspond to the two bell-shaped

curves.

The overlapping bell-shaped curves in the observed (Ti, R̂i) induce a cyclic pattern in the

fitted scm-response model. To estimate the drf at t, the fitted response model is evaluated

at and averaged over each r̂(t,Xi). This is illustrated in the second panel of Figure 2.8 which

plots (t, r̂(t,Xi)) with t = 0 on top of the fitted scm. The cluster of points at the top of

the panel land in a local minimum resulting in the dip of the fitted drf in Figure 2.7. The

third and fourth panels show that as t increases to 0.5 and 1.0, the values of (t, r̂(t,Xi))

continue to cluster, but the clusters shift from minima to maxima of the fitted scm, leading

to the cyclic pattern in the fitted drf.

The patterned behavior of the gps (illustrated in the first panel of Figure 2.7) means

that the response model is particularly difficult to accurately represent, even with a flexible

non-parametric model, and that extrapolation is especially likely. Unfortunately, this is

inevitable: when estimating the drf we must evaluate the fitted response model at each

value of r̂(t,Xi), including at unobserved combinations of t and r̂(t,Xi), see (2.6) and (2.7).

This is a difficulty with the underlying response model, regardless of the choice of fitted

response model. Although Simulation IV uses a simple setting to clearly explain the cyclic

bias of scm(gps), the bias persist in more complex settings (see Figures 2.1, 2.4, 2.14, and

2.6).

2.4 New Methods for Estimating the DRF

In this section, we propose three new methods for robust estimation of the drf using the
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p-function and gps based on scm and covariance adjustment.

2.4.1 The scm(p-function) Estimate

IvD developed the p-function to estimate the average treatment effect, rather than the

full drf. Nonetheless we use the framework of IvD to compute the drf in Simulation

studies I and II (see Figures 2.1 and 2.3). The method we employ, however, is constrained

by its dependence on the parametric form of the within subclass model. Practitioners would

generally prefer a robust and flexible drf, and here we propose a procedure that allows

such estimation. We view this estimate as the best available for a drf in an observational

study.

We begin by writing the drf as

E[Y (t)] = E
[
E[Y (t) | θ]

]
= E

[
E[Y (T ) | θ, T = t]

]
(2.11)

where the first equality follows from the law of iterated expectation and the second from the

strong ignorability of the treatment assignment given the p-function. We estimate the

drf using the right-most expression in (2.11) which we flexibly model using a scm,

E[Y (T ) | θ, T = t] = f(θ, T ), (2.12)

where f(·) is a smooth function of θ and T . In practice we replace θ by θ̂ from the fit-

ted treatment model. We approximate the outer expectation in (2.11) by averaging over

the empirical distribution of θ̂, to obtain an estimate of the drf using a scm of the p-

function,

Ê[Y (t)] =
1

n

n∑
i=1

f̂(θ̂i, t), (2.13)
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where f̂(·) is the fitted scm. We refer to this method of estimating the drf as the scm(p-

function) method and typically evaluate (2.13) on a grid of values of t1, . . . , tD evenly

spaced in range of the observed treatments. Bootstrap standard errors are computed on the

same grid.

Comparing (2.6)–(2.7) with (2.12)–(2.13), scm(gps) and scm(p-function) are algo-

rithmically very similar. The primary difference is the choice between the p-function

and gps in the response model. As we shall see, this change has a siginificant effect on the

statistical properties of the estimates. Simply put, θ is a much better behaved predictor

variable than is R. When using Gaussian linear regression for the treatment model, for

example, θ = X>i β, whereas R is the Gaussian density evaluated at T . As illustrated in

Section 2.3.6, the dependence of the gps on t and the non-monotonicity of this dependence

both complicate the response model and pose challenges to robust estimation.

Computing Ê[Y (t0)] with (2.13) for some particular t0 involves evaluating f̂(·, t0) at every

observed value of θ̂i. Invariably, the range of θ̂ observed among units with T near t0 is smaller

than the total range of θ̂, at least for some values of t0. Thus, evaluating (2.13) involves

some degree of extrapolation, at least for some values of t. Luckily, this problem is relatively

easy to diagnose with a scatter plot of the observed values of (Ti, θ̂i). The estimate in (2.13)

may be biased for values of the treatment where the range of observed θ̂i is relatively small.

As we illustrate in our simulation studies, however, (2.13) appears quite robust and this bias

is small relative to the biases of other available methods.

2.4.2 The numerical performance of scm(p-function): Simulation

studies I–IV revisited

We now revisit the simulation studies from Section 2.3, which illustrate the potentially mis-

leading results and/or high variance of existing estimates of the drf. Here, we compare
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Figure 2.9: Estimated Relative DRF Using scm(p-function) in Simulation Study I. The
solid (dashed) lines represent the true (fitted) relative drf, the 95% confidence bands are
plotted in grey, and the grid points are identical to those in Figure 2.1. The fitted relative
drf is much improved compared with those of HI, scm(gps), ipw0, and ipwSW but
without the linear assumptions of IvD (see Figure 2.1).

these results with those of scm(p-function). In all cases, scm(p-function) was

fitted using the same (correctly specified or misspecifed) treatment assignment model and

with the same equally-spaced grid points. When fitting the scm, we continue to use the

penalized cubic regression spline basis for both parameters (R and T ) and a tensor product

to construct a smooth fit of the continuous function f(θ, T ) (see mgcv R-package documen-

tation). Figure 2.9 and the rightmost panel of Figure 2.7 show the fitted (relative) drf for

scm(p-function) in Simulations I and IV, respectively. The performance of scm(p-

function) is a dramatic improvement over all other methods in Simulation I and over

scm(gps) in Simulation IV (see Figures 2.1, 2.7, and 2.9).

The rightmost column of Figure 2.4 presents the results of the scm(p-function) method

in Simulation study II. Comparing Figures 2.3 and 2.4 again illustrates the advantages of

the proposed method. The fits in Figure 2.3 are quite dependent on the parametric choice

of the response model, whereas the non-parametric fits illustrated in Figure 2.4 do not

require a parametric form. Among the non-parametric methods, the advantage of scm(p-

function) over scm(gps) and ipw0 is clear. It essentially eliminates bias with only

a small increase in variance. Only ipwSW has comparable statistical properties in this

simulation.
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In Simulation III, the correctly specified heteroscedastic treatment model is parameterized

by a bivariate function; θ has two components which are equal to the mean and log-variance

of the fitted treatment model. Both components of θ are used as predictor variables in the

scm used to model the response. The rightmost column of Figure 2.5 shows that scm(p-

function) performs very well in Simulation III, especially with the simpler misspecified

treatment model.

Overall, scm(p-function) consistently provides better estimates than HI, scm(gps),

and ipw0, both in terms of bias and variance. The ipwSW also preforms better than these

method and is comparable to scm(p-function) in Simulations II and IV. In the bulk of

our numerical studies (Simulations I and III, as well as in Simulation V in Appendix 2.3.4

and the applied example in Section 2.6), however, scm(p-function) outperforms even

ipwSW.

2.5 Covariance Adjustment GPS and Covariance Ad-

justment P-Function

2.5.1 Covariance adjustment for catagorical treatments

One of the response models suggested by RR for a binary treatment in an observational study

involves covariance adjustment. With this method, the response variable is regressed on the

fitted propensity score separately for the treatment and control groups. Suppose we use the

gps in place of the propensity score in the context of a binary treatment. Specifically, for

units in the treatment group, we use the ordinary propensity score, Ri = r(1,Xi) = pψ(T =

1 | Xi), but for units assigned to the control group, we use the probability of control rather

than the probability of treatment, Ri = r(0,Xi) = pψ(T = 0 | Xi). Because the gps is
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equal to the propensity score for treatment units and is equal to one minus the propensity

score for control units (Imbens, 2000), it is easy to see that the usual covariance adjustment

is equivalent to fitting the following regression model,

Yi ∼ αt + βtR̂i, (2.14)

separately for the treatment and control units, i.e., t = 0 and 1. The linear transformation

of the predictor variable does not effect the predicted value of the response for the control

group.

After fitting the model given in equation (2.14), the average of the two potential outcomes

can be estimated by averaging the fitted values over all units in the sample. That is, we

compute

Ê{Y (t)} =
1

n

n∑
i=1

{
α̂t + β̂t r̂(t,Xi)

}
, (2.15)

for t = 0, 1. The estimated average causal effect is simply the difference Ê{Y (1)}−Ê{Y (0)},

which is equivalent to the estimate reported in equation (2.1). Thus, with a binary treatment,

the method of HI is equivalent to RR’s covariate adjustment, except that HI propose a

quadratic rather than a linear response model.

Suppose now that the treatment variable is categorical with more than two levels. In prin-

ciple, exactly the same procedure can be applied. Namely, the regression model given in

equation (2.14) can be fitted separately for units in each treatment group and the aver-

age potential outcome can be computed using the formula of equation (2.15) for each level

of the treatment. We refer to this procedure as covariate adjustment gps for categorical

treatments. The relative drf can be estimated as Ê{Y (t)} − Ê{Y (0)} for each t. This

procedure’s validity follows directly from the theory of RR because it only considers two

treatments at a time.
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If the categorical treatment variable is ordinal with a meaningful numerical scale, we can use

the quadratic regression model of equation (2.3) suggested by HI. However, such a model

is restrictive because the slope for gps in the model changes in a particular way across

the treatment levels. Figure 2.2 shows that this assumption may be too strong to justify in

practice.

The usefulness of the covariance adjustment gps for categorical variables is limited by our

ability to fit multiple regression models with limited data. When the treatment takes a

large number of values, the method may be infeasible. This problem is even more acute

for continuous treatments where it is simply impossible to fit a separate regression model

for each observed treatment level. We now discuss the covariate adjustment for continuous

treatments.

2.5.2 Covariance adjustment gps for continuous treatments

To use covariance adjustment with a continuous treatment variable, we propose to subclassify

the data on the treatment variable rather than on the gps or the p-function. To facil-

itate the computation of standard errors via bootstrap (see below), we form the subclasses

using the theoretical quantiles of the fitted treatment assignment model. This is typically

easy to accomplish via Monte Carlo. We draw a large sample from the fitted treatment

assignment model with parameters fixed at their fitted values and covariates sampled from

their observed values and estimate the theoretical quantiles based on this sample. We also

compute the theoretical median, or its Monte Carlo approximation, within each subclass and

denote it as ts for s = 1, . . . , S with S the number of subclasses.

With the subclassifed data in hand, we fit the model defined in equation (2.14) separately

for each subclass. Alternatively, we can use a more flexible model. Here, we consider both

quadratic regression, i.e., Y ∼ αt + βtR̂ + γtR̂
2, and the scm of E[Y |R̂] = fs(R̂). We then
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compute the gps for each unit at the median treatment value within each subclass, i.e.,

r̂(ts,Xi) for i = 1, . . . , n and s = 1, . . . , S. Finally, we estimate the drf by computing

Ê{Y (ts)} for each ts using equation (2.15) or an appropriate generalization of it if a different

response model is used. The derivative of the drf at ts can be estimated as in (2.10). Notice

that the grid values at which we compute the drf are different than those advocated by

HI. Ours are based on percentiles of the fitted treatment assignment model, whereas theirs

are equally spaced in the range of observed treatments.

The standard bias-variance tradeoff arises when selecting the number of subclasses, S. We

generally defer to Cochran’s advice and use about five (Cochran, 1968). Sensitivity to the

choice of S can be quantified by repeating the entire procedure with S equal to approximately

three and ten. One source of bias in this procedure results from using units with a range of

treatment values to fit the model given in equation (2.14) (or a more flexible version of it).

This bias will be especially acute in subclasses with a relatively wide range of the treatment

value. If the distribution of the treatment has tails in either direction this correspond to

extreme evaluation points of the drf, t1 and tS. Thus, in some cases, we might want to

increase the number of subclasses, especially when the extremities of the drf are of interest.

This point is illustrated in Sections 2.5.4.

We approximate the standard errors of the estimated drf and its estimated derivative

via bootstrap resampling. We resample the data, fit the treatment model, subclassify, and

compute the drf and its derivative for each resampled data as described above. We use the

same evaluation points, t1, . . . , tS for each resampled data set. Because both the treatment

assignment model and the response model are fitted to each bootstrap sample, this procedure

accounts for both sources of uncertainty.
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2.5.3 Covariance adjustment p-function for continuous treatments

As shown in Section 2.3.5, the p-function allows a stronger form of strong ignorability

of the treatment assignment given the propensity function than the gps. Thus, we could

replace the gps used in the covariance adjustment gps method by p-function and still

get a legitimate method, which we define to be the covariance adjustment p-function. In

particular, firstly of all we subclassify the data on the treatment variable. Secondly, within

each subclass, we fit a seperate response model, for example scm of,

E[Y |θ̂] = fs(θ̂) (2.16)

Lastly, we estimate the drf at the median treatment value of each subclass using

Ê{Y (ts)} =
1

n

n∑
i=1

f̂s(θ̂i) (2.17)

The standard errors of the estimated drf and its estimated derivative are also approximated

via bootstrap resampling, which is completely analogous to the covariance adjustment gps

method.

2.5.4 The numerical performance of Covariance Adjustment gps

and p-function Method

We now examine the performance of covariance adjustment gps and p-function in

Simulations I, II, and III. In Simulation I, we again use the the correct treatment assignment

model and S = 10 subclasses with grid points at the 5%, 15%, . . . , and 95% quantiles of

T . (Using S = 5 or 15 gives similar results.) We compare three within subclass response

models, which are (i) Y ∼ R, (ii) Y ∼ R + R2, and (iii) Y ∼ f(R), where f(·) is a scm

for the covariance adjustment gps method. For the covariance adjustment p-function
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Covariance Adjustment GPS
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Figure 2.10: Estimated Relative drfs in Simulation Study I for the Covariance Adjustment
gps and p-function Method. The three columns correspond to the three within subclass
models. In all plots the solid (dashed) lines represent the true (fitted) relative drf and 95%
confidence bands based on 1000 bootstrap replications are plotted in grey.

method, we simply replace the gps R by the p-function θ in the response models. The

results are shown in Figure 2.10. The three response models are labelled linear, quadratic,

and SCM fit within subclasses, respectively. For the covariance adjustment gps method, the

response models are conditional on R, rather than on T as in Section 2.3.1 because covariance

adjustment gps subclassifies on T . As mentioned in Section 2.5.2, the fitted relative drf

exhibit bias in extreme subclasses owing to the relatively large range of treatment levels in

these classes. On the other hand, the covariance adjustment p-function method works

very well in all subclasses. Because the three within subclass models used with both methods

lead to very similar fits, we only present results for the quadratic model in the rest of this

article.

Figure 2.11 shows the estimated relative drfs in Simualtion II. We still use the correct
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Figure 2.11: Estimated Relative drfs in Simulation Study II for the Covariance Adjustment
gps and p-function Method. Solid lines represent the true relative drf and dashed
lines the average of the fitted relative drfs across 1000 simulations. Points represent the
theoretical quantiles of T used to construct the subclasses. The grey shaded regions represent
pointwise intervals containing 95% of the 1000 fitted relative drfs. Note that the scale of
the y-axis for the first row is the same Figure 2.3 and 2.4 while the second row is plotted
in a different scale as the covariance adjustment p-function method shows significantly
larger standard deviation than all other methods.

treatment assignment model and a quadratic response model for both covariance adjust-

ment gps and p-function method within each of S = 10 subclasses. (Using S = 7 or

13 and/or the other two within subclass models yields similar results.) For the covariance

adjustment gps method, the result is similar to Simualtion I: except in the two most ex-

treme subclasses, the estimated drf appears to be essentially unbiased. The fitted relative

drf deteriorates in the extreme, more heterogeneous treatment subclasses. Because the

distribution of treatment is left skewed, this is less of a problem for the right-most than

for the left-most subclass. However, unlike in Simuation study I, the covariance adjustment

p-function method is now outperformed by the covariance adjustment gps method.
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Figure 2.12: Estimated Relative drfs in Simulation Study III for the Covariance Adjust-
ment gps and p-function Method. Solid lines represent the true relative drf and
dashed lines the average of the fitted relative drfs across 1000 simulations. Points repre-
sent the theoretical quantiles of T used to construct the subclasses. The grey shaded regions
represent pointwise intervals containing 95% of the 1000 fitted relative drfs.

Its estimated drf is not only biased in most subclasses but also shows significant larger

variance than all available methods (Note that we use a different scale on the y-axis in

Figure 2.11 to account for such large variance).

Interestingly, the covariance adjustment gps and p-function methods perform about

the same in Simulation III, which is shown in Figure 2.12. In this simulation study, we use

both correctly and misspecified treatment models. Under the correctly specified treatment

model, we use a quadratic response model Y ∼ R + R2 for the covariance adjustment gps

method and Y ∼ θ1 + θ2
1 + θ2 + θ2

2 + θ1 · θ2 for the covariance adjustment p-function

method within each of the S = 10 subclasses, where (θ1, θ2) consists the p-function in

this case. Under the misspecified treatment model, the response model stays the same for
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the covariance adjustment gps method (although the estimated gps, R̂, differs) while for

the covariance adjustment p-function method it turns into Y ∼ θ1 + θ2
1. We simply

discard θ2 in this case as it is no longer a component of the p-function.

2.6 Example: The effect of smoking on medical expen-

ditures

2.6.1 Background

We now illustrate the available methods by estimating the drf of smoking on annual medical

expenditures. The data we use were extracted from the 1987 National Medical Expenditure

Survey (NMES) by Johnson et al. (2003). Its details information about frequency and

duration of smoking allows us to continuously distinguish among smokers and estimate the

effects of smoking as a function of how much they smoke. The response variable, medical

costs, is verified by multiple interviews and additional data from clinicians and hospitals.

IvD used the propensity function to estimate the average effect of smoking on medical

expenditures. We extend their analysis and study estimation of the full drf. Like IvD,

we adjust for the following subject-level covariates: age at the times of the survey, age

when the individual started smoking, gender, race (white, black, other), marriage status

(married, widowed, divorced, separated, never married), educational level (college graduate,

some college, high school graduate, other), census region (Northeast, Midwest, South, West),

poverty status (poor, near poor, low income, middle income, high income), and seat belt

usage (rarely, sometimes, always/almost always).

To measure the cumulative exposure to smoking based on the self-reported smoking frequency
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and duration, Johnson et al. (2003) proposed the variable of packyear, defined as

packyear =
number of cigarettes per day

20
× number of years smoked. (2.18)

We use log(packyear) as our treatment variable. We follow Johnson et al. (2003) and

IvD and discard all individuals with missing values and conduct a complete-case analysis,

yielding a sample of 9,073 smokers. Although in general complete-case propensity-score-

based analyses produce biased causal inference unless the data are missing completely at

random (D’Agostino and Rubin, 2000), Johnson et al. (2003) showed that accounting for the

missing data using multiple imputation did not significantly affect their results.

Because the observed response variable, self-reported medical expenditure, denoted Y , is

semicontinuous, we use the two-part model of Duan et al. (1983). This involves first mod-

eling the probability of spending some money on medical care, Pr(Y > 0 | T,X), where

T = log(packyear), and X represents the covariates; and then modeling the conditional

distribution of Y given T and X for those who reportedf positive medical expenditure.

To illustrate and compare methods for computing the drf, we concentrate on the sec-

ond part of this model. Because the distribution of Y is skewed, we consider the model

p(log(Y ) | Y > 0, T,X).

For our treatment assignment model, we use a Gaussian linear regression adjusted for all

available covariates and the second order terms of two age covariates. The model was fit-

ted using sampling weights provided with the original data. This is the same treatment

assignment model used by IvD who demonstrate that it achieves adequate balance.
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Figure 2.13: A Diagnostic for scm(p-function). Because the range of the θ̂i when Ti > 3
is less than the overall range of θ̂i estimating the drf for t > 3 involves extrapolation under
the scm and thus possible bias. The single individual with Ti slightly larger than three and
θ̂i less than one is circled. Although this datapoint may mitigate bias for t near three, the
fitted drf for t > 3 may be seriously biased.

2.6.2 Simulation study based on the smoking data

This simulation study aims to mimic the characteristics of the actual data with the goal

of comparing the statistical properties of the proposed methods in as realistic a setting as

possible. In particular, we do not alter the observed covariates or treatment and use the

same fitted treatment model used by IvD. Figure 2.13 presents a scatter plot of the observed

treatment variable, Ti = log(packyear), and the values of the p-function from the fitted

treatment assignment model, θ̂i. As discussed in Section 2.4.1, this plot can be used as a

diagnostic for scm(p-function). Recall that this estimate requires that we fit a scm

to predict the response variable as a function of Ti and θ̂i. To estimate the drf at t we

must evaluate the fitted scm at (t, θ̂i) using each observed θ̂i in the data set. This involves

extrapolation and thus possible bias if the range of θi at a particular value of t is less than

the overall range of θi. Judging from Figure 2.13, this is a concern for t greater than about

three. There is a solitary individual with Ti slightly above three and θ̂1 < 1 that is circled

in Figure 2.13. Even this single point can guard against significant extrapolation bias for t
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less than three, but the concern remains for larger t. We emphasize that this diagnostic is

preformed before the response model is fit.

To explore the robustness of the methods to different drfs, we simulate the response vari-

able under three known drfs and attempt to reconstruct them using HI, scm(gps), ipw0,

ipwSW, scm(p-function), covariance adjustment gps and p-function. In par-

ticular, we assume log(Yi(t)) ∼ N (E[log(Yi(t))], 0.5
2) with t = log(packyear) and consider

three functional forms for E[log(Yi(t))]:

Quadratic DRF : E[log(Yi(t))] =
4

25
· t2 + [log(agei)]

2

Piecewise− Linear DRF : E[log(Yi(t))] =


−4− 0.5 · t+ [log(agei)]

2, t ≤ 2

−5− 2.3 · (t− 2) + [log(agei)]
2, t > 2,

Hockey − Stick DRF : E[log(Yi(t))] =


−8.1 + [log(agei)]

2, t ≤ 3

−8.1 + 1.5 · (t− 3)2 + [log(agei)]
2, t > 3,

where age is the age at the time of the survey. We include age because it is the covariate

most correlated with log(packyear) and thus most able to bias a naive analysis. Each of the

response models was fitted using the sampling weights.3

Each of the seven methods was fitted to one data set generated under each of the three drfs.

We evaluate each drf at ten points equally spaced between the 5% and 95% quantiles of

log(packyear). The results fitted by all existing and the scm(p-function) methods

3When using ipw0 or ipwSW, we construct new weights by multipling the weights required by ipw
and the sampling weights. We also take the sampling weights into account when estimating the marginal
distribution of the treatment with ipwSW (using the density function in R). Ignoring the sampling weights
leads to similar results.
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Figure 2.15: Estimated drf for the Simulation Based on Smoking Data Using the Covari-
ance Adjustment gps and p-function Method. In all plots the dotted lines with bullets
correspond to the fitted drf. The true drf is plotted as solid lines while dashed lines
represent the fitted scm of log(Y ) on T , unadjusted for the covariates. Evaluation points
are based on the theoretical quantiles of log(packyear). The 95% asymptotic confidence
bands plotted in grey are based on 1000 bootstrap replications.

appear in Figure 2.14 4 in which rows correspond to the three generative models and columns

represent the method used to fit the drf. In Figure 2.15, where we show the results under

covariance adjustment gps and p-function methods, such order is reversed. In all plots,

the true drf is plotted as a solid line and a directly fitted scm of log(Y ) on T as a dashed

line. This scm fit is a simple bench mark; it does not account for covariates in any way,

in particular it does not adjust for any summary of the treatment assignment model. The

fitted drfs are plotted with dotted lines and bullets indicate the grid where the estimates

are evaluated. The shaded regions represent 95% point-wise bootstrap confidence intervals.

4The general shape of the estimated drf fitted by the covariance adjustment gps and p-
function are very similar to that fitted by scm(gps) and scm(p-function). But the
blocky nature of the covariance adjustment method may lead many users to prefer the smooth fitted drf
obtained with scm method.
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The diagnostic described in Figure 2.13 indicates possible bias in the scm(p-function)

method for t > 3. Thus, we plot the fit in this region in light grey to emphasize its potential

unreliability.

The HI fit misses the true drf under all three generative models, even the quadratic drf

which coincides with the parametric dependence of log(Y ) on T under HI’s response model.

Instead, HI’s fitted drf tends to follow the unadjusted scm fit of log(Y ) on T . Although

scm(gps) improve somewhat on HI, it still exhibits a cyclic pattern; notice its cubic-like

fits in the first and third rows. Unfortunately, ipw0 again exhibits instability, although

in this case it takes the form of bias rather than variance. Although ipwSW performs

significantly better than ipw0 in our simulation studies, here the methods are essentially

indistinguishable. Finally, scm(p-function) closely matches the true drf under all

three generative models, at least for t < 3. As discussed above, we suspect bias for t > 3 and

see that the fitted drf reverts to the unadjusted scm in this range. The quality of the fit

can be improved still further by increasing the dimension of the basis used in the scm. We

do not purse this strategy, however, for fear of over fitting. Overall, scm(p-function)

appears to be the most reliable, especially considering the diagnostic that alerts us the ranges

of t where there is the potential for bias.

2.7 Concluding Remarks

Propensity score methods have gained wide popularity among applied researchers in a num-

ber of disciplines. Although they were originally designed exclusively for binary treatment

regimes, the fact that treatment variables of interest are not binary in many research set-

tings has led to proposals for generalized propensity score methods. These methods are

applicable to a variety of non-binary treatment regimes, and their applications are becoming

increasingly common.
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In this article, we compare the three most frquently used generalized propensity score meth-

ods, ipw of Robins et al. (2000a), the gps of Hirano and Imbens (2004) and the p-

function of Imai and van Dyk (2004), as well as the two gps-based methods of Flores

et al. (2012). First, we show that the suggested implementation of the HI method is sensitive

to misspecification of the response model. Second, we show that while scm(gps) exhibits

substantial improvement over HI’s method, it remains biased and/or can exhibit a cyclic arti-

fact in some situations. Third, we demonstrate that while Flores et al.’s ipw0 can be highly

unstable, using RHB’s stabilized weights can significantly improve its performance. Finally,

while IvD provides a relatively robust estimate of the average causal effect, its main limita-

tion is its inability to estimate the drf. We show how to obtain an estimate of the drf

based on the p-function and empirically compare its performance to that of the other

estimates. We also give an explanation as to why the scm(p-function) method outper-

forms the scm(gps) method. While scm(p-function) preforms well in comparison to

other methods, it remains biased in realistic settings. We emphasize that researchers should

be cautious when using any method to estimate the full drf with a continuous treatment in

an observational study.

There are several important challenges that must still be addressed. We have largely assumed

that the propensity weights, gps, and p-function can be correctly estimated. This

is an optimistic assumption given that modeling a multi-valued or continuous treatment

in a high-dimensional covariate space is much more difficult than doing so for a binary

treatment (see e.g., Imai and Ratkovic, 2013, for one recent method that addresses this issue).

Diagnostic tools developed for the binary treatment case are also not directly applicable to

general treatment regimes. Even more challenging is diagnosing misspecification in the

response model. As we have illustrated, this can lead to significant bias in the estimated

drf. Our proposals rely on implementing more flexible response models in more natural

spaces, but principled diagnostics for the response model remain elusive. Diagnosing and

correcting for inbalance in either the p-function or the gps is another difficulty. Since
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the subpopulation that has propensity for treatment varies with the dose, the estimated dose

response function is in effect the treatment effect on a varying subpopulation. Future research

must develop methods for estimating the propensity weights, gps, and p-function in

the presence of possible misspecification of the treatment assignment model and the drf

in the presence of possible misspecification of the response model, as well as diagnostics for

both models.
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Chapter 3

Using Principal Stratification to

Adjust for Imperfect Attendance

When Estimating the Effect of the

Read 180 Program

3.1 Introduction

Causal inference can be a challenge in more than observation studies. Many double-blind

placebo-controlled randomized experiments with active drugs suffer from complications caused

by treatment noncompliance, i.e., patients might take only part or none of the assigned dose,

whether active or placebo. For example, Efron and Feldman (1991) analyzed a subset of the

Lipid Research Clinics Coronary Primary Prevention Trial (LRC-CPPT) data, which was a

placebo-controlled double-blind randomized clinical trial designed to study the effectiveness

of cholestyramine for lowering cholesterol levels. The complication in this analysis is that
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most of the patients in the experiment took only part of their assigned dose; this is typical

partial-compliance behavior. The only data available are the treatment assignment, the pro-

portion of the assigned drug or placebo taken, and the observed cholesterol reduction. Efron

and Feldman found that better compliance is associated with larger reductions in cholesterol

levels not only in the Treatment group but also in the Control group.

To properly adjust for this posttreatment variable of compliance, Frangakis and Rubin (2002)

propose a general framework based on Rubin’s causal model (Holland, 1986) called principal

stratification. Jin and Rubin (2008) use this framework to re-analyze this data set. They

regard both placebo compliance and chelestyramine compliance as characteristics of patients,

just as any pre-treatment covariates; and there exists a so-called “true dose-response rela-

tionship”, which is the dose response function that would have been observed is dose had

been randomly assigned and 100% compliance had been enforced. They then model the

compliance and dose response function via Bayesian hierarchical modelling.

The framework of Jin and Rubin (2008) can be applied to various circumstances in both

natural science and social sciences and has received increasing attention. A couple of its

application includes: Wolfson and Gilbert (2010) study the statistical identifiability of esti-

mands for the surrogate endpoint problem; Long et al. (2010) estimate causal effects in trials

involving multitreatment arms subject to non-compliance under a Bayesian framework; Mat-

tei and Mealli (2011) investigate new augmented experimental designs to disentangle direct

and indirect treatment effects; and Schwartz et al. (2011) proprose a Bayesian semiparamet-

ric generalization which replaces part of its parametric models by a Dirichlet process mixture

model.

In this chapter, we build on the framework of Jin and Rubin (2008) and apply it to assess the

effectiveness of the READ 180 program (a mixed-method approach designed to help strug-

gling students). In particular, on the basis of their framework, we introduce a way to adjust

pre-treatment covariates into the Bayesian hierarchical models; we then propose two different

56



estimands to evaluate the average treatment effect accordingly; we also discuss a method to

check the influence of the prior distribution suggested by Jin and Rubin. The rest of the

chapter is organized in the following manner. Section 3.2 provides a detailed introduction

of the background and scientific objective of the READ 180 program. The statistical details

of the principal stratification framework and our extension appear in Section 3.3 and 3.4.

We perform a simulation study as well as a real data analysis in Section 3.5. A discussion

appears in Section 3.6.

3.2 Scientific Objective of the READ 180 Program

READ 180 is a mixed-method approach (Slavin et al., 2008) to literacy instruction that is

designed to help struggling readers in grades 4 to 12 improve their word reading efficiency,

reading comprehension and vocabulary, and oral reading fluency. In the full 90-min version

of READ 180, teachers begin with a 20-30 min whole group lesson and then create small

groups of children who participate in three 20-min activities, in which reading practice is

scaffolded by computer activities, leveled books, and teacher lessons tailored to the reading

level of each small group (Hasselbring and Goin, 2004). To evaluate its effectiveness, a large

implementation study was recently conducted in a high-poverty school district located in

southeastern Massachusetts (Hartry et al., 2008). Children were recruited from three ele-

mentary schools with a large percentage of struggling readers, who were identified as children

in grades four to six who scored below proficiency on the Massachusetts Comprehensive As-

sessment System (MCAS), a standard based assessment of the state English language arts

curriculum. Children were eligible for this study if they scored below proficiency on their

most recent MCAS English language arts assessment (Grades 3-5). In this study, 294 chil-

dren received active consent to participate in the study. Of these, black and Latino children

comprised over 70% of the sample and the children received free- or reduced-price lunch
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comprised 81%.

During the study, participating students are randomized to the READ 180 program and the

district after-school program, which are both administered 4 days per week for around 23

weeks from October 2005 to April 2006. There were a total of 20 certified teachers in this

study; 10 teachers used the READ 180 materials and 10 teachers used the district after-

school program. For both groups of children, the after-school program began with a one-

hour session that involved snack and homework assistance. In the second one-hour session,

teachers followed the curriculum of either the READ 180 program or the district after-school

program. In the present study, the 90-minute READ 180 model was adapted to fit a 60-

minute timeframe in order to accommodate the districts after-school program schedule. As

a result, READ 180 teachers only implemented three 20-minute rotations of the whole group

lesson. The district after-school program, on the other hand, did not involve structured

time in the daily schedule to practice reading leveled text. Pretest and posttest measures

on reading, vocabulary, comprehension measures for the sample of children in READ 180

and the district after-school program are recorded. Other available pretest covariates include

grade, gender, free or reduced-price lunch indicator, and ethinicity.

To estimate the treatment effect of the READ 180 program, Kim et al. (2010) conducted

ANCOVA on each posttest score using the relevant pretest score as the covariate. Children

in the READ 180 program scored significantly higher on the measure of oral reading fluency

than the control group. But no significant differences were found between the two groups

on the vocabulary and comprehension measure. However, attendance rates (defined as the

percentage of attended days) were significantly higher for children in the READ 180 group

than for children in the district after-school program. Hence, despite the randomization

experimental design, the results from the ANCOVA analysis cannot be treated as causal as

we cannot remove the confounding factor of attendance rate. In another word, we now have

to answer the question of whether the improvement of the oral reading fluency measure is
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due to the effectiveness of the READ 180 program itself or those extra minutes the children

in the READ 180 group stayed in the program. Note that this problem is not trivial as the

attendance rate is not a pretest measure. Thus, we cannot simply adjust for it as a covariate

into the ANCOVA model. In this Chapter, we propose to remove this confounding factor by

regarding the attendance rate as the compliance variable and adjust for it using the principal

stratification framework.

3.3 Review of the Principal Stratification Method

In this Section, we review the principal stratification framwork for partial compliance (Jin

and Rubin, 2008) in the context of the READ 180 analysis. We carefully compare and select

relevant assumptions that are reasonbale for the READ 180 dataset. We then propose a

generalization of the existing Bayesian hierarchical models that allows adjusting for pretest

covariates. We also introduce two estimands based on our generalized hierarchical models

to assess the average treatment effect over the entire population.

We follow the notation of the Rubin Causal Model (Holland, 1986) (as in Chapter ??) and the

Rubin principal stratification framework (Frangakis and Rubin, 2002). Formally, we use N

to denote the number of students in the sample. Let Zi represent the treatment assignment

for student i (i = 1, 2, . . . , N), where Zi = T if student i is assigned to the READ 180

group (hereafter treatment), and Zi = C if student i is assigned to the district after-school

group (hereafter control). Then Yi(Zi = T ) is the potential outcome of student i if assigned

treatment and Yi(Zi = C) if assigned control. The causal effect of treatment assignment

for student i is Ei = Yi(Zi = T ) − Yi(Zi = C), and the average causal effect across all n

students is Ē = (
∑N

i=1Ei)/N . Let Di(Zi = T ) ≡ Di(T ) denote the proportion of READ 180

classes attended by student i if assigned treatment, and Di(C) denote the proportion of of

READ 180 classes attended by student i if assigned control. Likewise, let di(T ) denote the
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Table 3.1: Principal Stratification Structure of Extended Partial Compliance. The “?”
represents observed data while “?” represents missing data.

i Xi Zi Di(T ) Di(C) di(T ) di(C) Yi(T ) Yi(C)
1 ? T ? ? ? ? ? ?
2 ? T ? ? ? ? ? ?
3 ? T ? ? ? ? ? ?
4 ? T ? ? ? ? ? ?
5 ? C ? ? ? ? ? ?
6 ? C ? ? ? ? ? ?
7 ? C ? ? ? ? ? ?
8 ? C ? ? ? ? ? ?

proportion of district after-school classes attended by student i if assigned treatment, and

di(T ) denote the proportion of district after-school classes attended by student i if assigned

control. Pretreatment covariates such age and gender are denoted as Xi.

The principal strata are defined as the combination of potential compliance pairs S =

[D(T ), D(C), d(T ), d(C)]. In general, each principal stratum is composed of units with the

same value of Di(T ), Di(C), di(T ), and di(C). The principal causal effect in stratum S is

defined as ĒS = AVEi∈S[Yi(T ) − Yi(C)], i.e., the average causal effect for all observations

who fall into this particular principal stratum. Table 3.1 illustrates the general structure

of this framework using eight patients evenly distributed into treatment and control. The

“?” sign denotes observed data, and the “?” sign denotes unobserved or missing data. For

units 1-4 assigned to the treatment group, the potential compliances and outcomes in the

treatment arm, Di(T ), di(T ), and Yi(T ) are observed, whereas the corresponding values in

the control arm, Di(C), di(C), and Yi(C) are missing. The opposite holds for units 5-8 who

are assigned to the contrl group.
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3.3.1 Assumptions

In addition to the two standard assumptions of the Rubin Causal Model, namely Stable unit

treatment value assumption (SUTVA; Rubin (1980)) and Ignorable treatment assignment

assumption (Rubin, 1978) that we have already reviewed in Chapter ??, the following are

the relevant assumptions with regard to extended partial compliance.

1. Access monotonicity. We differentiate two levels of access monotonicity.

(a) General access monotonicity. This assumption has two parts: treatment access

monotonicity, Di(T ) ≥ Di(C); and placebo access monotonicity, di(T ) ≤ di(C).

Treatment access monotonicity implies that for every student, the amount of

READ 180 classes he attends if assigned treatment will be greater than or equal

to the amount of district after-school classes he would take if assigned control. The

rationale is that students have more convenient access to the READ 180 classes

if they are assigned treatment other than control. Analogously for placebo access

monotonicity: the amount of district after-school classes each student attends

under control will be greater than or equal to those he would take under treatment,

again because control student has more convenient access to district after-school

classes.

(b) Strong access monotonicty. This assumption also has two parts: strong treatment

access monotonicity, Di(C) = 0; and strong placebo access monotonicity, di(T ) =

0. That is, first, no student of the treatment group has access to the district

after-school program, and, second, no student of the control group has access to

READ 180 program.

In the READ 180 analysis, we make the Strong access monotonicty assumption as by

the design of the study, once a student is assigned to one of the program, he is unable
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to switch to the other program or to access the other program for the duration of the

study.

2. Side-effect monotonicity. There are two versions of this assumption: negative side-

effect monotonicity, Di(T ) < di(C); and positive side-effect monotonicity, Di(T ) >

di(C). If the READ 180 program has more negative side-effects than the district after-

school program, the amount of classes student i takes under treatment will be no more

than the amount of classes he would take under control, and vice versa for positive side-

effect monotonicity. Often, one or the other of these assumptions will be reasonable,

but certainly not always. In fact, in some cases the sample could be realistically viewed

as a mixture of two subgroups, one susceptible to positive side effects and the other

susceptible to negative side effects.

In our analysis, because the READ 180 program involves activities that are tailored

to the reading level of small groups of participating students, we expect that it will

do a better job at encouraging students stay longer in the class when compared to

the un-tailored district after-school program. Thus, we make the positive side-effect

monotonicity assumption.

3. Perfect blind. This assumption asserts Di(T ) = di(C). That is, the amount of READ

180 classes attended by a student under treatment is exactly equal to the amount

of district after-school classes he would take if assigned to the control group. This

assumption typically requires the treatment to be perceived is identically to the control

with absolute no side effects. This assumption can be overly strong for the READ 180

dataset. We do not make this assumption in the following analysis.

4. Equipercentile equating of compliances. This assumption states thatDi(T ) = f [di(C)] =

F−1
D {Fd[di(C)]}, where FD(·) and Fd(·) are the cumulative distribution functions (CDFs)

of D(T ) and d(C), respectively. In practice, under this assumption, the “equating func-

tion” f(·) is estimated by the relationship between the empirical CDFs of observed
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D(T ) and observed d(C). Note that this one-to-one mapping function f(·) precludes

the possibility that two students who attend the same amount of district after-school

classes under control have a different attendence rate under treatment, possibly because

of different tolerances to the READ 180 program. Thus, although this assumption is a

weakening of the perfect-blind assumption, it is more restrictive than side-effect mono-

tonicity assumption which allows for this possibility. We do not make this assumption

for the READ 180 analysis.

In summary, we make the Stable unit treatment value assumption, Ignorable treatment as-

signment assumption, strong access monotonicity assumption, and the positive side-effect

monotonicity assumption. Our assumptions are almost identical to those Jin and Rubin

(2008) made except that they made the negative side-effect monotonicity instead of the

positive side-effect monotonicity due to the expected negative side-effects of the treatment

under their consideration.

3.3.2 Bayesian Hierarchical Model

As we make essentially identical assumptions as Jin and Rubin (2008), we first review their

proposed models to estimate the causal effect. In the end of this section, we propose a

generalization to improve their current model.

Under these four assumptions, the principal stratum is simplified to S = [D(T ), 0, 0, d(C)],

or, more simply, S = [D(T ), d(C)] = [D, d], i.e., the amount of READ 180 classes a student

would attend if he is assigned to the treatment group and the amount of district after-school

classes he would attend if assigned to the control group. Recall that for each student i, there

is always one missing value for the pair of (Di, di). If the student is assigned to the treatment

group, Di is observed while di is missing; if he is assigned to the control group, di is observed

while Di is missing. Thus, we rewrite S ≡ (Sobs, Smis). Similarly, we rewrite the potential
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outcome (Y (T ), Y (C)) ≡ (Yobs, Ymis). In a Bayesian statistical analysis, the quantity of the

interest, the posterior distribution of the parameter θ, can thus be writed as

p(θ|Z, Sobs, Yobs) ∝ p(θ) · p(Z, Sobs, Yobs|θ) (3.1)

∝ p(θ) ·
∫ ∫

p(Z, Sobs, Smis, Yobs, Ymis|θ) dYmis · dSmis (3.2)

∝ p(θ) ·
∫ ∫

p(Sobs, Smis, Yobs, Ymis|θ, Z) · p(Z) dYmis · dSmis (3.3)

∝ p(θ) ·
∫ ∫

p(Sobs, Smis, Yobs, Ymis|θ) dYmis · dSmis, (3.4)

where (3.4) follows from the randomization of Z. Analytical inference from (3.4) can be dif-

ficult as it involves the integral over Smis and Ymis. Jin and Rubin (2008) instead propose to

base inference on the joint posterior distribution of (θ, Smis, Ymis) via standard data augmen-

tation technique (Tanner and Wong, 1987). Computationally, they use a Beta distribution

for the compliance to treatment, Di,

Di|θ ∼ Beta(α1, α2). (3.5)

When specifying p(d|D, θ), they inforce the positive side-effect monotonicity assumption via

a Beta distribution for relative compliance di/Di,

di
Di

∣∣∣∣Di, θ ∼ Beta(α3, α4). (3.6)

Given the principal stratum (Di, di), they assume a Normal distribution for Yi(T ) with mean

linear in Di and di,

Yi(T )|Di, di, θ ∼ N(β0 + β1Di + β2di, σ
2
T ), (3.7)

and a Normal distribution for Yi(C) with also linear regression on Di and a linear regression
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on di,

Yi(C)|Di, di, θ ∼ N(γ0 + γ1Di + γ2di, σ
2
C). (3.8)

Assuming Y (T ) and Y (C) are conditional independent given principal stratum (D, d), the

complete data likelihood for student i is,

p(Sobs,i, Smis,i, Yobs,i, Ymis,i|θ) =p(Yi(T )|Di, di,θ) · p(Yi(C)|Di, di,θ)·

p(di|Di,θ) · p(Di|θ)

(3.9)

Combining (3.6) − (3.8), the complete-data likelihoood for θ is

∏
i

p(Sobs,i, Smis,i, Yobs,i, Ymis,i|θ) =
∏
i

Γ(α1 + α2)

Γ(α1)Γ(α2)
Dα1−1
i (1−Di)

α2−1 Γ(α3 + α4)

Γ(α3)Γ(α4)

×
( di
Di

)α3−1(
1− di

Di

)α4−1 1

Di

×
∏

i∈{Zi=C}

1√
2πσ2

T

exp
[
− (Yi(T )− β0 − β1Di − β2di)

2

2σ2
C

]
×

∏
i∈{Zi=T}

1√
2πσ2

C

exp
[
− (Yi(C)− γ0 − γ1Di − γ2di)

2

2σ2
T

]
.

(3.10)

For the prior distributions, they assume

p(α,β,γ,σ) = p(α) · p(β,γ,σ).

Of this, p(α) are specified through hypothetical data points. In particular, this corresponds

to adding to the observed-data likelihood function six extra observations of (D, d) selected

in the following way: First, we construct a dataset of (D, d) values for all the students

in the sample, where missing parts are computed according to the equipercentile equating

assumption; Second, we select the 1st, 21st, 41st, 61st, 81st, and 100th percentiles in this
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dataset and add these six prior data points (with complete (D, d) values but missing all

Y values) to the actual data. On the other hand, we use a improper prior for the other

parameters, i.e., p(β,γ,σ) ∝ (σCσT )−2. This is a standard choice for Bayesian regressions

(Gelman et al., 2004). In another word, we are equivalently using non-informative priors

for all parameters except for (α1, α2, α3, α4). Jin and Rubin (2008) believe this prior is

reasonable because it weakly pulls the posterior distribution of (α1, α2, α3, α4) toward the

equipercentile equating assumption. We will go back to this point in section 3.4.3.

Jin and Rubin (2008) use the average principal causal effect E[Y (T )−Y (C)|S] = AVEi∈S[Yi(T )−

Yi(C)] as their estimand. For a given principal strata (D, d), this is

β0 + β1D + β2d− γ0 − γ1D − γ2d (3.11)

according to (3.7) and (3.8). If we can get a sample (α(k),β(k),γ(k),σ(k)), k = 1, . . . , K from

their joint posterior distribution, (3.11) can then be estimated via

1

K

K∑
k=1

{β(k)
0 + β

(k)
1 D + β

(k)
2 d− γ(k)

0 − γ(k)
1 D − γ(k)

2 d}. (3.12)

3.3.3 Computation

To explore the joint posterior distribution of the parameters, Jin and Rubin (2008) apply

Markov chain Monte Carlo (MCMC) using the basic idea of the Gibbs sampler (Geman and

Geman, 1984), which involves the following steps in each iteration:

1. Given the parameter θ and observed data, draw the missing data di or Di for i =

66



1, . . . , N . For the treatment group members, we draw d
(t)
i from the distribution

di|θ, Di, Yi(T ) ∝ dα3−1
i · (Di − di)α4−1

· exp

[
−(Yi(T )− β0 − β1Di − β2di − β3X1i − β4X2i)

2

2σ2
T

]
.

(3.13)

via the Metropolis-Hastings method. Similarly, we draw D
(t)
i for the control group

members from the following distribution

Di|θ, Di, Yi(C) ∝ Dα1−α3−α4
i · (1−Di)

α2−1 · (Di − di)α4−1

· exp

[
−(Yi(C)− γ0 − γ1Di − γ2di − γ3X1i − γ4X2i)

2

2σ2
C

]
.

(3.14)

2. Given the Di, di, Yobs,i, and other parameters, draw the parameters α1, α2, α3, and α4.

Since the methods for α1, α2, α3, and α4 are similar, we use α1 as an example which

involves drawing α1 from the following distribution:

α1|Di, di, Yobs,i, α2 ∝
∏
i

Γ(α1 + α2)

Γ(α1)
dα1−1
i (3.15)

Because this is also not a standard distribution, we still use the Metropolis-Hasting.

In particular, we first draw α?1 from a truncated normal distribution, α?1 ∼ N(α
(k−1)
1 ),

α?1 > 0 (k is the MCMC iteration index). We then calculate its normalizing constant

c1 =
∫∞

0
φ(x−α(k−1)

1 )dx, where φ(·) represents the pdf function for a standard Normal

distribution. Next, we calculate the normalizing constant for the left-truncated normal

distribution N(α?1, 1) of “jumping back”: c?1 =
∫∞

0
φ(x − α?1)dx. Lastly, we accept α?1

with probability

p1 =
c1

c?1

∏ Γ(α?1 + α
(k−1)
2 )Γ(α

(k−1)
1 )

Γ(α
(k−1)
1 + α

(k−1)
2 )Γ(α?1)

d
α?1−α

(k−1)
1

i .

3. Given the Di, di, Yobs,i, and other parameters, draw the parameters β,γ, and σ, which
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simply comprises two standard Bayesian regressions (Gelman et al., 2004).

3.4 Generalization of the Principal Stratification Method

As you might have noticed, none of the hierarchical models (3.5) − (3.8) involves the adjust-

ment of pretreatment covariates. In this section, we introduce a generalization that allows

for utilizing those extra pretreatment information in (3.7) and (3.8). In addition, we propose

another causal effect estimand based on (3.11) which is able to estimate the average treat-

ment effect over the entire population. We also suggest another way to check the influence

of the hypothetical complete data prior for α.

3.4.1 Covariate Adjustment

First, without loss of generality, we update the regression model of (3.7) and (3.8) using

Yi(T )|Di, di, θ ∼ N(β0 + β1Di + β2di + β3X1i + β4X2i, σ
2
T ) (3.16)

Yi(C)|Di, di, θ ∼ N(γ0 + γ1Di + γ2di + γ3X1i + γ4X2i, σ
2
C), (3.17)

where X1 and X2 are two pretreatment covariates. It is straightforward to generalize (3.16)

and (3.17) to the cases with more than two covariates. Thus, we stick with the simplest case

68



with just two covariates for illustration. Computation wise, we replace (3.13) and (3.14) by

di|θ, Di, Yi(T ) ∝ dα3−1
i · (Di − di)α4−1

· exp

[
−(Yi(T )− β0 − β1Di − β2di − β3X1i − β4X2i)

2

2σ2
T

]
(3.18)

Di|θ, Di, Yi(C) ∝ Dα1−α3−α4
i · (1−Di)

α2−1 · (Di − di)α4−1

· exp

[
−(Yi(C)− γ0 − γ1Di − γ2di − γ3X1i − γ4X2i)

2

2σ2
C

]
. (3.19)

The other steps of the Gibbs sampler are the same.

Under (3.5),(3.6),(3.16) and (3.17), the principal causal effect within the stratum of (D, d),

E[Y (T )− Y (C)|S], is now

(β0− γ0) + (β1− γ1)D+ (β2− γ2)d+ (β3− γ3)E(X1|D, d) + (β4− γ4)E(X2|D, d). (3.20)

Unfortunately, estimating E(X1|D, d) and E(X2|D, d) in practice is nontrivial, especially

when D and d are continuous1. Here we provide two Monte Carlo estimators for (3.20). The

naive estimator approximates E(X1|D, d) and E(X2|D, d) by their observed sample means,

X̄1 and X̄2, i.e., we assume X1 and X2 are independent of (D, d). In this case, (3.20) can be

estimated via

1

K

K∑
k=1

(β
(k)
0 −γ(k)

0 )+(β
(k)
1 −γ(k)

1 )D+(β
(k)
2 −γ(k)

2 )d+(β
(k)
3 −γ(k)

3 )X̄1 +(β
(k)
4 −γ(k)

4 )X̄2, (3.21)

where β(k) and γ(k) (k = 1, . . . , K) is a posterior sample of the relevant parameters. We call

it the naive within strata treatment effect estimator.

To avoid the independence assumption between X and (D, d), we model their relationship

using linear regression. In particular, if we knew the complete compliance (D, d) for each

1Jin and Rubin (2009) discuss how to estimate such quantities when D and d are discrete.
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observation, we could fit the following linear regressions in order2

X1 ∼ N(η10 + η11D + η12d, σ
2
1)

X2|X1 ∼ N(η20 + η21D + η22d+ η23X1, σ
2
2).

(3.22)

Use (3.22), we can estimate E(X1|D, d) and E(X2|D, d) according to the fitted regression,

Ê(X1|D, d) = η̂10 + η̂11D + η̂12d

Ê(X2|D, d) = η̂20 + η̂21D + η̂22d+ η̂23Ê(X1|D, d)

Of course, we do not know the complete compliance (D, d) in practice. Fortunately, at each

iteration of the MCMC run, we sample the missingD
(k)
i and d

(k)
i for each relevant observation,

where k = 1, . . . , K index the MCMC iterations. Thus, at each MCMC iteration, we can

then fit (3.22), record the corresponding regression coefficients as η
(k)
1 and η

(k)
2 , and estimate

E(X1|D, d) and E(X2|D, d) as

Ê(k)(X1|D, d) = η̂
(k)
10 + η̂

(k)
11 D + η̂

(k)
12 d

Ê(k)(X2|D, d) = η̂
(k)
20 + η̂

(k)
21 D + η̂

(k)
22 d+ η̂

(k)
23 Ê

(k)(X1|D, d).

(3.23)

We can then estimate (3.21) via,

1

K

K∑
k=1

(β
(k)
0 −γ(k)

0 )+(β
(k)
1 −γ(k)

1 )D+(β
(k)
2 −γ(k)

2 )d+(β
(k)
3 −γ(k)

3 )Ê(k)(X1|D, d)+(β
(k)
4 −γ(k)

4 )Ê(k)(X2|D, d)

(3.24)

We call (3.24) the regression within strata treatment effect estimator.

2For discrete pre-treatment covariates, we replace the linear regression by a logistic regression.
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3.4.2 Global Average Treatment Effect

In addition to the within strata treatment effect, researchers might also be interested in the

average treatment effect over the entire population, E[Y (T )− Y (C)]. We call it the global

treatment effect. According to the law of iterated expectation,

E[Y (T )− Y (C)] = ES
[
E[Y (T )− Y (C)|S]

]
, (3.25)

where ES(·) represents the expectation with regard to the distribution of principal strata. In

another word, the global treatment effect can be regarded as the integral of the within strata

treatment effect over the strata distribution. Mathematically, under our four assumptions,

we can rewrite (3.25) as

E[Y (T )− Y (C)] = E(D,d)

{
E[Y (T )− Y (C)|D, d]

}
=

∫
E[Y (T )− Y (C)|D, d] · p(D, d) dD dd

(3.26)

If E[Y (T ) − Y (C)|D, d] and p(D, d) are known for all possible strata (D, d), (3.26) can be

numerically approximated by

1

MN

M∑
m=1

N∑
n=1

E[Y (T )− Y (C)|Dm, dn] · p(Dm, dn) (3.27)

where Dm,m = 1, . . . ,M and dn, n = 1, . . . , N represent fine grids of the unit interval.

Of course in practice, neither E[Y (T ) − Y (C)|D, d] nor p(D, d) is known. As discussed

earlier, E[Y (T ) − Y (C)|D, d] can be estimated via either the naive or regression within

strata treatment effect estimator. For p(D, d), if we know α,

p(D, d) = p(d|D,α3, α4) · p(D|α1, α2)

= pbeta(
d

D
, α3, α4) · pbeta(D,α1, α2)

(3.28)
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where pbeta(·) represents the density of a Beta distribution. It is then straightforward to

estimate (3.28) via

p̂(D, d) =
1

K

K∑
k=1

pbeta(
d

D
, α

(k)
3 , α

(k)
4 ) · pbeta(D,α

(k)
1 , α

(k)
2 ). (3.29)

As a result, the average treatment effect over the entire population (3.26) can then be

estimated via

1

MN

M∑
m=1

N∑
n=1

Ê[Y (T )− Y (C)|Dm, dn] · p̂(Dm, dn) (3.30)

where Ê[Y (T )−Y (C)|Dm, dn] are given by either (3.21) or (3.24) and p̂(Dm, dn) is given by

(3.29).

3.4.3 Sensitivity Analysis for the Prior Influence

It is worth noting that in practice non of the samples will have complete observation of both

D and d. Thus, our current prior for (α1, α2, α3, α4) using hypothetical data points with

complete observation of (D, d) might have strong influence on the final result, i.e., even if

we only add six extra observations, their relative influence might be huge compared to the

total sample size of a couple of hundreds. To access the prior influence of those added extra

complete observations, we perform a sensitivity analysis via calculating the global treatment

effect under the three, six, and ten extra complete observation priors. Ideally, the results

under these three different priors should not differ significantly.
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3.5 Simulation And Real Data Analysis

In this section, we firstly perform a simulation study to illustrate the methodology of (3.4.1)

and (3.4.2). Then, we will use this method to adjust for the influence of partial attendance

on the causal effect estimate of the READ 180 program.

3.5.1 Simulation Study

Before we use the principal stratification method to account for the attendance rate effect on

the READ 180 program. We perform a simulation study mimicing the READ 180 data set. In

particular, we make the SUTVA, ignorable treatment assignment, strong access monotonicity,

and positive side-effect monotonicity assumptions, use (3.5),(3.6),(3.16) and (3.17) as the

generative model, and sample 294 observations using the following parametric model

Di ∼ Beta(α1, α2)

di
Di

∣∣∣∣Di ∼ Beta(α3, α4)

X1i|Di, di ∼ N(50, 102)

X2i|Di, di ∼ N(30Di + 70d2
i , 102)

Yi(T )|Di, di ∼ N(β0 + β1Di + β2di + β3X1i + β4X2i, 362)

Yi(C)|Di, di ∼ N(γ0 + γ1Di + γ2di + γ3X1i + γ4X2i, 362),

(3.31)

where θ = (α,β,γ, σC , σT ), α = (3.9164, 1.324, 7.21, 1), β = (621, 130, 80, 1, 2), γ =

(621, 100, 80, 1, 1), and (σT , σC) = (36, 36)3. We assign 146 observations to the control group

and the other 148 units to the treatment group.

The time series plot for 5000 draws of α, β, and σT are shown in Figure 3.14, from which

3The parameter values of the generative models are chosen to mimic the real data set.
4The time series plot for γ and σC are similar to that of β and σT .
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Table 3.2: The 95% Posterior Credible Intervals for All Parameters in Simulation Study.
True value represents the values of parameters that are used to generate the data; C.I.
the 95% credible interval; Median the median of posterior draws; and S.D. the standard
deviation of the posterior draws for each parameter.

True Value C.I. Median S.D.
α1 3.92 [3.14, 4.63] 3.83 0.38
α2 1.32 [1.12, 1.63] 1.36 0.13
α3 7.21 [4.07, 12.47] 6.74 2.18
α4 1.00 [0.66, 1.74] 1.01 0.28
β0 621 [574, 654] 614 21
β3 1 [0.51, 1.81] 1.17 0.33
β4 2 [1.36, 2.42] 1.89 0.27
γ0 621 [570, 720] 640 40
γ3 1 [0.00, 1.27] 0.64 0.32
γ4 1 [0.10, 1.25] 0.67 0.29
σT 36 [27, 40] 35 3.24
σC 36 [28, 40] 34 3.03
β1 130 [-37, 519] 233 147
β2 80 [-344, 254] -30 160
γ1 100 [-267, 279] -34 169
γ2 80 [-51, 469] 263 153

we can tell that the autocorrelation for all of the parameters are relatively low. Table 3.2

lists the 95% credible intervals for all parameters. According to Table 3.2, all of the true

parameter values used to generate the data are included in their corresponding 95% credible

intervals. However, the standard deviations of β1, β2, γ1, γ2 are very large, which suggests

identifiability problems in models (3.16) and (3.17). We believe this is not a severe problem

as we only use these four parameters for prediction.

We then use both (3.21) and (3.24) to evaluate the within strata treatment effect for the

simulation study. The strata are defined using the 25%, 50%, 75%, and 90% quantile of D

and d respectively. The results are shown in Table 3.3 where panel 1 and 2 correspond to the

estimators of (3.21) and (3.24), respectively. For both panels, the three numbers in each cell

are the true treatment effect according to (3.20), the estimated treatment effect ((3.21) or

(3.24)), and the posterior quantile of true treatment effect. For panel 1, the posterior quantile
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Figure 3.1: Timeserie plot for α, β, and σT of the Simulation Study.

of true treatment effect is calculated as the quantile of (3.20) against the empirical posterior

distribution of (β
(k)
0 −γ(k)

0 )+(β
(k)
1 −γ(k)

1 )D+(β
(k)
2 −γ(k)

2 )d+(β
(k)
3 −γ(k)

3 )X̄1 +(β
(k)
4 −γ(k)

4 )X̄2,

i.e., the Monte Carlo sample used to compute (3.21).

According to the posterior quantiles of Table 3.3, although the regression model of X2|D, d in

(3.22) for the regression within strata treatment effect estimator is misspecified, all posterior

quantile in panel 2 are within the range of (2.5%, 97.5%) which implies that all of the 95%

credible interval given by (3.24) contain the true treatment effects. However, this is not the

case for the naive within strata treatment effect estimator (3.21). For three pairs of (D, d)

strata, the true treatment effect fall outside of its 95% credible interval. Using regression

models to adjust for the relationship between X and (D, d) does appear to help even if the

parametric form of the regression is not correctly specified.

To estimate the global average treatment effect, we let Dm and dn be 50 equally spaced

points between 0.05 and 0.95 and K = 500 in our numerical calculation. Using (3.21) for

(3.30), we estimate the average treatment effect as 80.34 with standard deviation 6.52; On

the other hand, using (3.24) for (3.30), the mean treatment effect is equal to 82.87 with

standard deviation 6.25. The true average treatment effect is equal to 77.1.

To access the prior influence of six added extra complete observations, we calculate the aver-
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Table 3.3: Treatment Effect within Strata. Strata are defined as The 25%, 50%, 75%,
And 90% Quantile of D and d respectively. For each cell of the table, the three numbers
represent the true treatment effect, estimated treatment effect, and the posterior quantile of
true treatment effect. The true treatment effects are displayed in bold.

Naive within Strata Treatment Effect Estimator
d

.53 .66 .79 .86

D

.61 56, 76, 1.8%

.77 66, 112, 6.8% 77, 80, 29.2%

.87 72, 134, 11.2% 83, 102, 22.0% 96, 70, 99.6%

.95 77, 152, 12.4% 87, 120, 22.4% 101, 88, 75.4% 109, 71, 99.8%
Regression within Strata Treatment Effect Estimator

d
.53 .66 .79 .86

D

.61 56, 60, 30.8%

.77 66, 106, 9.6% 77, 83, 14%

.87 72, 134, 11.2% 83, 112, 11.8% 96, 89, 82.8%

.95 77, 157, 11.8% 87, 134, 12.0% 101, 112, 27.2% 109, 100, 83.6%

age treatment effect over the entire population under the three, six, and ten extra complete

observation priors. If we add three extra complete observations, the average treatment ef-

fect using (3.24) for (3.30) has a mean estimate equal to 84.27 and standard deviation of

6.74; With ten extra complete observation prior, the mean and standard deviation estimate

becomes 81.67 and 5.91 respectively. In general, both the bias and the standard deviation of

the estimator decrease if we increase the strength of the prior, but in an reasonable manner.

3.5.2 Real Data Analysis

We now present our analysis of the the real READ 180 data. Our main goal is to access

the effect of READ 180 program adjusting for the influence of attendance rate. Recall

that attendance rate is a posttreatment covariate. The students in the READ 180 program

have significantly better attendance compared to those in the district after-school program.

A two-sample t-test gives a p-value of 0.04. The average attendance rate are 77.5% and

69.2% for the students in the READ 180 program and the district after-school program,
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Figure 3.2: The Scatter Plot of VSAT10 And Attendance. The first panel contains all stu-
dents in the sample, while the second and third contain only non-withdrawer and withdrawer
students. For all plots, the black dots represent students who are assigned to the READ 180
group and the white circles represents students who are assigned to the district after-school
group. The red dashed line shows the Natural spline fit of VSAT10 on attendance for stu-
dents in the treatment group. The black solid lines shows the similar fit for students in the
control group.

respectively. We use the SAT10 vocabulary scale score (hereafter VSAT10) as the outcome

variable in this section.

As discussed in section 3.3.1, we make the SUTVA, ignorable treatment assignment, strong

access monotonicity, and positive side-effect monotonicity assumptions. We use (3.5) and

(3.6) to model compliance (attendance rate) under treatment and control group, where Di

represents the attendance rate for student i if he were in the READ 180 program and di the

attendance rate if he were in the district after-school program5. As for the regression model

(3.16) and (3.17), in order to specify its parametric form on D and d, we fit two independent

natural spline regression models for VSAT10 against attendance rate seperately for students

in the treatment and control group. The two fits are shown as the red dashed (treatment

group) and black solid (control group) lines in the first panel of Figure 3.2. The fits appears

linear for the district after-school program. For the READ 180 program, on the other hand,

the relationship is more complicated. For students with low attendance rate (below 40%)

5To avoid numerical instability, if a student has perfect attendance (Di or di equal to 1), we re-code Di

or di to 0.999; If he has zero attendance (Di or di equal to 0), we re-code Di or di to 0.001.
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and high attendance rate (above 60%), the relationships between the two variables appear

linear. In addition, we find that most of the students with low attendance rate actually

withdrew from the program before the end of the study. To investigate this, we reproduce

the natural spline regression fit of VSAT10 on attendance rate for students who did and did

not withdrew seperately, see middle and right panel of Figure 3.2. The red dashed and black

solid lines again represent the estimated fits for students in the treatment and control group.

For students who did not withdraw, the relationships between VSAT10 and attendance rate

are linear for both the treatment and control group. Since there are only a few students

who withdrew, we confine our attention to the students who did not withdraw and decide

the first order of D and d suffice for (3.16) and (3.17). It is worth noting that we cannot

simply add a binary variable indicating the withdraw status into (3.16) and (3.17) to adjust

for its effect as it is also a posttreatment variable. We provide a discussion about this topic

in section 3.6.

To decide which pretreatment covariates we need adjust in (3.16) and (3.17), we first regress

VSAT10 linearly on all available pretreatment covariates, of which we then pick the three

covariates which are significant. They are adjusted title recognition score, Baseline DIBELS

score, and special education status. The special education status is a discrete variable with

five levels. Apart from the baseline level (do not have special education), there are four levels

of special education. However, three out of the four levels have less than or equal to seven

observations (the other level has 47). Thus, we convert the special education status into a

binary variable corresponding to either have or do not have special education. In particular,

(3.16) and (3.17) now take the form of

Yi(T )|Di, di, θ ∼ N(β0 + β1Di + β2di + β3X1i + β4X2i + β5X3i, σ
2
T )

Yi(C)|Di, di, θ ∼ N(γ0 + γ1Di + γ2di + γ3X1i + γ4X2i + γ5X3i, σ
2
C),

where X1, X2, and X3 stand for adjusted title recognition score, Baseline DIBELS score, and
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Figure 3.3: Time Series Plot for the Posterior Draws.

special education status, respectively.

Under the priors we discussed in section 3.3.2, we draw 50,000 samples from the joint pos-

terior distribution using the Gibbs sampler in section 3.3.3. Because the autocorrelation for

α are relatively high. We thinning the MCMC chain by 10 (we discard everything except

every tenth draw of the chain). This gives us a total of 5000 samples. The time series plot

of the final 5000 draws for α,β, and σ are shown in Figure 3.3 (the time series plot for γ

appear similar to that for β). Overall the auto-correlation is low and the chains perform

similar to that of the simulation study. Table 3.4 lists the 95% posterior credible intervals

for all parameters.

We then use the regression within strata treatment effect estimator (3.24) to evaluate the
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Table 3.4: The 95% Posterior Credible Intervals for All Parameters in the Real Data Analysis.
C.I. represents the 95% credible interval; Median the median of posterior draws; and S.D.
the standard deviation of the posterior draws for each parameter.

C.I. Median S.D.
α1 [2.71, 4.16] 3.34 0.37
α2 [0.48, 0.69] 0.58 0.05
α3 [18.22, 44.96] 28.84 6.73
α4 [0.71, 1.27] 0.94 0.14
β0 [526, 591] 558 17
β3 [0.11, 0.80] 0.46 0.18
β4 [0.38, 0.77] 0.58 0.10
β4 [-22.29, 4.95] -8.55 6.91
γ0 [508, 575] 541 17
γ3 [-0.15, 0.76] 0.31 0.23
γ4 [0.42, 0.91] 0.67 0.12
γ5 [-34.29, -4.29] -19.17 7.56
σT [15.17, 30.46] 21.89 3.81
σC [25.66, 34.95] 29.98 2.34
β1 [94, 1392] 800 303
β2 [-1397, -67] -795 310
γ1 [-436, 693] 212 283
γ2 [-669, 472] -180 286

effect of the READ 180 program for several values of D and d. In particular, we set K = 500

while the values of D and d were chosen to be their 10%, 25%, 50%, 75%, 85%, and 95%

quantiles. Table 3.5 reports the estimated principal causal effects, including its standard

deviation estimate. Out of the 15 strata, none of the within strata treatment effect is

significant (All of the mean ± 2S.D interval contain zero). To estimate the global average

treatment effect, we use (3.24) for (3.30) and let Dm and dn be 50 equally spaced points

between 0.05 and 0.95. We estimate the average treatment effect as 15.37 with standard

deviation 6.45. If instead, we add three and ten extra complete observation as the prior

for α, the average treatment effect estimate appear to be 14.29 and 15.54 with standard

deviation 6.05 and 6.59, respectively. The average treatment effect over the entire population

does seem to be siginficant.
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Table 3.5: Posterior Median And Standard Deviation of Representative Principal Causal
Effects. The posterior standard deviation are the figures in parentheses.

d
.10 .81 .899 .959 .989

D

.17 52.33 (28.19)

.83 108.59 (62.65) 4.93 (4.89)

.90 152.21 (89.65) 48.67 (27.35) -8.98 (9.52)

.96 189.81 (112.83) 86.17 (50.37) 28.52 (16.25) -10.35 (10.12)

.99 208.55 (124.42) 104.91 (61.93) 47.27 (27.48) 8.4 (6.99) -11.03 (10.47)

3.6 Conclusions And Discussions

In this chapter, we estimate the treatment effect of the READ 180 program on word read-

ing efficiency, reading comprehension, vocabulary, and oral reading fluency for struggling

reader in grade 4-12. Our estimate need to account for differences in attendance pattern for

the treatment and control group. While standard statistical methods like the intention-to-

treat analysis are much simpler, they do not address the different compliance rate between

the treatment and control group. Thus, we implement the principal stratification method

proposed by Jin and Rubin (2008), which treat both compliance to treatment, D, and com-

pliance to control, d, as psychological characteristics of students and then estimated the

expected effect of assignment to treatment versus assignment to control for each type of

student jointly defined by D and d. These groups of students are called principal strata.

We carefully review their framework and select the necessary assumptions in the context

of the READ 180 study design. While Jin and Rubin (2008) do not make use of any pre-

treatment covariate in their Bayesian hierarchical models, we propose a generalization that

allows for adjusting pretreatment covariate into the regression model of the outcome vari-

able conditional on the principal strata. Accordingly, we introduce two ways to compute

the within strata treatment effect for our generalized regression model, which is the causal

effect estimator reported by Jin and Rubin (2008). In addition, we propose another causal

effect estimator, which averages the within strata treatment effect over the principal strata
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distribution and can be regarded as the average treatment effect over the entire population.

Based on this global average treatment effect estimator, we discuss a way to do the sensi-

tivity analysis for the potentionally influential hypothetical complete data prior distribution

suggested by Jin and Rubin (2008). We apply our generalized principal stratification method

to both the READ 180 dataset and a simulation study designed to mimic the real dataset.

We find that although none of the within strata treatment effect is significant, the average

treatment effect does appear to be significant.

Although the principal stratification method seems to work properly for the READ 180 data,

we find there are still a few aspects of the model that require further improvement. First,

the parametric models with regard to the compliance rate do not make use of the pretreat-

ment covariates. Jin and Rubin (2008) briefly mentions the possibility to further rewrite the

current Beta parameters as a exponential transformation of the linear combinations of pre-

treatment covariates, i.e., αi = exp(Xηi) for i = 1, 2, 3, 4. However, no further progress has

been reported on the success of this application. Second, as we have seen from the READ

180 dataset, in those observational studies where compliance rate differs between the treat-

ment and control group, dropping out rate might probably also be different between the two

groups. However, the dropping out variable (withraw variable for the READ 180 dataset) is

also a posttreatment variable like compliance rate, which cannot be simply adjusted using

standard statistical method like regression while ignoring this factor might cause estimation

bias. To adjust for its effect, we can treat it like the compliance rate, i.e., every observation

in the sample has two potential probabilities to drop out of the study under treatment and

control group, which can be modeled via a logistic regression model. Conditioning on the

dropping out status and compliance rate, the outcome variable can thus be modeled using a

regression adjusting for pretreatment variables. In another word, we can add another level

of models for the dropping out variable into our current Bayesian hierarchical models.
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Chapter 4

Quantifying The Sensitivity of The

Bayes Factor on The Choice of Prior

Distribution in High-Energy

Astrophysical Analysis

4.1 Introduction

Distinguishing a faint spectral line or a new source from a chance fluctuation in data with

low photon counts is a challenging statistical task in high-energy astrophysical analysis.

It is common practice to characterize the problem in statistical terms as a test for the

presence of a component in a finite-mixture distribution and address it by computing a

likelihood ratio test and calibrating it according to its nominal asympototic distributions

(Murakami et al., 1988; Fenimore et al., 1988; Yoshida et al., 1992; Palmer et al., 1994;

Freeman et al., 1999; Piro et al., 1999; Fu et al., 2008; Lee et al., 2012). Unfortunately,
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as shown in Protassov et al. (2002), the standard regularity conditions required for the

aysmptotic theory do not always apply to goodness-of-fit tests of this nature, even with a

large sample size. As a result, the likelihood ratio statistic does not follow its known nominal

distribution even asymptotically and the p-values computed in the common routine are

misleading and uninterpretable. Protassov et al. (2002) provide a solution for the problem by

bypassing the asymptotic theory, finding its posterior predictive distribution empirically, and

then calculating the corresponding p-value, called the posterior predictive p-value (hereafter,

ppp-value). Their proposal is versatile and can be applied to any spectral line detection

problem as long as we are able to draw a sample of the unknown parameters from their joint

posterior distribution. However, the summary statistic for the decision making criteria, the

ppp-value, shares a similar definition and interpretation of the classical p-value. As pointed

by Berger and Delampady (1987) and Berger and Sellke (1987), the p-value tends to overstate

the evidence of the more complicated (alternative) model when used for testing a precise

hypotheses, which is exactly the case for the spectral line detection problem where we want

to compare models with and without the spectral line. This problem is fundamental and

arises from the definition of the p-value itself. Despite this, there is a lack of model selection

metrics other than the p-value for spectral line detection in the astrophysics. Our goal is

to introduce another Bayesian method for model selction in this setting, namely the Bayes

Factor.

Bayes Factors, e.g., Kass and Raftery (1995), are a powerful summary statistic for model

selection which can be applied to a broad range of scientific problems, including comparing

non-nested models. However, they are criticized for being “subjective” in that two analyses

based on the same data set but with different prior distribution can lead to different conclu-

sions. One of our goals is to carefully study the influence of the choice of prior distribution

on the Bayes factor for each of the model parameters in a simple yet popular class of spectral

line detection problems via both simulation and real data analysis. We find that although the

Bayes factor does depends on the prior assignment, the prior influence can be interpreted in a
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non-subjective manner since different priors correspond to different scientific questions such

as the particular range of energies where an astronomer might look for the spectral line and

how strong of a spectral line the astronomer is looking for. In fact, both p-values and ppp-

values are subjective to similar “subjective influence”, which is known as the look elsewhere

effect in astronomy and physics (Gross and Vitells, 2010; Ranucci, 2012). When computing

p-values, this “subjective influence” is not typically the effect of a prior distribution or even

viewed as subjective. On the other hand, as pointed out by Berger and Delampady (1987)

and Berger and Sellke (1987), we find the Bayes Factor is more conservative for detecting

the spectral line when compared to p-values and ppp-values.

The rest of the Chapter is organized as follows. Section 4.2 introduces the spectral line

detection problem from a statistical point of view. We explain why the usual p-value based

on the standard asympototic distribution of the likelihood ratio test is not appropriate for

this type of problem. We also detail how the ppp-value and Bayes Factor can be used

instead. We carefully analyze the disadvantages of both the ppp-value and Bayes Factor

being as a model selection criteria in the context of spectral line detection. In Section 4.3 we

review several common methods for computing the Bayes Factor and compare their relative

effectiveness and efficiency for the spectral line problem. We then introduce our methodology

to study the influence of the choice of prior distributions on the Bayes factor as well as its

comparison to the look elsewhere effect of the ppp-values in Section 4.4. In Section 4.5, we

perform two Simulation studies and a real data analyses where one of the simulation studies

focus on the statistical properties ignoring all instrumental errors and the other mimics real

data sets. Conclusion are stated in Section 4.6.
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4.2 Model Selection Techniques

4.2.1 Statistical Setup

A model for an energy spectrum can be seperated into two basic set of model components: a

set of continuum and a number of emission lines. The continuum decides the general shape of

the spectrum. It describes the distribution over the entire energy range of interest. Emission

lines, on the other hand, are local positive aberrations from the continuum. We follow

Park et al. (2008) and assume a standard spectral model that includes a single continuum

term along with several spectral lines, with θC and θL representing the parameters for the

continuum and emission line respectively. Because X-ray emission is measured by counting

photons in each of a number of energy bins, we use the Poisson distribution to independently

model the observed photon numbers, represented by D = (D1, . . . , DJ) where J represents

the number of energy bins. Theoretically, the expected photon counts in a particular energy

bin, denoted Λj(θ), can thus be written as

Λj(θ) = a(θA, Ej) ·
{

∆jf(θC , Ej) +
K∑
k=1

λkπj(µk, νk)

}
, j = 1, . . . , J (4.1)

where a(θA, Ej) is an absorption model with parameter θA; ∆j and Ej are the width and

mean energy of bin j, f(θC , Ej) is the expected photon counts per unit energy due to the

continuum term at energy Ej, K is the number of emission lines, λk is the expected photon

counts due to the emission line k, and πj(µ, ν) is the proportion of an emission line centered

at energy µ and with width ν that falls into bin j. Although the model in equation (4.1) is of

primary scientific interest, a more complex statistical model is needed to address the errors

involved in the data collection processes. There are three main sources of such instrumental

errors. First, a photon that arrives with energy corresponding to energy bin j might be

mistakenly recorded in energy bin i. The probabilistics of such errors are tabulated in the
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redistribution matrix. Secondly, the effective geometric area associated with the energy bin

might be much less than its polished surface area due to reflectivity, vignetting, and other

effects. We define this effect as “effective area” of the energy bin. Lastly, observation for

any source of interest is subject to background contamination. Mathematically, we modify

equation (4.1) via

Ξl(θ) =
J∑
j=1

MljΛj(θ)dj + θBl , l = 1, . . . , L

Yl
ind∼ Pois(Ξl(θ))

(4.2)

where Ξl(θ) is the expected observed Poisson counts in energy bin l; M is the redistribution

matrix with Mij representing the probability of a photon that should have arrived in energy

bin i but mistakenly recorded by energy bin j; dj is the effective area of bin j; θBl is the

expected photon counts in energy bin l originating from the background other than the

source of interest.

For ease of discussion, we suppose that all bins are all of equal energy width and a Photo-

electric absorption (Hall, 1936). Likewise, we suppose the continuum term in (4.1) is pa-

rameterized as a powerlaw model, i.e., f(θC , Ej) = αE−βj where α and β represent the

normalization and photon index, respectively; there is only one emission line; the emission

line in (4.1) is modeled as a delta function (so that the width of the delta function is effectively

the width of the energy bin in which it resides). Under these assumptions, equation (4.1)

simplies to

Λj(θ) = e−nH·σ(Ej) · (αE−βj + λ · δj(µ)) (4.3)

where the first factor represents the absorption model with θA = nH and σ(Ej) are the

known photo-electric cross-section; θ = (θC ,θL), θC = (α, β), and θL = (λ, µ). δj(µ) is
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defined as

δj(µ) =


1 µ = j

0 µ 6= j

As discussed in Kashyap et al. (2010), from a statistical point of view, the emission line

detection problem can be regarded as a model selection problem between the two candidate

models:

Continuum Model : λ = 0

Continuum + Spectral Line Model : λ > 0

(4.4)

We introduce a running example based on (4.2), (4.3) and (4.4) which we use extensively to

illustrate ideas in Section 4.2.2 - 4.2.6.

Example 1: Suppose we have no instrumental errors with L = 1000 equally spaced energy

bins between 0.3 to 7 keV. To generate a spectrum, we follow (4.3), set nH = 0, α = 50,

β = 1.69, µ = 1.3 keV, λ = 20, and compute the expected photon counts in each energy bin

Λl(θ). We then independently sample a simulated spectrum from the Poisson distribution

with intensity equal to the expected photon counts for each energy bin, i.e.,

Yl
ind∼ Pois(Λl(θ))

One simulated spectrum is shown in Figure 4.1. Our general goal is to quantify evidence for

the comparison of the models with and without the spectral line.
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Figure 4.1: A Simulated Spectrum for the Running Example. The red line plots the theo-
retical functional relationship of the power law model. The red dot shows the energy level
where the delta function emission line is placed while the black cross represents the simulated
photon counts at this particular energy level. All other photon counts are plotted as black
dots.

4.2.2 Hypothesis-testing Using P-values

Between the two candidate models in (4.4), the Continuum model is simpler. According

to Occam’s Razor Parsimony (Ariew, 1978), if two models predict nature equally well, we

prefer the simpler model. It is then natural to give the simple model priority so that the

more complicated Continuum + Spectral Line model should not be adopted unless it is by

some measure better than the simple model (e.g., more able to predict the observed data).

Classically, statisticians formalize this reasoning through hypothesis testing. The simpler

or more parsimonious theory is called the null hypothesis, H0, while the more complicated

theory is called the alternative hypothesis, H1. Thus, in terms of Neyman-Pearson Framework

statistical hypothesis testing, (4.4) can be rewritten as

H0 : λ = 0

H1 : λ > 0.

(4.5)
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In term of the emission line detection problem, H0 and H1 represent the Continuum model

and the Continuum+Spectral Line model respectively, and we use θ0 and θ1 to represent the

relevant parameters under each model. In particular, (4.5) is a precise hypothesis (Berger

and Delampady, 1987) as H0 involves testing a point value of the parameter. The degree of

evidence is typically quantified through the specification of a test statistic that is a function

of the observed data, denoted T (D), with a distribution that is known at least approximately

under the assumption that H0 is correct. The distribution of T (D) under H0 is called the

null distribution. We then compute the the test statistic for our data, denoted T (Dobs), and

compare the result to the null distribution. One common way to do this is by computing

the probability of obtaining a test statistic at least as extreme as the one that was actually

observed. This probability is called p-value and we reject the null hypothesis if the p-value

is less than a pre-defined threshold called the significance level. Mathematically,

p-value(θ0) =


P (T (D) ≥ T (Dobs) | θ0,H0), if large values of T (D) support H1

P (T (D) ≤ T (Dobs) | θ0,H0), if small values of T (D) support H1

(4.6)

The implied logic behind a small p-value is that either H0 is true and a rare event happened,

or H0 is false.

Example 1(a): To illustrate this in the context of the running example, we assume nH, α, β,

and µ are known and simulate a spectrum with nH = 0, α = 10, β = 1.69, λ = 10, and µ = 1

keV (the 105th bin). Suppose we use the observed counts in the bin where the line resides,

D105, as the test statistic; The observed counts in this bin is equal to 14. To compute the

p-value, we firstly derive the null distribution assuming the null hypothesis is correct. Since

there are no unknown parameters under H0, D105 ∼ Pois(αE−β) with α = 10, β = 1.69, and

E = 1, i.e., the null distribution ofD105 is Pois(10). Assume the test statistic for our observed

data, T (Dobs), is equal to 14. Under H0, obtaining a test statistic “at least as extreme as

the one that was actually observed” is equivalent to observing a test statistic which is larger
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Figure 4.2: The Probability Mass Function (PMF) of Null Distribution for The Test Statistic
T (D) in The Running Example. The grey area, 13.55%, corresponds to the actual p-value
in this problem.

than 14, because H1 corresponds to a theory that expects more photon counts in this bin

than H0. According to (4.6), the p-value is then P (T (D) ≥ 14), where T (D) ∼ Pois(10).

In Figure 4.2, it is represented by the grey area under the probability mass function of the

null distribution of T (D).

By definition, p-values require that we derive the null distribution of T (D). Otherwise,

the observed value of T (D) cannot be calibrated. Even in simple problems this can be

challenging, for example, if in practice α and β are unknown, we can no longer explicitely

derive the null distribution for the test statistic of D105 as it depends on θ0. The p-value

in this case also depends on θ0. If possible, we want to find a test statistic whose null

distribution does not depend on any unknown parameters. Statistically, an ideal option

would be to use a statistic that is ancillary under H0, i.e., a statistic whose distribution

does not depend on θ0. In practice, a simple yet popular ancillary statistic that is widely

applicable in many scientific fields is the likelihood ratio test (hereafter LRT) statistic. To

formally introduce the LRT, we need firstly to define the likelihood. Assume D1, . . . , Dn

is an independent sample from a probability density function or probability mass function
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f(D|θ), the likelihood function is defined as

L(θ|D1, . . . , Dn) = L(θ|D) = f(D|θ) =
n∏
i=1

f(Di|θ) (4.7)

Let Θ denote the parameter space. The likelihood ratio test statistic for testing H0: θ ∈ Θ0

versus H1: θ ∈ Θc
0, denoted TLRT(D), is defined as,

TLRT(D) = −2log(R(D)), where R(D) =

sup
Θ0

L(θ|D)

sup
Θ
L(θ|D)

. (4.8)

For large samples (n → ∞) under suitable regularity conditions (Wilks, 1938; Chernoff,

1954), the null distribution of the LRT statistic converges in distribution to a χ2 distribution,

TLRT(D)
D−→ χ2

d , as n→∞ (4.9)

where
D−→ denotes convergence in distribution and d is the difference between the number of

free parameters specified by Θ and Θ0. For our running example, the numerator of the LRT

statistic is likelihood of the observed data being computed under H0 and the denominator

of TLRT(D) is the maximum likelihood under H0. Because we assume the line location is

known, λ is the only unknown parameter in H1. Hence, the degree of freedom of the putative

asympototic χ2 distribution, d, is equal to 1.

As rule of thumb, there are two important conditions that must be satisfied for the proper

calibration of the LRT statistic using the approximated χ2 distribution. First, the two

models that are being compared must be nested. This means that null hypothesis must be a

special case of the alternative hypothesis with a subset of its parameters being restricted,

i.e., Θ0 ⊂ Θ. Second, the null values of the parameters fixed under H0 may not be on the

boundary of the set of possible parameter values, i.e., Θ0 must not be on the boundary of
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Θ. For our running example 1(a), the first condition implies for example the LRT cannot

be used to test a continuum only model against an emission line only model. The second

condition is violated when we test (4.5) because λ must be nonnegative while its null value,

zero, is exactly on the boundary of its parameter space. As a result, the LRT statistic is not

χ2 distributed even approximately. Using a χ2 table to compute p-values for this LRT can

lead to unpredicatable results (Protassov et al., 2002).

One possible solution when the null distribution of a test statistic cannot be derived analyt-

ically is to calibrate it using non-parametric techniques such as the bootstrap (Efron, 1979).

It can be formulated as,

Algorithm for computing bootstrap p-value:

Initialize: Under H0, find estimates of the nuisance parameters, θ̂0, for example, via

maximum likelihood.

Step 1: For s = 1 . . . S,

1. Simulate D̃(s) ∼ P (D|θ̂0,H0), i.e., simulate a replicate data set according to the Con-

tinuum model using estimated parameters.

2. Compute the test statistic T (D̃(s)) for each of the simulated data set.

Step 2: Calibrate the observed test statistic using the empirical null distribution, i.e.,

bootstrap p-value = P (T (D) ≥ T (Dobs)|θ0 = θ̂0)

≈ 1

S

S∑
s=1

I[T (D̃(s)) > T (Dobs)],
(4.10)

where I[statement] is an indicator function that is equation to 1 if the statement is true and

0 otherwise.
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4.2.3 Posterior Predictive P-values

Instead of fixing the model parameters at their estimated value under H0, Meng (1994) and

Gelman et al. (1996) proposed a Bayesian revision of the bootstrap p-value called posterior

predictive p-value. As with the bootstrap p-values, we use a Monte Carlo simulation to

access the null distribution of a test statistic, but rather than simulating replicate data

with parameter values that are fitted to the data under H0, Monte Carlo simulation is run

accounting for posterior uncertainty in the parameters.

To formalize this, we review some basic points of Bayesian statistical inference. Bayesian

statistics involves exploring the so-called posterior distribution of the parameters conditioned

on dataD and model Hk, p(θk|D,Hk). One can derive the posterior distribution using Bayes

theorem,

P (θk|D,Hk) =
L(θk|D,Hk) · P (θk|Hk)

P (D|Hk)
for k = 1, 2 (4.11)

where L(θk|D,Hk) is the likelihood function; P (θk|Hk) is the prior distribution for the

parameters and represents information about the parameters known prior to observing the

data D; P (D|Hk) is the marginal distribution of data, which can be derived via,

P (D|Hk) =

∫
L(θk|D,Hk)P (θk|Hk)dθk. (4.12)

Since its value clearly does not depend on θk, P (D|Hk) is a normalizing constant for the

posterior distribution, P (θk|D,Hk). Using (4.11) allows us to combine information from

expert knowledge or previous studies through the prior distribution with information con-

tained in the current data through the likelihood. To illustrate the procedure of computing

the ppp-value for an arbitrary test statistic T (D), this involves:

Algorithm for computing ppp-values:
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Step 1: For s = 1 . . . S,

1. Simulate parameter values θ
(s)
0 from P (θ0|D,H0).

2. Simulate D̃(s) ∼ P (D|θ(s)
0 ,H0), i.e., simulate a replicate of data set under the Contin-

uum Model for each simulated value of the parameters obtained in step 1.

3. Compute the test statistic T (D̃(s)).

Step 2: Compute the posterior predictive p-value,

ppp-value = P
(
T (D) ≥ T (Dobs)|D

)
= E

[
P
(
T (D) ≥ T (Dobs)|D,θ0

)∣∣∣∣D]
= E

[
p-value(θ0)

∣∣D]
≈ 1

S

S∑
s=1

I[T (D̃(s)) > T (Dobs)].

(4.13)

The ppp-value is the proportion of the Monte Carlo simulations that results in a value of

T (D̃(s)) more extreme than the test statistic obtained for the observed data, T (Dobs). It is

treated as a p-value, with small values indicating evidence for the more complex model, but

addresses the problem associated with the bootstrap p-values of pretending to known the

nuisance parameter values θ0 by fixing them at their sample estimates θ̂0. It can be used in

virtually any scenario as long as we are able to sample the posterior distribution.

However, ppp-values have been criticized for being conservative relative to p-values (Sinharay

and Stern, 2003; Bayarri and Castellanos, 2007; Dey et al., 1998; Robins et al., 2000b). In-

tuitively, since the posterior distribution combines both prior information and information

contained in the data, sampling parameters from their posterior distribution inevitably picks

those parameters values that are more likely under H0. The data sets generated with these

parameter values are therefore more consistent with H0, making it difficult to criticize H0.

In practice, small values of ppp-values denote surprise or incompatibilty between the null
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hypothesis and the data. This is based on intuitive stemming from the uniform distribution

of p-values under H0. Robins et al. (2000b), however, showed that ppp-values are not uni-

formly distributed even asymptotically under the null hypothesis. Rather, their asymptotic

distributions tend to be more concentrated around 0.5. This problem is mitigated if the test

statistic is (asympototically) ancillary, which fortunately is the case for the LRT.

4.2.4 A Principled Bayesian Method for Model Selection

A formal Bayesian analysis allows us to compare two hypotheses in a more direct manner.

Let P (H0) and P (H1) = 1− P (H0) be the prior probabilities for the two hypotheses, which

represent the researchers’ initial knowledge of the relative likelihood of the two hypotheses

before the data is observed. For the moment, we leave aside the question of how these quan-

tities are determined. Using Bayes’ theorem, we can then derive the posterior probabilities

for the two hypotheses P (H0|D) and P (H1|D) = 1− P (H0|D) via,

P (Hk|D) =
P (D|Hk)P (Hk)

P (D|H0)P (H0) + P (D|H1)P (H1)
, for k = 0, 1. (4.14)

This probability only depends on the marginal distribution of the data under each model,

P (D|Hk), and the prior probabilities of the models, P (Hk), and does not involve any model

parameters. The odds ratio, P (H0|D)/P (H1|D), can be formatted as,

P (H0|D)

P (H1|D)
=
P (D|H0)

P (D|H1)

P (H0)

P (H1)
.

Similar to the posterior distribution of parameters, the posterior odds is also a combina-

tion of information contained in the data and in the prior distribution, represented by

P (D|H0)/P (D|H1) and P (H0)/P (H1) respectively. The ratio of the posterior odds and
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Table 4.1: The Interpretation of The Bayes factor

log10(B01) B01 Evidence against H1

0 to 0.5 1 to 3.2 Not worth more than a bare mention
0.5 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

the prior odds of the two models,

B01 =
P (H0|D)

P (H1|D)

/
P (H0)

P (H1)
=
P (D|H0)

P (D|H1)
, (4.15)

is called a Bayes factor (in favor of the null hypothesis) and does not depend on the prior

probability of the two models. As we shall see, however, the Bayes Factor does depend

on P (θ0|H0) and P (θ1|H1), the prior distributions of the model parameters under each

hypothesis. In the simplest case when both hypotheses are simple distributions with no free

parameters, for example, testing λ = 0 versus λ = 1 with known (α, β, µ) in the running

example, B01 = P (D|λ = 0)/P (D|λ = 1) is simply the likelihood ratio. In the general cases,

when there are unknown parameters under either or both of the hypotheses, the Bayes factor

still has a form similar to that of a likelihood ratio, but with the likelihood L(D|θ̂k,Hk)

replaced by the marginal densities of the data P (D|Hk) for k = 1, 2. In words, the LRT

involves finding the MLE under both models, computing their ratio, and deriving the p-value

by referring to the (perhaps known asympototic) null distribution of the test. Bayes factors,

on the other hand, average the likelihood over the prior distribution of relevant parameters

and then compute the ratio of these marginal data densities. Interestingly the computation

of ppp-values could also be thought as taking average. But instead of averaging the likelihood

like the Bayes factor, they average the p-values under different nuisance parameter values

over their posterior distribution, as can be seen from (4.13).To interpret the Bayes factor,

(Jeffreys, 1961) suggested using half units on the log10 scale. A simplified version of his scale

obtained by pooling two of his categories appears in Table 4.1.
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4.2.5 The Fallible P-value

There is an extensive literature discussing whether a p-value provides adequate “evidence”

for the comparison of two models. A fundamental problem is that compared to the Bayes

factor (or posterior odds), p-value (including the posterior predictive p-values) is simply

much harder to interpret. It is critical to remember that the p-value is not p(H0|D) as it is

often interpreted. If we only knew that D were as extreme or more extreme than Dobs, the

p-value would be similar to the posterior probability of the null hypothesis. Formally,

E = {any data D such that |T (D)| ≥ |T (Dobs)| }, (4.16)

Berger and Sellke (1987) quantitively show that the p-value is frequently very close to

p(H0|E). In terms of the definition for the p-value, the event E represents the “tail event”

whose probability is being calculated under H0. It is obvious that there may be a vast dif-

ference between being told that D = Dobs and D ∈ E. The latter provides substantially

stronger evidence against H0 in that p(H0|E) is typically much smaller than p(H0|Dobs).

To illustrate this, we use the running example 1(a) of Section 4.2.2. Recall we assume nH,

α, β, and µ are all fixed; The only unknown parameter is λ. We simulate a spectrum with

nH = 0, α = 10, β = 1.69, λ = 10, and µ = 1 keV (the 105th bin) and use the observed

counts in the bin where the line resides, D105, as the test statistic; The observed counts in

this bin is equal to 14. For this example, E = {D105 ≥ 14}. Hence,

p(H0|E) = p(H0) · p(E|H0)

p(E)
= p(H0) ·

∑∞
k=14 p(D105 = k|H0)∑∞
k=14 p(D105 = k)

.

Note that

p(D105 = k|H0)

p(D105 = k)
<
p(D105 = 14|H0)

p(D105 = 14)
, for each k ≥ 15.
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Because larger counts in the 105th energy bin is less and less possible under the null hypoth-

esis. Therefore

p(H0|E) = p(H0) ·
∑∞

k=14 p(D105 = k|H0)∑∞
k=14 p(D105 = k)

< p(H0) · p(D105 = 14|H0)

p(D105 = 14)
= p(H0|Dobs).

In addition, as shown by Berger and Delampady (1987), there are dramatic conflicts between

the classical p-value (or observed significance level) and the Bayes factor (or posterior odds)

when testing precise hypotheses, which is the case for the emission line detection problem. In

particular, “p-values are typically at least an order of magnitude smaller than Bayes factor

or posterior probability for H0”. For example, a p-value of 0.05, which is usually considered

as significant evidence against H0, may reflect the actual posterior probability of H0 near 1/2

and Bayes factor near 1. (Although one might argue such difference might have something to

do with the choice of prior distribution for Bayes factors and posterior probabilities, (Berger

and Delampady, 1987) show that the smallest posterior probability under a series of prior

distributions of a point null hypothesis is still much larger than the corresponding p-value.)

To illustrate the discrepancy between the p-value and the Bayes factor for testing precise

hyothesis, we present a simple example inspired by the Lindley-Jeffrey paradox (Lindley,

1957), where the posterior probabilities could approach 1 while the p-value stays tiny.

Example 1(b) Suppose now nH, α, β, µ are all fixed. The only unknown parameter is

λ. The alternative hypothesis takes the form of H1 : λ = λ0. Suppose nH = 0, α = 500,

β = 0.1, and µ = 1. We still use the observed counts in the bin where the line resides, D105,

as the test statistic. The null distribution in this case is then Poisson(500). Assume that

based on the observed data Dobs, we find 0.04 < p-value < 0.05. One might naively expect

that the chances that H0 holds conditioned on this p-value, P (H0 | 0.04 ≤ p-value ≤ 0.05),
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is close to the interval of (0.04, 0.05). However, using Bayes theorem,

Pλ0(H0 | 0.04 ≤ p-value ≤ 0.05) = Pλ0(H0 | 537 ≤Dobs ≤ 539) =

P (537 ≤Dobs ≤ 539 | H0) · P (H0)

P (537 ≤Dobs ≤ 539 | H0) · P (H0) + P (537 ≤Dobs ≤ 539 | H1) · (1− P (H0))
(4.17)

This probability can depend heavily on the alternative hypotheses, in particular, the value

of λ0. To illustrate this, we plot P (537 ≤ Dobs ≤ 539 | H0) and P (537 ≤ Dobs ≤ 539 | H1)

in the left panel of Figure 4.3 when λ0 = 30, where the black shaded area corresponds the

former probability and the black and grey shaded area correspond to the latter probability.

As the center of the right PMF curve is equal to 500 + λ0, the black and grey shaded area

will depend on the value of λ0. If λ0 is extremely large, it can be very tiny. On the other

hand, since the left PMF curve stays the same regardless of the value of λ0. The black area

keeps unchanged. As an example, (4.17) is around p(H0) when λ0 = 77.9 while it is almost

1 for λ0 = 200. The complete functional relationship between (4.17) and λ0 is shown in the

right panel of Figure 4.3 assuming P (H0) = P (H1) = 0.5.

4.2.6 The Fallible Bayes Factor

As we can see from (4.12), the Bayes factor depends on the choice of prior distribution.

Sometimes, different prior distributions can lead to significantly different conclusions. To

illustrate this, we return to our running example.

Example 1(c): Suppose nH = 0, α = 500, β = 0.1, and λ = 50 are all known, but µ is

unknown. We simulate a spectrum assuming there is an emission line located at µ = 1 keV,

i.e., energy bin 105. Suppose the observed photon counts in this particular energy bin, D105,

is equal to 550. We use a uniform prior distribution for µ centered at the true emission

line location, i.e., p(µ) ∼ U(1 − η/2, 1 + η/2) where η controls the width of the uniform
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Figure 4.3: The left panel plots the PMF function of Pois(500) and Pois(530), i.e., the PMFs
for the test statistic under H0 and H1. The black shaded area represent the probability of
P (537 ≤ S0 ≤ 539 | H0) while the black and grey area combined corresponds to P (537 ≤
S0 ≤ 539 | H1). The right panel plots Pλ0(H0 | 0.04 ≤ p-value ≤ 0.05) as a function of λ0

assuming P (H0) = P (H1) = 0.5.

distribution. We then plot the Bayes factor as a function of η in Figure 4.4. The Bayes

factor shows substantial to strong evidence for the emission line when η is small, but the

evidence diminishes as η increases. Eventually, the Bayes factor fails to distinguish the two

models. The choice of prior distribution is often viewed as reflecting subjectiveness. Thus,

the very different conclusions due purely to the choice of prior distribution is why the Bayes

factor is often viewed as “subjective”. It is worth noting, however, that different values of

η could represent different sensible scientific questions under different circumstances. To see

this, think about two different cases where we use the likelihood ratio test for line detection,

1. Test for a emission line at a given location.

2. Test for a emission line with an unknown location.

The second type of test can be viewd as multiple tests of the first type and thus results in

a different p-value. (This is known as the look elsewhere effect in astronomy and physics.)
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Figure 4.4: Logarithm of the Bayes Factor as A Function of the Emission Line Location
Prior for Example 1(b).

In the same way different prior distributions on µ may correspond to situations in which

researchers have different objectives about where they wish to look for an emission line.

Unfortunately, noninformative (e.g., “objective”) priors (Berger, 1985) do not exist for test-

ing the precise hypotheses, including the line detection problem (Berger and Delampady,

1987; Berger and Sellke, 1987). Furthermore, improper priors should be used with extreme

caution when computing the Bayes factors. They can lead to particularly nonsensical an-

swers when assigned to those parameters that are only defined in one of the two (null or

alternative) models. We can illustrate this in the running example.

Example 1(d): Assume all parameters are unknown. We use independent uniform distri-

butions over a large region of the parameter space as the prior for (θC ,θL), i.e.,

p(θC ,θL) =


cC · cL, if θC ∈ ΘC and θL ∈ ΘL

0, otherwise
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where ΘC and ΘL define the region of possible values of the parameters; cC and cL are

normalizing constants equal to the areas of ΘC and ΘL, respectively. This is appealing as

it represents a common case when researchers only have vague prior information for the

relevant parameters. Using this prior distribution in (4.12),

B01 =
P (D|H0)

P (D|H1)
=

∫
ΘC

P (D|θC ,H0) · cC dθC∫
ΘC

∫
ΘL
P (D|θC ,θL,H1) · cC · cL dθC dθL

. (4.18)

Since θC is defined in both hypotheses, its normalizing constant cC appears in both P (D|H0)

and P (D|H1), which appears in the numerator and denominator of (4.18) so that cC cancels

in the Bayes factor. We can use non-informative or reference priors for θC , e.g., p(θC) ∝ 1,

which can be regarded as the limit of a Uniform distribution whose range increases to infinity

(Pérez and Berger, 2002). To illustrate this, an example based on the running example can

be found in Appendix A.1. On the other hand, since θL is only defined in the alternative

hypothesis, cL does not cancels when computing the Bayes factor. Changing the area of

ΘL, i.e., cL, changes the Bayes factor. Thus, the value of the Bayes factor is completely

determined by the choice of ΘL. In the limit as cL → ∞, we omit cL in the expression for

the improper prior. The resulting expression for the Bayes factor is uninterpretable. This

is not an indictment on the Bayes factor, but does mean that we need to be careful when

choosing prior distributions.

4.2.7 Methodological Aim

In this article, we compare the use of both the classical p-value and the ppp-value with

the use of the Bayes factor to quantify the evidence for an emission line in a high energy

spectrum. We illustrate our comparison via both simulation studies and real data analyses

in Section 4.5. We show that there are cases where the Bayes factor can give consistent

conclusions under a range of prior distributions and that using the Bayes factor in these
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cases is uncontroversial. In other case, although the Bayes factor may be sensitive to the

choice of prior distribution, such “subjectiveness” can be interpreted in that different prior

distributions represent different scientific questions such as where to look for an emission line;

in the full energy range or only in a restricted area. As we shall see, such choice influences

not only the Bayes factor but also the p-values via the look-elsewere effect. We give general

advice as to how to specify the prior distributions for the emission line detection problem.

4.3 The Computation of Bayes Factor

Computing a Bayes factor requires the evaluation of the integrals in (4.12), for k = 1, 2; This

typically requires numerical methods. This is a surprisingly difficult computation task. Both

marginal data densities of the Bayes factor may involve integrating a non-Gaussian, possibly

multimodal probability density function over a high dimensional space where its value may

be close to zero over a large area. In this section, we review and compare three common

strategies to do this calculation and give a recommended procedure for the emission line

detection problem. See Kass and Raftery (1995) for further discussion on other methods.

4.3.1 Laplace’s Approximation

As discussed in Kass and Raftery (1995), a useful approximation in order to compute

(4.12) is to assume that the posterior density is highly peaked about its maximum θ̃,

the posterior mode. This is usually the case if the likelihood function is highed peaked

near its maximum θ̂, which is typically the case for large samples. Mathematically, let

l(θk) = log{L(θk|Dk,Hk)P (θk|Hk} denote the log-posterior distribution. We can rewrite
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(4.12) as

P (Dk|Hk) =

∫
exp{l(θk)}dθk

≈
∫

exp{l(θ̃k)−
1

2
(θk − θ̃k)′H(θ̃k)(θk − θ̃k)}dθk (4.19)

= exp{l(θ̃k)}(2π)d/2|H(θ̃k)|−1/2·∫
(2π)−d/2|H(θ̃k)|1/2 exp{−1

2
(θk − θ̃k)′H(θ̃k)(θk − θ̃k)}dθk

= (2π)d/2 · |H(θ̃k)|−1/2 · L(θ̃k|D,Hk) · P (θ̃k|Hk) (4.20)

where H is the Hession matrix, ∂2l(θk)/∂θk · ∂θ′k. The approximate equality of (4.19) holds

true because we replace l(θk) with its second order Taylor approximation expanded at θ̃k.

The equality in (4.20) makes use of the fact that integral of a (multivariate Guassian) density

is equal to 1.

The Laplace’s approximation works well when the the second approximation equality of

(4.19) holds, i.e., the log-posterior is quadratic and peaked around its mode. In terms of

the emission line detection problem, however, this is usually not the case. As least not if

line is weak or moderate in strength, which is typical when a model selection criteria is

required to assist with decision making. In this case, the joint posterior distribution for

(λ, µ) typically contains several disjoint local modes. To illustrate this, we consider again

the running example.

Example 1(e): Suppose now only nH is known; α, β, λ, and µ are all unknown. We simulate

a spectrum with nH = 0, α = 50, β = 1.69, µ = 1.3 keV, and λ = 10. We use Uniform priors

for α, β, and λ and a discretized Normal prior 1 centered at the true generative value for µ,

1Because µ is a discretized random variable, we evaluate its density at all possible 1000 bin locations
according to a Normal density of N(µ0, σ

2) and then re-weight it into a probability mass function. We
denote such prior distribution as DN(µ0, σ

2).
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Figure 4.5: The Scatterplot of 3000 Draws from the Joint Posterior Distribution for the
Running Example 1(d). The posterior distribution is highly multimodal and non-Gaussian.

i.e.,

α ∼ U(0, 100), β ∼ U(0, 10), λ ∼ U(0, 40), and µ ∼ DN(1.3, 32).

We then plot the the scatterplot of 3000 draws from the joint posterior distribution for this

example in Figure 4.5, which is clearly multimodal.

4.3.2 Monte Carlo Integration

Monte Carlo integration can also be used to compute Bayes factors. The simplest Monte

Carlo integration estimate of (4.12) is

P̂1(D|Hk) =
1

N

N∑
i=1

L(θ
(i)
k |D,Hk), (4.21)
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where (θ
(1)
k , . . . ,θ

(N)
k ) is a random sample from the prior distribution P (θk|Hk) (Raftery

and Banfield, 1990; McCulloch and Rossi, 1991). However, as discussed in Kass and Raftery

(1995), a major difficulty with this estimator is that because the prior distribution is generally

much more diffuse than the likelihood, most of the θ
(i)
k in a prior sample have small likelihood

values. In another word, P̂1(D|Hk) tends to be dominated by a few samples which have large

likelihood values. As a result, P̂1(D|Hk) is inefficient and exhibits large Monte Carlo variance.

Consider Example 1(d) except that we now assume nH, α, β, and λ are all known, and only

µ is unknown. Under this setting, the numerator of the Bayes factor, P (D|H0), becomes a

constant. Thus, the Monte Carlo integration estimate of B01 is

B̂01 =
P (D|H0)

1
N

∑N
i=1 L(θ

(i)
1 |D,H1)

=
1

1
N

∑N
i=1

L(θ
(i)
1 |D,H1)

P (D|H0)

, (4.22)

where θ
(i)
1 (i = 1, . . . , N) are the samples from the prior distribution of µ. If we let N =

10000, however, more than 50% of the total sum,

N∑
i=1

L(θ
(i)
1 |D,H1)/P (D|H0),

is contributed by the 1% of the {θ(1)
1 , . . . ,θ

(10000)
1 } that have the highest likelihood. Note

that for this example we only have one parameter involved for the integral estimation. The

simple Monte Carlo integration estimate can exhibit far worse efficiency as the dimension of

the parameter space increases.

The efficiency of the Monte Carlo integration can be improved using importance sampling

(Geweke, 1989), adaptive Gaussian quadrature (Genz and Kass, 1993), and bridge (path)

sampling (Meng and Wong, 1996; Gelman and Meng, 1998). The first technique requires a

good approximation to the likelihood function while the second one assumes the likelihood

function is peaked around a dominant mode. Unfortunately, both techniques do not work
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well for the emission line detection problem. The likelihood function under the alternative

model is usually bumpy and highly multimodal, especially with regard to the parameter of µ.

This is evident judging from last row and column of Figure 4.5. The third technique, bridge

sampling, is designed to compute the ratio of two normalizing constant, which is exactly what

is needed when computing a Bayes factor. However, this method works best for problems

in which the common parameter space between the two candidate models, Θ0 ∩ Θ1, has

non-zero measure, which is not the case for the line detection problem. Note that since the

parameter space for λ always has zero measure under H0 and nonzero measure under H1,

the common parameter space for the line detection problem always has zero measure.

4.3.3 Nested Sampling

A third way to compute the Bayes Factor is via Nested sampling (Skilling, 2006; Feroz and

Hobson, 2008). This method is designed primely to find the marginal density of the data,

P (D|H) =

∫
L(θ|D)P (θ)dθ. (4.23)

Unlike Monte Carlo integration which uses a sample from the prior distribution and then

averages over the likelihood of the sample, Nested Sampling approximates the numerical

integral from a different perspective. We start with the following lemma. For a positive-

valued random variable X, assume it has pdf f and cdf F , then

∫ ∞
0

(1− F (x))dx =

∫ ∞
0

xf(x)dx = E(X). (4.24)
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To prove (4.24), note that

∫ ∞
0

(1− F (x))dx =

∫ ∞
0

(1− P (X < x))dx

=

∫ ∞
0

P (X > x)dx

=

∫ ∞
0

∫ ∞
x

f(y) · dy · dx

=

∫ ∞
0

∫ y

0

f(y) · dx · dy (4.25)

=

∫ ∞
0

f(y)

∫ y

0

dx · dy

=

∫ ∞
0

yf(y)dy =

∫ ∞
0

xf(x)dx = E(X)

where equation (4.25) is simply changing the order the double integral. Since the likelihood

function L(θ|D) is a non-negative real function defined on Θ, it has its own distribution. In

fact, its cumulative distribution function of λ = L(θ|D) can be defined by

F (λ) ≡
∫
L(θ|D)<λ

P (θ)dθ. (4.26)

On the other hand, (4.23) can be regarded as the expected value of the likelihood function,

E(L(θ|D)). If we define

X(λ) ≡ 1− F (λ) =

∫
L(θ|D)>λ

P (θ)dθ,

by (4.24), the desired integral of (4.23) is then equal to
∫∞

0
X(λ)dλ. Note that we may invert

the function X(λ) and rewrite the integral as

P (D|H) =

∫ ∞
0

X(λ)dλ (4.27)

=

∫ 1

0

X−1(p)dp, (4.28)
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Figure 4.6: Relationshp between L(θ|D), X(λ), And the Marginal Density of the Data.
The x-axis plots the value of the likelihood function; The solid black line represents its cdf,
1−X(λ); The area of the grey region reflects the marginal density of the data.

where X−1(p) = λ is that likelihood λ such that P (L(θ|D) > λ) = p, e.g., X−1(0.9) is

the 90% quantile of the likelihood function. The equivalence of (4.27) and (4.28) can be

illustrated via Figure 4.6, where the x-axis represents the likelihood value λ; the solid black

line (and also the y-axis) is its CDF defined by (4.26). Our desired integral,
∫∞

0
X(λ)dλ, is

thus the area of the grey region. (4.27) solves this integral with regard to λ while (4.28) with

regard to p. Rewrite the inverse function of X(λ) as L(X), i.e., L(X(λ)) = λ, our target

integral is then

P (D|H) =

∫ 1

0

L(X)dX. (4.29)

As an example, the functional relationship between L and X for a standard Normal distri-

bution is shown in the left panel of Figure 4.7, where the grey area corresponds to the target
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integral P (D|H). Given a sequence of X of decreasing values,

0 = Xm+1 < Xm < . . . < X2 < X1 < X0 = 1.

If we can calculate their corresponding Li = L(Xi), the integral in (4.29) is bounded by

m∑
i=1

(Xi −Xi+1)Li ≤ P (D|H) ≤
m∑
i=1

(Xi−1 −Xi)Li +XmLmax. (4.30)

This is most straightforward to judge from the the right panel of Figure 4.7. The left-hand

side of (4.30) is the sum of the dark grey shaded rectangles, which strictly stay under the

curve of L(X). The right-hand side of (4.30), on the other hand, is the sum of lightgrey

shaded rectangles, which are always on top of L(X).

A good estimate of P (D|H) is obtained if the upper bound and lower bound are similar,

which is the case as m grows. In summary, nested sampling is performed as follows. The

iteration counter is first set to i = 0 and the initial prior volumeX0 is set to 1. A predefinedN

“active” samples are drawn from the prior distribution P (θ). At i = 1 step, the samples are

sorted in order of their likelihood. The smallest (denoted as L1) is removed from the active

set (becoming “inactive”) and replaced by a sample drawn from the prior distribution subject

to the constraint that the likelihood function of the new sample is larger than L1. The prior

volume contained within the new active sample is a random variable given by X1 = t1X0,

where t1 is a random variable with probability density function P (t) = NtN−1, i.e., t1 has

the same distribution as the largest of N samples drawn uniformly from the interval [0, 1].

At each subsequent iteration i, the removal of the lowest likelihood point (denoted as Li) in

the active set, the drawing of a replacement sample with likelihood greater than Li, and the

reduction of the corresponding prior volume Xi = tiXi−1 are repeated. The likelihood for

the first removed sample L1 can be treated as an estimate of L1. This is true because L1 is

the smallest likelihood of uniform sample of size N . Thus, it can be used to estimate the
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Figure 4.7: Nested Sampling Illustration. The left plot shows the functional relationship
between L and X for a standard Normal distribution where area of the gray region equals
the marginal density of the data. The right plot illustrates how we can numerically compute
the marginal density of the data if can evaluate L(Xi) at a right-to-left sequence of m points.

(N−1
N

)th quantile of the whole likelihood function, i.e., X−1(N−1
N

) or L(N−1
N

). On the other

hand, E(X1) = N−1
N

. Hence, L1 ≈ L(X1) = L1. Similarly, at the ith iteration, the smallest

likelihood among the N live points, Li, is an estimate of X−1((N−1
N

)i) or simply Li. With such

approximation, it is then straightforward to estimate the integral using numerical technique

like (4.30). We stop the iteration by monitoring the size of the contribution (Xi+1−Xi)Li+1.

Up till now, the only challenge left for the nested sampling algorithm is how to draw samples

under the contraint of increasing likelihood at each iteration. A detailed discussion and an

efficient algorithm can be found in Feroz and Hobson (2008) and Feroz et al. (2009).

In our experience with the emission line detection problem, Nested Sampling using the Multi-

Nest algorithm works the best for our simulation studies. We apply it using the PyMultiNest,

a Python wrapper for MultiNest (Feroz and Hobson, 2008) written by Johannes Buchner.

A detailed tutorial that explains how to configure PyMultiNest so that it can work together

with CIAO and Sherpa for X-ray analysis appears in Appendix A.2.

112



4.4 Methodology

In this section, we describe how we study the influence of prior distribution on the Bayes

factor. We also introduce a set of candidate models to faciliate the comparison of the prior

influence on the Bayes factor and on the ppp-value.

4.4.1 Graphical Representation Method

Here we propose a method to quantify the effect of the choice of prior distributions on the

Bayes factor. Consider again the Example 1(b). In it α, β, and λ are fixed. The only

unknown parameter is µ and we use a discretized Normal distribution centered at its value

under the generative model as its prior distribution. We introduce a prototype analysis in a

comparison of the Continuum model and Continuum+Spectral line model, by plotting the

decision boundary based on the Bayes factor as a function of the prior standard deviation

of µ. The details are shown in Figure 4.8, where we simulate three data sets with a strong,

moderate, and weak line and plot their corresponding functional relationships between the

log Bayes factor and the prior standard deviation of µ. We compare the set of priors that

results in (i) evidence for the Continuum model; (ii) evidence for the Continuum+Spectral

line model; and (iii) indifference between the two models. If all reasonable priors correspond

to one of these three sets, the model comparison has a clear outcome. E.g., the red line in

Figure 4.8 shows evidence for an emission line for all priors, and the blue line shows evidence

for no line for all priors. If, on the other hand, the range of reasonable priors extends into

two (or three) of these sets (e.g., black line), we cannot clearly enunciate the outcome of

the comparison, but we can state how that outcome depends on the choice of the prior

distributions.

In practice, the Bayes factor depends on more than one hyper-parameter. But the influence
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Figure 4.8: Log Bayes Factor as a Function of Prior Standard Deviation of µ for Three
Simulated Spectra in the Running Example. Bayes factors indicating evidence for and against
the Continuum+Spectral line model are shaded. For some data sets (red and blue lines) the
better model is clear, regardless of the prior. For others (black line) the plot indicates what
priors correspond to evidence for or against the line or simply no conclusion.

of prior distributions for those parameters appearing in only one of the models under com-

parison are expected to be most important. We verify this for the line detection problem

via the Simulation studies describe in Section 4.5.1. As a result, we focus our attention on

the hyper-parameters for λ and µ. In another word, we extend the graphical representa-

tion prototype to include all of the hyper-paramters for λ and µ. When the number of the

hyper-parameters are equal to 2, the Figure 4.8 becomes a three-dimensional heatmap; if

the number of hyper-parameters is larger than or equal to 3, we use a series of heatmaps.

4.4.2 Quantitative Model Comparison

First, we describe the settings under which we study the influence of the choice of prior

distributions on the Bayes factor. The two candidate models under comparison are the
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Continuum model and the Continuum+Spectral line model. In particular, we assume a

powerlaw Continuum and a delta function spectral line. Following (4.3), we can write the

model selection problem as testing the following two hypotheses

H0 :Λj(θ) = e−nH·σ(Ej) · αE−βj

H1 :Λj(θ) = e−nH·σ(Ej) · (αE−βj + λδj(µ))

(4.31)

where α, β are the parameters for the Continuum and λ, µ are the parameters for the spectral

line and nH is the absorption parameter with σ(Ej) is the known photo-electric cross-section.

We assume the spectrum is observed at 1000 energy bins equally spaced between 0.3 to 7

keV so that E = {0.3, 0.3067, . . . , 7}.

We perform two set of simulation studies based on (4.31). The first simulation ignores

absorption (i.e., nH = 0) and all instrumental errors including photon redistribution, varying

effective area, and background contamination. It provides insight into the sensitivity of Bayes

factors to the prior distribution for the line detection problem. The second simulation, on

the other hand, mimics a real data set that is analyzed in Section 4.5.3. In both simulation

studies, we assign Uniform prior distribution to α, β, and nH with no hyper-parameters; for

λ, we use a Uniform distribution with hyper-parameter η while for µ, we use a discretized

Normal distribution with hyper-parameter µ0 and σ. In particular,

λ ∼ U(0, η), µ ∼ DN(µ0, σ
2). (4.32)

To implement the graphical method of Section 4.4.1, we assign a grid of values for η and σ,

i.e., (ηi, σj) where i = 1, . . . , I and j = i, . . . , J . Then, we plot the Bayes factor as a function

of (ηi, σj, µ0), denoted as B01(η, σ, µ0), using a heatmap with regard to (η, σ) with µ0 being

fixed to different values in each of several heatmaps.

Recall that we are interested in not only the influence of the prior distribution on the Bayes
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factor, but also the comparison of this prior influence with that on ppp-values, i.e., the effect

of the range of µ considered and correction for the look elsewhere effect. To do this, we

consider three different alternative hypotheses, H1, H2, and H3

H0 : no line,

H1 : line at a known location,

H2 : line in a known energy range of (a, b), and

H3 : line at an unspecified location.

(4.33)

H1 and H3 can be regarded as special cases of H2. When a = b, H2 is equivalent to H1

while when a = E0 and b = E1000, H2 is equivalent to H3. When computing p-values, the

correction for the look elsewhere effect depends on the choice of alternative hypotheses. To

compute the ppp-value using the LRT under these three alternative hypotheses, we restrict

the region where the LRT searches for line to the interval of (a, b), i.e., for the third step of

(4.13), we use

TLRT(D̃(s)) = −2log(R(D̃(s))), where R(D̃(s)) =

sup
Θ0

L(θ|D̃(s))

sup
Θ,µ∈[a,b]

L(θ|D̃(s))
. (4.34)

Such restriction is equivalent to imposing a Uniform prior distribution, µ ∼ U(a, b) on µ for

the Bayes factor, which we use to replace the discrete Normal prior of (4.32) when comparing

the prior influence between Bayes factors and ppp-values. For each pair of (a, b), we denote

the corresponding ppp-value as ppp(a, b). To compare the prior dependency of the Bayes

factor to the look elsewhere effect on the ppp-value, we use a grid of (a, b) pairs, (ak, bk)

where k = 1, . . . , K. We then plot both the posterior probability of H0, P (H0|D), and the

ppp-value as a function of (bk − ak). (We assume H0 and H1 are equally likely as a priori

when computing the posterior probability of H0, i.e., P (H0) = P (H1) = 0.5.) We compare

these two quantities in this way because the ppp-value tends to be interpreted as P (H0|D)
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in practice while (bk− ak) represents the area of the region where we search for the emission

line. Apart from (bk− ak), the Bayes factor (and P (H0|D)) also depends on the value of the

other hyper-parameter η (The effect of the prior for α and β are neglible). Our comparison

plot will include Bayes factors computed under several values of η.

4.5 Numerial Studies

In this section, we perform two simulation studies to understand the influence of the choice

of prior distribution on the Bayes factor. We also compare the prior dependency of the Bayes

factor to that of the ppp-value. Finally, we use the Bayes Factor to detect an emission line

in each of six real Chandra observations of source PG 1634+706 and compare our findings

to both a simulation designed to mimic the real data and existing published results based

on the posterior predictive distribution (Park et al., 2008).

4.5.1 Simulation I

We start with a simpler simulation without considering the instrumental errors and absorp-

tion (we set nH = 0). In particular, we follow (4.31) to choose between a Continuum model

and a Continuum+Spectral line model. For the generative model, we set α = 50, β = 1.69,

and µ = 1.3. To vary the evidence in the data for the model with added emission line, we

directly change the observed photon count in the bin corresponding to the emission line,

D150. In particular, we set D150 to 49, 54, or 60, which correspond to about 3, 4, and 5

standard deviation above the intensity that is expected under the powerlaw continuum at

this bin, 32.

Because the influence of the prior distributions for α and β are negligible2 compared to those

2Using different priors for α and β has very little effect on the Bayes factor in this simulation settings.
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Figure 4.9: Heat Maps of The log10(B01) in Simulation I. The first row correspond to µ0 = 1.3
while the second row µ0 = 1.97. Three columns represent the three different values of D150.
From left to right, we have D150 equal to 49, 54, and 60 respectively. The different colors of
the heat map correspond to the Jeffrey scale for the Bayes factor interpretation.

of λ and µ, we treat α and β as known in this simulation and we fix both at their values

under the generative model. On the other hand, we follow (4.32) to set the prior distributions

for λ and µ. To implement the graphical representation method, we let I = J = 50;

{ηi} = 10, 12, . . . , 108; {σj} = 0.0067, 0.0201, . . . , 0.6633. We use two different values, 1.3

and 1.97, for µ0 of which the first value corresponds to the true line location. For this simple

simulation, we use the integrate() function of R to compute the Bayes factor. To present

our findings, we plot the log10[B01(ηi, σj, µ0)] as a function of η and σ using two heat maps;

one with µ0 = 1.3 and the other with µ0 = 1.97. The heatmaps are repeated for each of the

three different values of D150. The results are shown in Figure 4.9.

Judging from the first row of Figure 4.9, when the peak of the prior for the emission line
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Table 4.2: The Influence of Line Location on the ppp-value.

PPPPPPPPPHa

D150 49 54 60

H1: line at a known location 0.004 0.001 0
H3: line at an unspecified location 0.539 0.184 0.006

location parameter is near the value used to generate the data, for each η, the Bayes factor

increases as σ decreases. On the other hand, for each σ, the Bayes factor first increases

and then decreases as η increases. Although the Bayes factor is indeed prior dependent, its

dependence is quite predictable. For example, µ0 and σ control the energy region where we

look for the line. Intuitively, searching for the line in a small neighborhood of the true line

location increases the chance of discovery (correct µ0 and small σ). In fact, this is also the

case for the ppp-value. Table 4.2 lists the two different ppp-values3 comparing H0 vs H1

and H0 vs H3 of (4.33), respectively. The ppp-values are significantly larger under the

alternative hypothesis with an unspecified line location. It is much harder to find evidence

for an emission line without knowning its location using ppp-values.

To give a more detailed look at the comparison between the prior dependency of the Bayes

factor to the look elsewhere effect on the ppp-value, we follow Section 4.4.2 and plot P (H0|D)

as well as ppp-values in Figure 4.10 for D150 = 54, where the horizon axis represents the

span of the Uniform prior distribution, (bk − ak). In particular,

P (µ) ∼


U(1.3− bk−ak

2
, 1.3 + bk−ak

2
), if bk − ak ≤ 2

U(0.3, bk − ak + 0.3), if bk − ak > 2

As expected, both P (H0|Y ) and the ppp-value increase with more diffuse prior distribution

for µ, which is equivalent of searching the emission line in a larger energy range. However,

the posterior probability of H0 (and also the Bayes factor) is consistently more conservative

3We use 1000 replicates of data sets for the computation of the ppp-value. It is also equivalent to the
bootstrap p-value in this case since there is no free parameter under H0.
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Figure 4.10: The Comparison Between The Posterior Probability of H0 And The PPP-Value.
The solid lines represent P (H0|D) where different colors correspond to different values of η.
The ppp-value is represented by the black dashed line.

compared to the ppp-value. All of the solid lines are well above the dashed line by a large

margin in Figure 4.10. This agrees with the criticism that p-values (including ppp-values)

tend to overstate the evidence for the alternative hypothesis for testing a precise hypotheses

Berger and Delampady (1987).

4.5.2 Simulation II

In this section, we perform another simulation study intended to mimic one of the real data

sets, ObsID 47 of PG 1634+706. The details of the data set is discussed in Section 4.5.3. The

problem of interest is still to choose between a Continuum model and a Continuum+Spectral

line model using the model described in (4.31). For the generative model, we set nH = 0.064,

α = 0.00043, β = 1.99, and µ = 2.88. The first three parameter values are equal to the
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maximum likelihood estimates fitted by Sherpa4 to ObsID 47, while the value of µ is based

on the published results of Park et al. (2008). According to the generative model, the

powerlaw intensity, αE−β, at E = 2.88 is equal to 0.00005. We use three different values

for the intensity parameter of the emission line, λ = 0.000005, 0.00001, and 0.000025, which

corresponds to a line of 10%, 20%, and 50% of the continuum intensity. To generate simulated

data, we use the fake pha routine in Sherpa to obtain one spectrum under each value of λ.

For the instrumental errors, we use the same photon redistribution, varying effective area,

and background contamination information associated with ObsID 47. We call these three

simulated spectra the weak line, moderate line, and strong line simulation respectively. All

three simulated spectra as well as the observed ObsID 47 are plotted in Figure 4.11.

To study the influence of the prior distributions on the Bayes factor, we assign the following

Uniform distributions as the prior for α, β, and nH,

α ∼ U(0, 0.001), β ∼ U(0, 10), and nH ∼ U(0, 0.1)

These priors are non-informative in that they contain the range of plausible values for the

three parameters. For the other two parameters, we use the prior distribution in (4.32)

except that we fix µ0 = 2.74 and replace the discretized Normal distribution into a discretized

truncated Normal distribution with a lower bound of 1, i.e.,

λ ∼ U(0, η), µ ∼ TDN1(2.74, σ2). (4.35)

We fix µ0 = 2.74 because this is the energy level where the Fe Kα emission line is expected

to be for ObsID 47. We use the same µ0 to analyze the real data sets. (Note that this is

somewhat different from the generative value of µ = 2.88.) We use the discretized truncated

Normal prior distribution in order to avoid regions with potential calibration issues and

4Sherpa is the modeling and fitting application for CIAO, which is capable of fitting complex statistical
models with instrumental errors explained in 4.2.1.
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Figure 4.11: The Spectra of the Simulated Data Sets with Instrumental Errors based on
ObsID 47.

effects related to absorption, i.e., we confine our attention to energies above 1 keV when

searching for emission lines in ObsID 47 as Park et al. (2008). Because our simulated spectra

share the same instrumental error information as ObsID 47, we make the same restriction

in this simulation.

For the grid points of (ηi, σj), we set I = J = 5; {ηi} are five equally spaced values between

0.000005 to 0.00007; {σj} are five equally spaced values between 0.1 to 1.1. To compute the

Bayes factor, instead of using the integrate() function of R as in Simualtion I, we use Nested

Sampling via the PyMultiNest and Sherpa Python modules. A tutorial that describes

how to configure these modules so that they can work together in Python is provided in

Appendix A.2. The heat maps of the log10(B01(η, σ, µ0 = 2.74)) appears in the first row of
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Figure 4.12: Heat Maps of the log10(B01) for the Three Simulated Spectra And Six Real
Chandra Observations. Note that for the moderate line and strong line cases of the simulated
data, their heat maps have different scales compared to the others as these two simulated
spectra have much smaller Bayes Factor than all other data sets.

123



Figure 4.12. Judging from the heat maps, under all of the prior distributions we choose,

the Bayes factor favors the model with the emission line for both the moderate and strong

line simulation. For the weak line simulation, on the other hand, the result depends on the

choice of prior distribution on µ and λ.

As in Simulation I, to compare the prior dependency of Bayes factor to the look elsewhere

effect on ppp-values, we use a Uniform prior distribution for µ to that is symmetric of 2.74

keV, i.e., µ ∼ U(a, b) where (a+ b)/2 = 2.74. To account for the instrumental errors, we use

pyBLoCXS to draw a sample from the joint posterior distribution of (α, β). (pyBLoCXS can be

run either within Sherpa or as a standalone Python module.) The ppp-value computed is

based on 500 replications of the data sets. The results with bk − ak = 0.1, 0.2, 0.5, 0.7, 1, 1.5

are shown in the first row of Figure 4.135.

Both P (H0|D) and the ppp-value strongly prefer the model with an emission line for the

strong line case. When the simulated line is of moderate intensity, the ppp-value indicate

strong evidence for the emission line, while P (H0|D) does so only if P (µ) includes the true

location of the line6. However, the stength of evidence from the ppp-value is always larger

than that from the Bayes factor. The case of weak line is most interesting. For it, P (H0|D)

consistently finds little evidence for the Continuum+Spectral line model. The ppp-value, on

the other hand, gives different answers depending on the value of (bk − ak). It supports the

model with a line if the search region is large, i.e., b−a ≥ 0.7. A possible explanation is that

in a detector bin outside the energy interval of (2.74−0.35, 2.74+0.35), a large photon count

is recorded due to chance variation. If the LRT is allowed to search for the emission line

in a large enough interval containing this particular bin, it will be detected as an potential

emission line and boost the evidence for the Continuum+Spectral line model; otherwise, we

5Because the likelihood function under H1 is bumpy and multi-modal, finding the LRT statistic itself is
challenging for the ppp-value computation. We use Sherpa with 30 equally spaced starting values between
1.24 and 4.24 keV for µ to find the LRT statistic for each of the replicated data set, which is the estimate
with the largest LRT statistic among the 30 fits.

6Note that the first grid pair of (a, b) for the prior of µ is equal to (2.64, 2.84). Since the value of µ for
the generative model is equal to 2.88, it does not include the true line location.
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Figure 4.13: The Comparison Between The Posterior Probability of H0 And The PPP-Value.
For all plots, the solid lines represent P (H0|D) with different colors representing different
values of η (Green, red, and blue lines correspond to η = 0.000005, 0.0000375 and 0.00007
respectively). The ppp-value is represented by the black dashed line. For the case of strong
simulated line, all four lines are exactly equal.
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cannot find evidence for the emission line using LRT.

4.5.3 Real Data Analysis

In this section, we repeat the analysis performed on simulation II to six real Chandra ob-

servations, PG 1634+706. PG 1634+706 (redshift z = 1.334) is a radio-quiet and optically

bright quasar (Steidel and Sargent, 1991). It is very luminous in X-rays with the 2-10 keV

band luminosity exceeding 1046 erg s−1 (Jiménez-Bailón et al., 2005). The iron emission line

in such luminous sources is expected to be weaker than in lower luminosity active galactic

nucleus (AGN) (Nandra et al., 1997). The quasar as observed with The Advanced Satel-

lite for Cosmology and Astrophysics (ASCA) (George et al., 2000) and X-ray Multi-Mirror

Mission (XMM-Newton) (Page et al., 2005) and no line was detected at the energy of the

6.4 keV Fe Kα line (observed at Eobs = 2.738 keV). However, the narrow line was detected

in Haro-Corzo et al. (2007) analysis of one Chandra data set, ObsID 1269, at Eobs = 2.84

keV. Park et al. (2008) analyzed the complete six data sets using a new efficient MCMC

algorithms to explore the complex posterior distribution of the location of narrow emission

lines and to test for the presence of narrow emission lines using the ppp-values. They fit the

model given in (4.31), i.e., they assume a powerlaw model for the continuum and one delta

function emission line. Part of their results are summarized in Table 4.3, which presents

the 95% HPD regions for the delta function line locations. As such posterior distributions

are usually multimodal, each of the 95% HPD regions is composed of a number of disjoint

intervals. Table 4.3 also shows the local modes associated with each interval as well as its

posterior probability7. Five out of the six data sets are shown to have a local mode close to

2.74 keV, where the Fe Kα emission line is identified. The only exception is ObsID 69.

Here we follow Park et al. (2008), but we use Bayes factors rather than ppp-values to search

for a delta function emission line in the spectra of PG 1634+706 with energy near 2.74

7Only those intervals that have posterior probabilities greater than 5% are presented in the table
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Table 4.3: 95% HPD Regions of the Delta Function Line Location from Park et al. (2008).

Posterior Mode 95% HPD Region Posterior Probability
Observered Data Set (keV) (keV) (%)

ObsID 47 2.885 (2.44, 3.14) 72.48
5.915 (5.44, 5.92) 8.48

ObsID 62 1.885 (1.00, 1.97) 25.88
2.785 (2.05, 3.02) 21.65
3.925 (3.30, 4.06) 28.27
5.395 (4.99, 5.41) 8.17

ObsID 69 1.955 (1.51, 2.65) 55.75
3.535 (2.84, 3.62) 12.41
3.935 (3.70, 4.01) 11.79

ObsID 70 2.795 (2.37, 3.17) 63.22
5.945 (5.34, 6.00) 15.96

ObsID 71 2.325 (1.75, 2.45) 8.81
2.815 (2.50, 3.01) 42.11
5.625 (5.38, 5.72) 30.25

ObsID 1269 2.995 (2.69, 3.08) 84.96

keV. When we look for emission lines, we confine our attention ot energies above 1 keV to

avoid regions with potential calibration issues and effects related to absorption. We use the

same priors, the same number of data replicates for the ppp-value, and the same method of

computing the LRT statistic via Sherpa. The second and third rows of Figure 4.12 show

the heat maps for the log10(B01(η, σ, µ0 = 2.74)). Among the six observations, we do not

find any evidence for the Spectral Line in Obs 62 and Obs 69 using the Bayes factor. This

is not surprising for Obs 69 because its posterior distribution of µ does not have a local

mode near 2.74 keV as shown in Tabel 4.3. Obs 62, on the other hand, does have a local

mode at 2.785 keV. However, the posterior probability associated with this mode, 21.65%,

is relatively small compared to the other four observations. For the two observations with

highest posterior probability for local modes near 2.74 keV, Obs 47 and Obs 1269, the Bayes

factor also show the strongest evidence for the emission line under most prior settings. As

we can see from the comparison between our simulated spectra and the Obs 47, even if there

exists an emission line near 2.74 keV, its intensity might not be very large. Thus, the Bayes

factor shows the strongest evidence for the model with the line under prior distributions that
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Figure 4.14: Heat Maps of the log10(B01) When Fitting Six Real Chandra Observations
Altogether.

favor weak lines, i.e., those with small values of η. Our findings are consistent with Park

et al. (2008). We also tried combining all six observations. The corresponding heat map

appears in the left panel of Figure 4.14. It looks most similar to the case of Obs 1269 but

provides larger area with evidence for the emission line than all six observations.

The second and third rows of Figure 4.13 and the right panel of Figure 4.14 show similar

results for the comparison between the P (H0|D) and the ppp-value. When both the Bayes

factor and the ppp-value find evidence for the model with line, the Bayes factor is more

conservative compared with the ppp-value. This can be interpreted in two ways. Firstly,

when the search region is the same, P (H0|D) is significantly higher than the ppp-value.

Secondly, if the search region is increased, the effect on on the Bayes factor is also larger

than that on the ppp-value. In summary, the ppp-value always overstate the evidence for

the spectral line relative to the Bayes factor.
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4.6 Concluding Remarks

The spectral line detection problem in high-energy astrophysics is a typical example involving

the test of a precise hypothesis. The asysmpototic distribution of the popular likelihood

ratio test cannot be used for this problem as the regularity conditions for its asymptotic

sampling distribution do not apply. Generally speaking, the null distribution of the likelihood

ratio test statistic is unknown. While the ppp-value gives us a Monte Carlo mechanism

for evaluating the null distribution, like the p-value, it tends to overstate the evidence for

the more complicated model. The Bayes factor, on the other hand, provides an Bayesian

alternative for the model selection and is applicable to a even larger class of spectral line

/ source detection problems. However, it is criticized to be sensitive to the choice of prior

distributions.

In this chapter, we carefully study the prior influence of the Bayes factor in the context of

spectral line detection problem. Although such prior dependency is usually thought of as a

disadvantage for the Bayes factor, we find it could be quite useful from an objective point

of view in practice. We discuss the specification of the prior distributions for a simple but

typical class of spectral line detection problems, which involve a power law continuum with

one extra delta function emission line. We find that we can use non-informative and even

improper prior distribution for the continuum parameters. This prior has only a limited

influence on the Bayes factor. The prior distribution for the location and intensity of the

delta function emission line do have large influence on the Bayes factor. Different prior

distribution for these two parameters can lead to different conclusions with the same data

set. This effect, however, is not unlike the sensitivity of the ppp-value to the choice of search

region. More importantly, we find that the different prior distributions represent different

types of scientific questions. The prior for the emission line location parameter specifies the

region where we search for the line. We are penalized if we decide to search in a large area

(“look elsewhere effect”). This effect influences the ppp-values in the same manner. The
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prior for the intensity parameter of the emission line on the other hand, represent the relative

strength of the line that we are looking for. Such information could be collected from either

historical observations or experts knowledge. Intuitively, the Bayes factor performs best if

we determine in advance what type of line to look for. When compared to the ppp-value,

the Bayes factor tends to be more conversative towards the null hypothesis, which agrees

with the well known tendency of p-values to overstate evidence for the (more complicated)

alternative hypothesis if the null hypothesis is precise.
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Appendix A

Appendix

A.1 Using Improper Prior for Common Parameters

In this section, we use the running example in Section 4.2.1 to show that it is possible

to assign improper prior to parameters that appear in both H0 and H1. For the running

example, assume now β and µ are known so that α and λ are the only unknown parameter

we need to integrate against for the computation of the Bayes Factor. For their priors,

instead of assigning a prior directly for λ, we assume

P

(
λ

α

)
∼ U(0, η).

In another word, we specify the prior distribution for the line intensity under the scale of its

relative intensity compared to the continuum model. To complete the prior specification for

(α, λ), we use two different priors for P (α). Firstly, suppose P (α) ∼ U(0, N) where N is an
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integer, then the Bayes Factor could be re-writed as

BN
01 =

η∫ η

0

(1 + λ̃/E−βµ )Yµ

(1 + λ̃/
∑L

i E
−β
i )

∑L
i Yi+1

· P (z̃ ≤ N)

P (z ≤ N)
dλ̃

. (A.1)

where z ∼ Gamma(
∑L

i Yi + 1, 1/
∑L

i E
−β
i ), z̃ ∼ Gamma(

∑L
i Yi + 1, 1/(

∑L
i E

−β
i + λ̃)), and

L = 1000 represents the total number of detector bins.

If instead we use an improper prior on the range of (0,+∞), i.e., P (α) ∝ 1 for α > 0, the

Bayes Factor in this case is equal to

Bimproper
01 =

η∫ η

0

(1 + λ̃/E−βµ )Yµ

(1 + λ̃/
∑L

i E
−β
i )

∑L
i Yi+1
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. (A.2)

Simply note
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∑L

i E
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i )
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i )
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since P (z̃ ≤ N) ≤ 1. By Lebegue dominated convergnence theorem,

lim
N→∞
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(A.3)
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Thus, we have successfully shown that the Bayes Factor under an improper prior for α is

equal to the limit of those Bayes Factors under a series of proper Uniform priors. Hence,

using improper prior for α is legitimate in this example.

A.2 Tutorial About Software Configuration For Bayes

Factor Computation

The following tutorial will introduce how to configure a PC with a fresh installed Ubuntu-

12.04-i386 to compute the Bayes factor using Nested Sampling inside CIAO.

A.2.1 Intall CIAO

The first step is to download and install CIAO. Relevant information for this step could be

found from http://cxc.harvard.edu/ciao/download/. In this tutorial, I choose to do

a custom installation. In particular, my installation includes all “Binary Packages” but

excludes the “Calibration Database” (“CALDB”). During the installation, I use default

options for each step except that I specify the installation directory to be /opt/ciao-4.6.

There is a series of smoke test after the installation is completed. Do not panic if you see

some of the tests failed. CIAO is a large analysis package for X-ray analysis while the only

part we need for the Bayes factor computation is its modeling and fitting package Sherpa.

In fact, my installation has 3 out of 42 smoke tests failed but it turns out my remaining steps

are completely uninfluenced. However, if you want to diagnose your installation, a current

bug list could be found at http://cxc.harvard.edu/ciao/bugs/.
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A.2.2 Install the Python Module for Nested Sampling

MultiNest is an efficient way to do Nested Sampling. In order to perform MultiNest in

Python, I use the PyMultiNest module developed by Johannes Buchner. For the in-

stallation, I follow the pymultinest 0.4 documentation, which could be found at http:

//johannesbuchner.github.io/PyMultiNest/install.html. Following the instruction,

I do came across an error of “A required library with BLAS API not found” when try-

ing to build the MultiNest. I solved the problem by searching liblapack and libblas in

the Software center of Ubuntu and install all relevant packages.

A.2.3 Calling PyMultiNest And Sherpa as Python Modules

With PyMultiNest and Sherpa successfully installed, we could now call both as Python

modules and calculate the Bayes factor using Nested Sampling taking into account of all

instrumental errors. However, since the module of PyMultiNest is built against the local

binary of Python while the module of Sherpa is built against the Python binary inside CIAO,

it is very difficult to correctly specify the Python library pathes. The way I tried is to do

the following:

1. Edit the .ciaorc file. In particular, firstly uncomment PYTHON PATH postpend. Then

uncomment PYTHON CIAO and change it into the location of your local Python binary.

For my pc, this is /usr/bin. This step tells CIAO to use your local binary of Python

even after CIAO is started.

2. Start CIAO using “source /your path of ciao installation/bin/ciao.bash”. Do-

ing so will automatically add those Sherpa relevant libraries pathes to the PYTHONPATH.

3. Start Python by simply typing “python” in your terminal. Because of step 1, this

should now call the local Python binary of which we build the PyMultiNest module
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for. To import PyMultiNest, we could simply type “import pymultinest”. On the

other hand, because of step 2, we should be available to import the Sherpa module as

well via “from sherpa.astro.ui import *”

4. Sometimes you might see errors like “RuntimeError: module complied against

API version 7 but this version of numpy is 6” when trying to import Sherpa.

This is because the module of PyMultiNest and Sherpa are built against different

Python binary, which obviously might involves using different version of extension

libraries like Numpy. To avoid such errors, make sure the relevant modules for your

local Python binary is up to date. And because the current PYTHONPATH record pathes

to both Numpy modules for the two Python binaries, you could go to the location of the

Numpy library for either Python binary and then import the Sherpa module so that

you know exactly which Numpy would be imported.

A.2.4 Running The Test Code

With each step properly accomplished, you should now be able to run the following test

code to calculate log(P (D|M)), i.e., the logarithm of the marginal probability of data or half

of the Bayes factor. The model we use here, M , is a power law subject to Photo-electric

absorption, which corresponds to xsphabs.abs1*powlaw1d.pl in Sherpa. Our energy range

of interest is from 0.3 to 7 keV. We use Uniform distributions as prior for all three parameters.

In particular, we assume

α ∼ U(0, 0.001), γ ∼ U(0, 10), nH ∼ U(0, 0.1)

where α, γ are power law parameters while nH is the parameter for the Photo-electric

absorption.
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from sherpa.astro.ui import *

import pymultinest, math, numpy

import os, threading, subprocess

if not os.path.exists("chains"): os.mkdir("chains")

load_pha(’/path to your data’)

energy_range = {"lo":.3,"hi": 7}

notice_id(1,**energy_range)

set_stat("cash")

set_source("xsphabs.abs1*powlaw1d.pl")

def lfactorial(y):

tmp = math.log( math.factorial(y) )

return tmp

Y = get_data().counts

lf_Y = map(lfactorial,Y)

### Transform from the Uniform U(0,1) distribution into

### corresponding prior distributions

def myprior(cube, ndim, nparams):

cube[0] = cube[0]*0.001

cube[1] = cube[1]*10

cube[2] = cube[2]*0.1

### Use the Sherpa calc_stat() function to calculate

### the cash statistic for each set of simulated parameters
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def myloglike(cube, ndim, nparams):

set_par(pl.ampl, val=cube[0], frozen=True)

set_par(pl.gamma, val=cube[1], frozen=True)

set_par(abs1.nH, val=cube[2], frozen=True)

lkhd1 = -0.5*calc_stat()- sum( lf_Y )

return lkhd1

parameters = ["x", "y", "m"]

n_params = len(parameters)

### Run the Nested Sampling using MultiNest algorithm

pymultinest.run(myloglike, myprior, n_params, resume = False, verbose = False, sampling_efficiency = 0.3)

a = pymultinest.Analyzer(n_params = n_params)

s = a.get_stats()

log_evidence = s["global evidence"]

If you are able to run the entire sample code without errors, congratulations! You now would

be able to compute the Bayes factor for astronomical data subject to intrumental errors. For

any two candidate models of your interest, they just need to calculate their logarithm of the

marginal probabilities. Then their difference will tell you the corresponding logarithm of the

Bayes factor.
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