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Abstract

The detection and analysis of events within massive collections
of time-series has become an extremely important task for time-
domain astronomy. In particular, many scientific investigations
(e.g. the analysis of microlensing and other transients) begin with
the detection of isolated events in irregularly-sampled series with
both non-linear trends and non-Gaussian noise. I will discuss a
semi-parametric, robust, parallel method for identifying variability
and isolated events at multiple scales in the presence of the above
complications. This approach harnesses the power of Bayesian
modeling while maintaining much of the speed and scalability of
more ad-hoc machine learning approaches. I will also contrast this
work with event detection methods from other fields, highlighting
the unique challenges posed by astronomical surveys. Finally, I
will present initial results from the application of this method to
87.2 million EROS sources, where we have obtained a greater than
100-fold reduction in candidates for certain types of phenomena.
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Challenges of Massive Data

What is massive data?

In short, it’s data where our favorite methods stop working

Orders of magnitude more observations than we are used to
dealing with, often combined with high dimensionality (e.g.
40 million time series with thousands observations each)

Such scale of data is increasingly common in fields such as
astronomy, computational biology, ecology, etc.

Need statistical methods that scale to these quantities of data

However, need to tradeoff statistical rigor and computational
efficiency
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Challenges of Massive Data

Machine Learning vs. Statistics, in broad strokes

Statistical Methods

Heavy computational
burden

Highly customizable

Can handle “messy” data

Internal assessment of
uncertainty

Machine Learning Methods

Computationally efficient

Generically applicable

Need clean input

External assessment of
uncertainty
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Challenges of Massive Data

How can we get the best of both worlds?

Principled statistical methods are best for handling messy,
complex data that we can effectively model, but scale poorly
to massive datasets

Machine learning methods handle clean data well, but choke
on issues we often confront (outliers, nonlinear trends,
irregular sampling, unusual dependence structures, etc.)

Idea: Inject probability modeling into our analysis in the right
places



Semi-parametric Robust Event Detection for Massive Time-Series Datasets

Application: Getting more out of microlensing surveys

The problem

Have massive (order of 10-100 million) dataset of time series,
possibly spanning multiple spectral bands

Goal is to identify and classify time series containing events

How do we define an event?

Not interested in isolated outliers
Looking for groups of observations that differ significantly from
those nearby (ie, “bumps” and “spikes”)
Also attempting to distinguish periodic and quasi-periodic time
series from isolated events
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Application: Getting more out of microlensing surveys

The data

We used data from the MACHO survey for training, and are
actively analyzing the EROS2 survey
MACHO data consists of approx. 38 million LMC sources,
each observed in two spectral bands

Collected 1992-1999 on 50-inch telescope at Mount Stromlo
Observatory, Australia
Imaged 94 43x 43 fields in two bands, using eight 2048 x 2048
pixel CCDs
Substantial gaps in observations due to seasonality and
priorities

EROS2 data consists on approx. 87.2 million sources, each
observed in two spectral bands

Imaged with 1m telescope at ESO, La Silla between 1996 and
2003
Each camera consisted of mosaic of eight 2K x 2K LORAL
CCDs
Typically 800-1000 observations per source
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Application: Getting more out of microlensing surveys

Exemplar time series from the MACHO project:

A null time series:
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Application: Getting more out of microlensing surveys

Exemplar time series from the MACHO project:

An isolated event (microlensing):
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Application: Getting more out of microlensing surveys

Exemplar time series from the MACHO project:

A quasi-periodic time series (LPV):
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Application: Getting more out of microlensing surveys

Exemplar time series from the MACHO project:

A variable time series (quasar):
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Application: Getting more out of microlensing surveys

Exemplar time series from the MACHO project:

A variable time series (blue star):
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Application: Getting more out of microlensing surveys

Notable properties of this data

Fat-tailed measurement errors

Common in astronomical data, especially from ground-based
telescopes
Need more sophisticated models for the data than standard
Gaussian approaches

Quasi-periodic and other variable sources

Changes the problem from binary classification (null vs. event)
to k-class
Need more complex test statistics and classification techniques

Non-linear, low-frequency trends make less sophisticated
approaches far less effective

Irregular sampling can create artificial events in näıve analyses
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Review of related work

From astronomy

Scan statistics are a common approach (Liang et al, 2004;
Preston & Protopapas, 2009)

However, they often discard data by working with ranks and
account for neither trends nor irregular sampling

Equivalent width methods (a scan statistic based upon local
deviations) are common in astrophysics

However, these rely upon Gaussian assumptions and crude
multiple testing corrections

Numerous other approaches have been proposed in the
literature, but virtually all rely upon Gaussian distributional
assumptions, stationarity, and (usually) regular sampling



Semi-parametric Robust Event Detection for Massive Time-Series Datasets

Review of related work

Statistical/ML approaches

Symth (2007,2008,2010) has used hidden Markov models to
model deviations from learned baselines in sensor count data

Long history of work in change-point / regime-switching
problems within statistics and econometrics

For example, Bayesian lines of research going from Smith
(1975) through Raftery & Akman (1986) and Carlin, Gelfand,
and Smith (1992)
On the econometrics side, Andrews (1993) and more recent
work by Perron & collaborators (1998, 2003)

However, our setting is quite distinct from those typically seen
in previous work



Semi-parametric Robust Event Detection for Massive Time-Series Datasets

Review of related work

Differences in astronomical/massive data setting

Most preceding work has dealt with single time series which
provide internal replication for analyzing deviations from
“typical” behavior

In analyzing massive time-domain surveys, we are confronted
with large sets of time series that are less informative
individually

We must rely on replication across series and prior scientific
knowledge to find deviations from typical behavior
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Review of related work

Our approach

Use a Bayesian probability model for both initial detection and
to reduce the dimensionality of our data (by retaining
posterior summaries)

Using posterior summaries as features for machine learning
classification technique to differentiate between events &
variables

Our goal is not to perform a final, definitive analysis on these
events

Objective to predict which time series are most likely to yield
phenomena characterized by events (e.g. microlensing, blue
stars, flares, etc.)
Allows for use of complex, physically-motivated methods on
massive datasets by pruning set of inputs to manageable size
Provides assessments of uncertainties at each stage of
screening and allows for the incorporation of domain knowledge
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Review of related work

Summarized mathematically

Symbolically, let V be the set of all time series with variation
at an interesting scale (e.g., the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We decompose this probability as
P(Yi ∈ E ) ∝ P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

via the above two steps
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Proposed method

Probability model

Probability model - specification

Linear model for each time series with a split wavelet basis:

y(t) =

kl∑
i=1

βiφi (t) +
M∑

j=kl+1

βjφj(t) + ε(t)

Assume that our residuals ε(t) are distributed as iid tν(0, σ2)
random variables to account for extreme residuals (ν = 5)

Using a Symmlet 4 (aka Least Asymmetric Daubechies 4)
wavelet basis

(φ1, . . . , φkl ) contains the low-frequency components of a
wavelet basis, and (φkl+1, . . . , φM) contains the mid-frequency
components

For a basis on (1, 2048), we set kl to 8 and M to 128
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Proposed method

Probability model

Probability model - specification

y(t) =

kl∑
i=1

βiφi (t) +
M∑

j=kl+1

βjφj(t) + ε(t)

Idea: (φ1, . . . , φkl ) will model structure due to trends, and
(φkl+1, . . . , φM) will model structure at the scales of interest
for events

Explicitly accounting for irregular sampling in our time series
through this basis formulation

Placing independent Gaussian priors on all coefficients except
for the intercept

Next major refinement is to perform empirical Bayesian fitting
on a random subsample of time series to set these
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Proposed method

Probability model

Probability model - estimation

y(t) =

kl∑
i=1

βiφi (t) +
M∑

j=kl+1

βjφj(t) + u(t)

Using EM algorithm with optimal data augmentation scheme
of Meng & Van Dyk (1997) to obtain MAP estimates of our
parameters

Implemented procedure in C with direct BLAS/LAPACK
interface

Average time for a full estimation procedure is ≈ 0.15− 0.2
seconds including file I/O on the Odyssey cluster
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Proposed method

Probability model

Examples of model fit

Idea is that, if there is an event at the scale of interest, there will
be a large discrepancy between fits using (φ1, . . . , φkl ) vs. entire
basis:
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Proposed method

Probability model

Example of model fit

For null time series, the discrepancy will be small:
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Proposed method

Probability model

Example of model fit

And for quasi-periodic time series, the discrepancy will be huge:
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Proposed method

Probability model

Probability model - testing

y(t) =

kl∑
i=1

βiφi (t) +
M∑

j=kl+1

βjφj(t) + ε(t)

We screen time series for further examination by testing
H0 : βkl+1 = βkl+2 = . . . = βM = 0

Test statistic is 2(ˆ̀
1 − ˆ̀

0)

Using modified Benjamini-Hochberg FDR procedure with a
maximum FDR of 10−4 to set the critical region for our test
statistic
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Proposed method

Probability model

Distribution of LLR statistic

To assess how well this statistic performs, we simulated
50, 000 events from a physics-based model and 50, 000 null
time series
We obtained approximate power of 80% with the stated FDR
based on this simulated data
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Proposed method

Probability model

A sidenote: Why not use a Bayes factor?

Given our use of Bayesian models, a Bayes factor would
appear to be a natural approach for the given testing problem

Unfortunately, these do not work well with “priors of
convenience”, such as our independent Gaussian prior on the
wavelet coefficients

Because of these issues, the Bayes factor was extremely
conservative in this problem for almost any reasonable prior
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Proposed method

Probability model

Distribution of Bayes factor for simulated data
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Proposed method

Classification algorithm

Feature Selection I

Engineered two features based on fitted values for
discrimination between diffuse and isolated variability

First is a relatively conventional CUSUM statistic

Let {zt} be the normalized fitted values for a given time
series, excepting the “trend” components corresponding to
β1, . . . , βkl . We then define:

St =
t∑

k=1

(z2
k − 1)

CUSUM = max
t

St −min
t

St
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Proposed method

Classification algorithm

Feature Selection II

Second is “directed variation”

Idea is to capture deviation from symmetric, variation

Defining zt as before and letting zmed be the median of zt , we
define:

DV =
1

#{t : zt > zmed}
∑

t:zt>zmed

z2
t −

1

#{t : zt < zmed}
∑

t:zt<zmed

z2
t
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Proposed method

Classification algorithm

Examples
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Proposed method

Classification algorithm

Examples
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Proposed method

Classification algorithm

Distribution of features on MACHO data
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Proposed method

Classification algorithm

Distribution of features on EROS2 data
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Proposed method

Classification algorithm

Methods

Tested a wide variety of classifiers on our training data,
including kNN, SVM (with radial and linear kernels), LDA,
QDA, and others

Regularized logisitic regression performs best

Using weakly informative (Cauchy) prior for regularization
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Proposed method

Classification algorithm

Training

Obtained excellent performance (cross-validated AUC of
0.991) on MACHO training data (synthetic events and known
variables)
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Results: EROS2 survey

Summary

Initial results show reduction from 87.2 million candidate light
curves by approximately 98% (to approximately 1.5 million) in
blue band from likelihood-ratio test

Approximately 25,000 of the latter group are likely isolated
events, based on initial analysis from classification stage

Currently pursuing scientific follow-up on top candidates
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Results: EROS2 survey

Examples of highly-ranked events

Examples from top 10:
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Results: EROS2 survey

Examples of highly-ranked events

Examples from top 10:
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Results: EROS2 survey

Examples of highly-ranked events

Examples from top 10:
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Results: EROS2 survey

Examples of highly-ranked events

Examples from top 10:
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Results: EROS2 survey

Examples of highly-ranked events

Examples from top 10:
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Conclusion

Putting everything in its place: a mental meta-algorithm

Understand your full (computationally infeasible) statistical
model

Preprocess to remove the “chaff”, when possible

Be careful! Any prescreening must be extremely conservative
to avoid significantly biasing your results

Use approximations for the critical parts of your models (e.g.
empirical Bayes as opposed to full hierarchical modeling) to
maintain computational feasibility

Hyperparameters can be set based on scientific knowledge (if
priors are sufficiently informative) or setup simply for mild
regularization (if each observation is sufficiently rich)
Otherwise, a random subsample of the data can be used to
obtain reasonable estimates
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Conclusion

Putting everything in its place: a mental meta-algorithm

Using estimates from your probability model as inputs, apply
machine learning methods for computationally intractable
tasks (e.g. for large scale classification or clustering)

This maintains computational efficiency and provides these
methods with the cleaner input they need to perform well

Use scale to your advantage when evaluating uncertainty

With prescreening, use known nulls
Without prescreening, use pseudoreplications or simulated data
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Conclusion

Summary

Massive data presents a new set of challenges to statisticians
that many of our standard tools are not well-suited to address

Machine learning has some valuable ideas and methods to
offer, but we should not discard the power of probability
modeling

Conversely, reasonably sophisticated probability models can be
incorporated into the analysis of massive datasets without
destroying computational efficiency if appropriate
approximations are used

It is tremendously important to put each tool in its proper
place for these types of analyses

Our work on event detection for astronomical data shows the
power of this approach by combining both rigorous probability
models and standard machine learning approaches
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Conclusion
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