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Data Transformation: Why Do It?
✤ The Problem: Astronomical data that inhabit complex 

structures in (high-)dimensional spaces are difficult to analyze 
using standard statistical methods.  For instance, we may want 
to:
✤ Estimate photometric redshifts from galaxy colors
✤ Estimate galaxy parameters (age, metallicity, etc.) from galaxy spectra
✤ Classify supernovae using irregularly spaced photometric observations

✤ The Solution: If these data possess a simpler underlying 
geometry in the original data space, we transform the data so 
as to capture and exploit that geometry.
✤ Usually (but not always), transforming the data affects dimensionality 

reduction, mitigating the “curse of dimensionality.”
✤ We seek to transform the data in such a way as to preserve relevant 

physical information whose variation is apparent in the original data.



Data Transformation: Example
Specifying the Distances

Data near the manifold, with n = 500 and error SD σ = 0.5.

69

These data inhabit a
one-dimensional manifold
in a two-dimensional space.

Perhaps a physical parameter
of interest (e.g., redshift) varies
smoothly along the manifold.

We want to transform 
the data in such a way that 
we can employ simple statistics
(e.g., linear regression) to model
the variation of that physical
parameter.  (Accurately.)

Note that these may be non-standard 
data (e.g., each data point may represent
a vector of values, like a spectrum).



The Classic Choice: PCA
Specifying the Distances

Data near the manifold, with n = 500 and error SD σ = 0.5.
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Principal components analysis
will do a terrible job (at dimension
reduction) in this instance because 
it is a linear transformer.



The Classic Choice: PCA
Specifying the Distances

Data near the manifold, with n = 500 and error SD σ = 0.5.
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Principal components analysis
will do a terrible job (at dimension
reduction) in this instance because 
it is a linear transformer.

In PCA, high-dimensional 
data are projected onto
hyperplanes.  Physical 
information may not be
well-preserved in the transformation.



Nonlinear Data Transformation

✤ There are many available methods for nonlinear data 
transformation which have yet to be widely applied to 
astronomical data:
✤ Local linear embedding (LLE; see, e.g., Vanderplas & Connolly 2009)
✤ Others: Laplacian eigenmaps, Hessian eigenmaps, LTSA

✤ We apply the diffusion map (Coifman & Lafon 2006,        
Lafon & Lee 2006; see diffusionMap R package).
✤ The Idea: to estimate the “true” distance between two data points via a 

fictive diffusion (i.e., Markov random walk) process.
✤ The Advantage: The Euclidean distance between points x and y in the 

space of transformed data is approximately the diffusion distance 
between those points in the original data space.  Thus variations of 
physical parameters along the original manifold are approximately 
preserved in the new data space. 



Diffusion Map: Intuition
Diffusion Distances

*

*

Two points on the noisy spiral
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Diffusion Distances

*

Gaussian centered on one point

73

Diffusion Distances

*

*

t = 1

Yields distribution over points after first step
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Diffusion Distances

**

*

t = 2

Distribution after the second step
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Diffusion Distances

**

*

t = 25

Distribution after the 25th step
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Pick location...

...set up a kernel... ...

...and map out the random walk.

t = 1 t = 2 t = 25



Diffusion Map: The Math (Part I)

✤ Define similarity measure between two points x and y, e.g., the 
Euclidean distance:

✤ Construct a weighted graph:

✤ Row-normalize to compute “one-step” probabilities:

✤ Use p1(x,y) to populate n x n matrix P of one-step probabilities.

Photometric redshift estimation using SCA 2013

information beyond photometric colours (e.g. Ball et al. 2004;
Collister & Lahav 2004; Newman 2008; Wray & Gunn 2008).

In this paper, we propose a new empirical method for photometric
redshift estimation based on the diffusion map (Coifman & Lafon
2006; Lafon & Lee 2006), which is an approach to spectral con-
nectivity analysis (SCA). SCA is a suite of established non-linear
eigen-techniques1 that capture the underlying geometry of data by
propagating local neighbourhood information through a Markov
process. SCA thus allows one to find a natural coordinate system
for data such as photometric colours whose original parametrization
is not amenable to available statistical techniques. In Richards et al.
(2009a) and Richards et al. (2009b), we apply the diffusion map
to two different astronomical problems. In Richards et al. (2009a),
we develop a framework combining diffusion map and adaptive
linear regression and apply it to Sloan Digital Sky Survey (SDSS)
spectroscopic data, demonstrating how it may be used to reduce the
dimensionality of the data space and to predict, for example, red-
shifts in a computationally efficient manner. We also demonstrate
the superiority of the diffusion map to principal components analy-
sis (PCA), a related, much more commonly used linear technique.
In Richards et al. (2009b), we utilize the diffusion map and the
K-means clustering algorithm to determine optimal bases of simple
stellar population spectra that we use to estimate the star formation
histories of galaxies.

In Section 2, we review the basics of our diffusion map and
regression framework, and introduce a new component: the ap-
plication of the Nyström extension (see e.g. Press et al. 1992), a
computationally efficient and accurate technique for estimating dif-
fusion coordinates for new objects given those of the training set.
In Section 3, we apply our framework to SDSS data, specifically
main sample galaxies (MSGs) and luminous red galaxies (LRGs),
and demonstrate that we achieve accuracy on par with that of more
computationally intensive techniques. We also apply our framework
to data from the DEEP2 Galaxy Redshift Survey that is matched to
ugriz photometry of the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS; Gwyn 2008) and demonstrate that it provides ac-
curate estimation of redshifts to z ≈ 0.75 given four colours alone.
We demonstrate that the bivariate distributions of photometric and
spectroscopic redshifts for SDSS and DEEP2 are affected by at-
tenuation bias, the tendency of measurement error in the predictor
to reduce the slope of linear models. Last, in Section 4, we sum-
marize our results and discuss how we can extend our framework
to the high-redshift regime where spectroscopic coverage will be
incomplete.

2 A LGOR I THM

2.1 Diffusion map

In this section, we review the basics of diffusion map construc-
tion, an approach to SCA. For more details, we refer the reader to
Coifman & Lafon (2006), Lafon & Lee (2006) and Richards et al.
(2009a). In Richards et al., we compare and contrast the use of dif-
fusion maps with a more commonly utilized linear technique, PCA,
and demonstrate the superiority of diffusion maps in predicting
spectroscopic redshifts of SDSS data from the galaxy spectra.

Here, SCA refers to a class of methods that utilize a local dis-
tance measure to ‘connect’ similar observations. The eigenmodes

1 The name SCA is applied to these eigen-techniques by Lee & Wasserman
(2009), who study their statistical properties.

(i.e. ‘spectral decomposition’) of the rescaled matrix of similarities
(see below for the definition of this matrix) can reveal a natural
coordinate system for data that was absent in the original represen-
tation. For instance, imagine data in two dimensions that to the eye
clearly exhibit spiral structure (e.g. fig. 1 of Richards et al. 2009a).
For such data, the Euclidean distance between data points x and y
would not be an optimal description of the ‘true’ distance between
them along the spiral. Diffusion map is a leading example of an ap-
proach to SCA. In the diffusion map framework, the ‘true’ distance
is estimated via a fictive diffusion process over the data, with one
proceeding from x to y via a random walk along the spiral.

We construct diffusion maps as follows.
We define a similarity measure s(x, y) that quantitatively relates

two data points x and y. In this work, a data ‘point’ is a vector
of colours {c1, . . . , cp} of length p for a single galaxy, and the
similarity measure that we apply is the Euclidean distance

s(x, y) =

√√√√
p∑

i=1

(
cx,i − c y,i

)2
.

A key feature of SCA is that the choice of s(x, y) is not crucial, as
it is often simple to determine whether or not two data points are
‘similar’.

We remove extreme outliers from our data set, not because of their
effect on diffusion map construction (a hallmark of the diffusion
map is its robustness in the presence of outliers), but rather because
they can bias the coefficients of the linear regression model (see
Section 2.2) and because we find that individual predictions made
for these objects are highly inaccurate. We compute the empirical
distributions of Euclidean distances in colour space from each object
to its n th nearest neighbour, where n ∈ [1, 10]. These distributions
are well described as exponential, with estimated mean and standard
deviation µ̂n = σ̂n = x̃n/ log(2) for median value x̃n. We exclude all
data whose n th nearest neighbour is at a distance >µ̂n+5σ̂n = 6σ̂n,
for any value of n ∈ [1, 10]. We find that ≈80 per cent of extreme
outliers are removed with the first nearest-neighbour cut alone, with
the fraction of those removed falling as n increases.

With outliers removed, we construct a weighted graph where the
nodes are the observed data points:

w(x, y) = exp
(

− s(x, y)2

ε

)
, (1)

where ε is a tuning parameter that should be small enough that
w(x, y) ≈ 0 unless x and y are similar, but large enough such
that the graph is fully connected. (We discuss how we estimate
ε in Section 2.2.) The probability of stepping from x to y in one
step is p1(x, y) = w(x, y)/

∑
z w(x, z). We store the one-step

probabilities between all n data points in an n × n matrix P; then,
by the theory of Markov chains, the probability of stepping from x
to y in t steps is given by the element pt(x, y) of the matrix Pt. The
diffusion distance between x and y at time t is defined as

D2
t (x, y) =

∞∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 ,

where ψ j and λj represent eigenvectors and eigenvalues of P, re-
spectively. By retaining the m eigenmodes corresponding to the m
largest non-trivial eigenvalues and by introducing the diffusion map

" t : x &→ [λt
1ψ1(x), λt

2ψ2(x), . . . , λt
mψm(x)] (2)

from Rp to Rm, we have that

D2
t (x, y) (

m∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 = ||" t (x) − " t ( y)||2 ,
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information beyond photometric colours (e.g. Ball et al. 2004;
Collister & Lahav 2004; Newman 2008; Wray & Gunn 2008).

In this paper, we propose a new empirical method for photometric
redshift estimation based on the diffusion map (Coifman & Lafon
2006; Lafon & Lee 2006), which is an approach to spectral con-
nectivity analysis (SCA). SCA is a suite of established non-linear
eigen-techniques1 that capture the underlying geometry of data by
propagating local neighbourhood information through a Markov
process. SCA thus allows one to find a natural coordinate system
for data such as photometric colours whose original parametrization
is not amenable to available statistical techniques. In Richards et al.
(2009a) and Richards et al. (2009b), we apply the diffusion map
to two different astronomical problems. In Richards et al. (2009a),
we develop a framework combining diffusion map and adaptive
linear regression and apply it to Sloan Digital Sky Survey (SDSS)
spectroscopic data, demonstrating how it may be used to reduce the
dimensionality of the data space and to predict, for example, red-
shifts in a computationally efficient manner. We also demonstrate
the superiority of the diffusion map to principal components analy-
sis (PCA), a related, much more commonly used linear technique.
In Richards et al. (2009b), we utilize the diffusion map and the
K-means clustering algorithm to determine optimal bases of simple
stellar population spectra that we use to estimate the star formation
histories of galaxies.

In Section 2, we review the basics of our diffusion map and
regression framework, and introduce a new component: the ap-
plication of the Nyström extension (see e.g. Press et al. 1992), a
computationally efficient and accurate technique for estimating dif-
fusion coordinates for new objects given those of the training set.
In Section 3, we apply our framework to SDSS data, specifically
main sample galaxies (MSGs) and luminous red galaxies (LRGs),
and demonstrate that we achieve accuracy on par with that of more
computationally intensive techniques. We also apply our framework
to data from the DEEP2 Galaxy Redshift Survey that is matched to
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Survey (CFHTLS; Gwyn 2008) and demonstrate that it provides ac-
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spectroscopic redshifts for SDSS and DEEP2 are affected by at-
tenuation bias, the tendency of measurement error in the predictor
to reduce the slope of linear models. Last, in Section 4, we sum-
marize our results and discuss how we can extend our framework
to the high-redshift regime where spectroscopic coverage will be
incomplete.
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Here, SCA refers to a class of methods that utilize a local dis-
tance measure to ‘connect’ similar observations. The eigenmodes

1 The name SCA is applied to these eigen-techniques by Lee & Wasserman
(2009), who study their statistical properties.

(i.e. ‘spectral decomposition’) of the rescaled matrix of similarities
(see below for the definition of this matrix) can reveal a natural
coordinate system for data that was absent in the original represen-
tation. For instance, imagine data in two dimensions that to the eye
clearly exhibit spiral structure (e.g. fig. 1 of Richards et al. 2009a).
For such data, the Euclidean distance between data points x and y
would not be an optimal description of the ‘true’ distance between
them along the spiral. Diffusion map is a leading example of an ap-
proach to SCA. In the diffusion map framework, the ‘true’ distance
is estimated via a fictive diffusion process over the data, with one
proceeding from x to y via a random walk along the spiral.

We construct diffusion maps as follows.
We define a similarity measure s(x, y) that quantitatively relates

two data points x and y. In this work, a data ‘point’ is a vector
of colours {c1, . . . , cp} of length p for a single galaxy, and the
similarity measure that we apply is the Euclidean distance

s(x, y) =
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p∑

i=1

(
cx,i − c y,i

)2
.

A key feature of SCA is that the choice of s(x, y) is not crucial, as
it is often simple to determine whether or not two data points are
‘similar’.

We remove extreme outliers from our data set, not because of their
effect on diffusion map construction (a hallmark of the diffusion
map is its robustness in the presence of outliers), but rather because
they can bias the coefficients of the linear regression model (see
Section 2.2) and because we find that individual predictions made
for these objects are highly inaccurate. We compute the empirical
distributions of Euclidean distances in colour space from each object
to its n th nearest neighbour, where n ∈ [1, 10]. These distributions
are well described as exponential, with estimated mean and standard
deviation µ̂n = σ̂n = x̃n/ log(2) for median value x̃n. We exclude all
data whose n th nearest neighbour is at a distance >µ̂n+5σ̂n = 6σ̂n,
for any value of n ∈ [1, 10]. We find that ≈80 per cent of extreme
outliers are removed with the first nearest-neighbour cut alone, with
the fraction of those removed falling as n increases.

With outliers removed, we construct a weighted graph where the
nodes are the observed data points:

w(x, y) = exp
(

− s(x, y)2

ε

)
, (1)

where ε is a tuning parameter that should be small enough that
w(x, y) ≈ 0 unless x and y are similar, but large enough such
that the graph is fully connected. (We discuss how we estimate
ε in Section 2.2.) The probability of stepping from x to y in one
step is p1(x, y) = w(x, y)/

∑
z w(x, z). We store the one-step

probabilities between all n data points in an n × n matrix P; then,
by the theory of Markov chains, the probability of stepping from x
to y in t steps is given by the element pt(x, y) of the matrix Pt. The
diffusion distance between x and y at time t is defined as

D2
t (x, y) =

∞∑
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λ2t
j (ψ j (x) − ψ j ( y))2 ,

where ψ j and λj represent eigenvectors and eigenvalues of P, re-
spectively. By retaining the m eigenmodes corresponding to the m
largest non-trivial eigenvalues and by introducing the diffusion map

" t : x &→ [λt
1ψ1(x), λt

2ψ2(x), . . . , λt
mψm(x)] (2)

from Rp to Rm, we have that

D2
t (x, y) (

m∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 = ||" t (x) − " t ( y)||2 ,
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information beyond photometric colours (e.g. Ball et al. 2004;
Collister & Lahav 2004; Newman 2008; Wray & Gunn 2008).

In this paper, we propose a new empirical method for photometric
redshift estimation based on the diffusion map (Coifman & Lafon
2006; Lafon & Lee 2006), which is an approach to spectral con-
nectivity analysis (SCA). SCA is a suite of established non-linear
eigen-techniques1 that capture the underlying geometry of data by
propagating local neighbourhood information through a Markov
process. SCA thus allows one to find a natural coordinate system
for data such as photometric colours whose original parametrization
is not amenable to available statistical techniques. In Richards et al.
(2009a) and Richards et al. (2009b), we apply the diffusion map
to two different astronomical problems. In Richards et al. (2009a),
we develop a framework combining diffusion map and adaptive
linear regression and apply it to Sloan Digital Sky Survey (SDSS)
spectroscopic data, demonstrating how it may be used to reduce the
dimensionality of the data space and to predict, for example, red-
shifts in a computationally efficient manner. We also demonstrate
the superiority of the diffusion map to principal components analy-
sis (PCA), a related, much more commonly used linear technique.
In Richards et al. (2009b), we utilize the diffusion map and the
K-means clustering algorithm to determine optimal bases of simple
stellar population spectra that we use to estimate the star formation
histories of galaxies.

In Section 2, we review the basics of our diffusion map and
regression framework, and introduce a new component: the ap-
plication of the Nyström extension (see e.g. Press et al. 1992), a
computationally efficient and accurate technique for estimating dif-
fusion coordinates for new objects given those of the training set.
In Section 3, we apply our framework to SDSS data, specifically
main sample galaxies (MSGs) and luminous red galaxies (LRGs),
and demonstrate that we achieve accuracy on par with that of more
computationally intensive techniques. We also apply our framework
to data from the DEEP2 Galaxy Redshift Survey that is matched to
ugriz photometry of the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS; Gwyn 2008) and demonstrate that it provides ac-
curate estimation of redshifts to z ≈ 0.75 given four colours alone.
We demonstrate that the bivariate distributions of photometric and
spectroscopic redshifts for SDSS and DEEP2 are affected by at-
tenuation bias, the tendency of measurement error in the predictor
to reduce the slope of linear models. Last, in Section 4, we sum-
marize our results and discuss how we can extend our framework
to the high-redshift regime where spectroscopic coverage will be
incomplete.

2 AL GORITHM

2.1 Diffusion map

In this section, we review the basics of diffusion map construc-
tion, an approach to SCA. For more details, we refer the reader to
Coifman & Lafon (2006), Lafon & Lee (2006) and Richards et al.
(2009a). In Richards et al., we compare and contrast the use of dif-
fusion maps with a more commonly utilized linear technique, PCA,
and demonstrate the superiority of diffusion maps in predicting
spectroscopic redshifts of SDSS data from the galaxy spectra.

Here, SCA refers to a class of methods that utilize a local dis-
tance measure to ‘connect’ similar observations. The eigenmodes

1 The name SCA is applied to these eigen-techniques by Lee & Wasserman
(2009), who study their statistical properties.

(i.e. ‘spectral decomposition’) of the rescaled matrix of similarities
(see below for the definition of this matrix) can reveal a natural
coordinate system for data that was absent in the original represen-
tation. For instance, imagine data in two dimensions that to the eye
clearly exhibit spiral structure (e.g. fig. 1 of Richards et al. 2009a).
For such data, the Euclidean distance between data points x and y
would not be an optimal description of the ‘true’ distance between
them along the spiral. Diffusion map is a leading example of an ap-
proach to SCA. In the diffusion map framework, the ‘true’ distance
is estimated via a fictive diffusion process over the data, with one
proceeding from x to y via a random walk along the spiral.

We construct diffusion maps as follows.
We define a similarity measure s(x, y) that quantitatively relates

two data points x and y. In this work, a data ‘point’ is a vector
of colours {c1, . . . , cp} of length p for a single galaxy, and the
similarity measure that we apply is the Euclidean distance

s(x, y) =

√√√√
p∑

i=1

(
cx,i − c y,i

)2
.

A key feature of SCA is that the choice of s(x, y) is not crucial, as
it is often simple to determine whether or not two data points are
‘similar’.

We remove extreme outliers from our data set, not because of their
effect on diffusion map construction (a hallmark of the diffusion
map is its robustness in the presence of outliers), but rather because
they can bias the coefficients of the linear regression model (see
Section 2.2) and because we find that individual predictions made
for these objects are highly inaccurate. We compute the empirical
distributions of Euclidean distances in colour space from each object
to its n th nearest neighbour, where n ∈ [1, 10]. These distributions
are well described as exponential, with estimated mean and standard
deviation µ̂n = σ̂n = x̃n/ log(2) for median value x̃n. We exclude all
data whose n th nearest neighbour is at a distance >µ̂n+5σ̂n = 6σ̂n,
for any value of n ∈ [1, 10]. We find that ≈80 per cent of extreme
outliers are removed with the first nearest-neighbour cut alone, with
the fraction of those removed falling as n increases.

With outliers removed, we construct a weighted graph where the
nodes are the observed data points:

w(x, y) = exp
(

− s(x, y)2

ε

)
, (1)

where ε is a tuning parameter that should be small enough that
w(x, y) ≈ 0 unless x and y are similar, but large enough such
that the graph is fully connected. (We discuss how we estimate
ε in Section 2.2.) The probability of stepping from x to y in one
step is p1(x, y) = w(x, y)/

∑
z w(x, z). We store the one-step

probabilities between all n data points in an n × n matrix P; then,
by the theory of Markov chains, the probability of stepping from x
to y in t steps is given by the element pt(x, y) of the matrix Pt. The
diffusion distance between x and y at time t is defined as

D2
t (x, y) =

∞∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 ,

where ψ j and λj represent eigenvectors and eigenvalues of P, re-
spectively. By retaining the m eigenmodes corresponding to the m
largest non-trivial eigenvalues and by introducing the diffusion map

" t : x &→ [λt
1ψ1(x), λt

2ψ2(x), . . . , λt
mψm(x)] (2)

from Rp to Rm, we have that

D2
t (x, y) (

m∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 = ||" t (x) − " t ( y)||2 ,
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Diffusion Map: The Math (Part II)

✤ The probability of stepping from x to y in t steps is Pt.
✤ The diffusion distance between x and y at time t is

✤ Retain the “top” m eigenmodes to create diffusion map:

✤ The tuning parameters ε and m are determined by 
minimizing predictive risk (a topic I will skip over in the 
interests of time).  The choice of t generally does not matter.

Photometric redshift estimation using SCA 2013
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In this paper, we propose a new empirical method for photometric
redshift estimation based on the diffusion map (Coifman & Lafon
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nectivity analysis (SCA). SCA is a suite of established non-linear
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for data such as photometric colours whose original parametrization
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In Richards et al. (2009b), we utilize the diffusion map and the
K-means clustering algorithm to determine optimal bases of simple
stellar population spectra that we use to estimate the star formation
histories of galaxies.
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regression framework, and introduce a new component: the ap-
plication of the Nyström extension (see e.g. Press et al. 1992), a
computationally efficient and accurate technique for estimating dif-
fusion coordinates for new objects given those of the training set.
In Section 3, we apply our framework to SDSS data, specifically
main sample galaxies (MSGs) and luminous red galaxies (LRGs),
and demonstrate that we achieve accuracy on par with that of more
computationally intensive techniques. We also apply our framework
to data from the DEEP2 Galaxy Redshift Survey that is matched to
ugriz photometry of the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS; Gwyn 2008) and demonstrate that it provides ac-
curate estimation of redshifts to z ≈ 0.75 given four colours alone.
We demonstrate that the bivariate distributions of photometric and
spectroscopic redshifts for SDSS and DEEP2 are affected by at-
tenuation bias, the tendency of measurement error in the predictor
to reduce the slope of linear models. Last, in Section 4, we sum-
marize our results and discuss how we can extend our framework
to the high-redshift regime where spectroscopic coverage will be
incomplete.

2 ALGORITHM
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In this section, we review the basics of diffusion map construc-
tion, an approach to SCA. For more details, we refer the reader to
Coifman & Lafon (2006), Lafon & Lee (2006) and Richards et al.
(2009a). In Richards et al., we compare and contrast the use of dif-
fusion maps with a more commonly utilized linear technique, PCA,
and demonstrate the superiority of diffusion maps in predicting
spectroscopic redshifts of SDSS data from the galaxy spectra.

Here, SCA refers to a class of methods that utilize a local dis-
tance measure to ‘connect’ similar observations. The eigenmodes

1 The name SCA is applied to these eigen-techniques by Lee & Wasserman
(2009), who study their statistical properties.

(i.e. ‘spectral decomposition’) of the rescaled matrix of similarities
(see below for the definition of this matrix) can reveal a natural
coordinate system for data that was absent in the original represen-
tation. For instance, imagine data in two dimensions that to the eye
clearly exhibit spiral structure (e.g. fig. 1 of Richards et al. 2009a).
For such data, the Euclidean distance between data points x and y
would not be an optimal description of the ‘true’ distance between
them along the spiral. Diffusion map is a leading example of an ap-
proach to SCA. In the diffusion map framework, the ‘true’ distance
is estimated via a fictive diffusion process over the data, with one
proceeding from x to y via a random walk along the spiral.

We construct diffusion maps as follows.
We define a similarity measure s(x, y) that quantitatively relates

two data points x and y. In this work, a data ‘point’ is a vector
of colours {c1, . . . , cp} of length p for a single galaxy, and the
similarity measure that we apply is the Euclidean distance

s(x, y) =

√√√√
p∑

i=1

(
cx,i − c y,i

)2
.

A key feature of SCA is that the choice of s(x, y) is not crucial, as
it is often simple to determine whether or not two data points are
‘similar’.

We remove extreme outliers from our data set, not because of their
effect on diffusion map construction (a hallmark of the diffusion
map is its robustness in the presence of outliers), but rather because
they can bias the coefficients of the linear regression model (see
Section 2.2) and because we find that individual predictions made
for these objects are highly inaccurate. We compute the empirical
distributions of Euclidean distances in colour space from each object
to its n th nearest neighbour, where n ∈ [1, 10]. These distributions
are well described as exponential, with estimated mean and standard
deviation µ̂n = σ̂n = x̃n/ log(2) for median value x̃n. We exclude all
data whose n th nearest neighbour is at a distance >µ̂n+5σ̂n = 6σ̂n,
for any value of n ∈ [1, 10]. We find that ≈80 per cent of extreme
outliers are removed with the first nearest-neighbour cut alone, with
the fraction of those removed falling as n increases.

With outliers removed, we construct a weighted graph where the
nodes are the observed data points:

w(x, y) = exp
(

− s(x, y)2

ε

)
, (1)

where ε is a tuning parameter that should be small enough that
w(x, y) ≈ 0 unless x and y are similar, but large enough such
that the graph is fully connected. (We discuss how we estimate
ε in Section 2.2.) The probability of stepping from x to y in one
step is p1(x, y) = w(x, y)/

∑
z w(x, z). We store the one-step

probabilities between all n data points in an n × n matrix P; then,
by the theory of Markov chains, the probability of stepping from x
to y in t steps is given by the element pt(x, y) of the matrix Pt. The
diffusion distance between x and y at time t is defined as

D2
t (x, y) =

∞∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 ,

where ψ j and λj represent eigenvectors and eigenvalues of P, re-
spectively. By retaining the m eigenmodes corresponding to the m
largest non-trivial eigenvalues and by introducing the diffusion map

" t : x &→ [λt
1ψ1(x), λt

2ψ2(x), . . . , λt
mψm(x)] (2)

from Rp to Rm, we have that

D2
t (x, y) (

m∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 = ||" t (x) − " t ( y)||2 ,
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information beyond photometric colours (e.g. Ball et al. 2004;
Collister & Lahav 2004; Newman 2008; Wray & Gunn 2008).

In this paper, we propose a new empirical method for photometric
redshift estimation based on the diffusion map (Coifman & Lafon
2006; Lafon & Lee 2006), which is an approach to spectral con-
nectivity analysis (SCA). SCA is a suite of established non-linear
eigen-techniques1 that capture the underlying geometry of data by
propagating local neighbourhood information through a Markov
process. SCA thus allows one to find a natural coordinate system
for data such as photometric colours whose original parametrization
is not amenable to available statistical techniques. In Richards et al.
(2009a) and Richards et al. (2009b), we apply the diffusion map
to two different astronomical problems. In Richards et al. (2009a),
we develop a framework combining diffusion map and adaptive
linear regression and apply it to Sloan Digital Sky Survey (SDSS)
spectroscopic data, demonstrating how it may be used to reduce the
dimensionality of the data space and to predict, for example, red-
shifts in a computationally efficient manner. We also demonstrate
the superiority of the diffusion map to principal components analy-
sis (PCA), a related, much more commonly used linear technique.
In Richards et al. (2009b), we utilize the diffusion map and the
K-means clustering algorithm to determine optimal bases of simple
stellar population spectra that we use to estimate the star formation
histories of galaxies.

In Section 2, we review the basics of our diffusion map and
regression framework, and introduce a new component: the ap-
plication of the Nyström extension (see e.g. Press et al. 1992), a
computationally efficient and accurate technique for estimating dif-
fusion coordinates for new objects given those of the training set.
In Section 3, we apply our framework to SDSS data, specifically
main sample galaxies (MSGs) and luminous red galaxies (LRGs),
and demonstrate that we achieve accuracy on par with that of more
computationally intensive techniques. We also apply our framework
to data from the DEEP2 Galaxy Redshift Survey that is matched to
ugriz photometry of the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS; Gwyn 2008) and demonstrate that it provides ac-
curate estimation of redshifts to z ≈ 0.75 given four colours alone.
We demonstrate that the bivariate distributions of photometric and
spectroscopic redshifts for SDSS and DEEP2 are affected by at-
tenuation bias, the tendency of measurement error in the predictor
to reduce the slope of linear models. Last, in Section 4, we sum-
marize our results and discuss how we can extend our framework
to the high-redshift regime where spectroscopic coverage will be
incomplete.

2 A L G O RI T H M

2.1 Diffusion map

In this section, we review the basics of diffusion map construc-
tion, an approach to SCA. For more details, we refer the reader to
Coifman & Lafon (2006), Lafon & Lee (2006) and Richards et al.
(2009a). In Richards et al., we compare and contrast the use of dif-
fusion maps with a more commonly utilized linear technique, PCA,
and demonstrate the superiority of diffusion maps in predicting
spectroscopic redshifts of SDSS data from the galaxy spectra.

Here, SCA refers to a class of methods that utilize a local dis-
tance measure to ‘connect’ similar observations. The eigenmodes

1 The name SCA is applied to these eigen-techniques by Lee & Wasserman
(2009), who study their statistical properties.

(i.e. ‘spectral decomposition’) of the rescaled matrix of similarities
(see below for the definition of this matrix) can reveal a natural
coordinate system for data that was absent in the original represen-
tation. For instance, imagine data in two dimensions that to the eye
clearly exhibit spiral structure (e.g. fig. 1 of Richards et al. 2009a).
For such data, the Euclidean distance between data points x and y
would not be an optimal description of the ‘true’ distance between
them along the spiral. Diffusion map is a leading example of an ap-
proach to SCA. In the diffusion map framework, the ‘true’ distance
is estimated via a fictive diffusion process over the data, with one
proceeding from x to y via a random walk along the spiral.

We construct diffusion maps as follows.
We define a similarity measure s(x, y) that quantitatively relates

two data points x and y. In this work, a data ‘point’ is a vector
of colours {c1, . . . , cp} of length p for a single galaxy, and the
similarity measure that we apply is the Euclidean distance

s(x, y) =

√√√√
p∑

i=1

(
cx,i − c y,i

)2
.

A key feature of SCA is that the choice of s(x, y) is not crucial, as
it is often simple to determine whether or not two data points are
‘similar’.

We remove extreme outliers from our data set, not because of their
effect on diffusion map construction (a hallmark of the diffusion
map is its robustness in the presence of outliers), but rather because
they can bias the coefficients of the linear regression model (see
Section 2.2) and because we find that individual predictions made
for these objects are highly inaccurate. We compute the empirical
distributions of Euclidean distances in colour space from each object
to its n th nearest neighbour, where n ∈ [1, 10]. These distributions
are well described as exponential, with estimated mean and standard
deviation µ̂n = σ̂n = x̃n/ log(2) for median value x̃n. We exclude all
data whose n th nearest neighbour is at a distance >µ̂n+5σ̂n = 6σ̂n,
for any value of n ∈ [1, 10]. We find that ≈80 per cent of extreme
outliers are removed with the first nearest-neighbour cut alone, with
the fraction of those removed falling as n increases.

With outliers removed, we construct a weighted graph where the
nodes are the observed data points:

w(x, y) = exp
(

− s(x, y)2

ε

)
, (1)

where ε is a tuning parameter that should be small enough that
w(x, y) ≈ 0 unless x and y are similar, but large enough such
that the graph is fully connected. (We discuss how we estimate
ε in Section 2.2.) The probability of stepping from x to y in one
step is p1(x, y) = w(x, y)/

∑
z w(x, z). We store the one-step

probabilities between all n data points in an n × n matrix P; then,
by the theory of Markov chains, the probability of stepping from x
to y in t steps is given by the element pt(x, y) of the matrix Pt. The
diffusion distance between x and y at time t is defined as

D2
t (x, y) =

∞∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 ,

where ψ j and λj represent eigenvectors and eigenvalues of P, re-
spectively. By retaining the m eigenmodes corresponding to the m
largest non-trivial eigenvalues and by introducing the diffusion map

" t : x &→ [λt
1ψ1(x), λt

2ψ2(x), . . . , λt
mψm(x)] (2)

from Rp to Rm, we have that

D2
t (x, y) (

m∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 = ||" t (x) − " t ( y)||2 ,
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information beyond photometric colours (e.g. Ball et al. 2004;
Collister & Lahav 2004; Newman 2008; Wray & Gunn 2008).

In this paper, we propose a new empirical method for photometric
redshift estimation based on the diffusion map (Coifman & Lafon
2006; Lafon & Lee 2006), which is an approach to spectral con-
nectivity analysis (SCA). SCA is a suite of established non-linear
eigen-techniques1 that capture the underlying geometry of data by
propagating local neighbourhood information through a Markov
process. SCA thus allows one to find a natural coordinate system
for data such as photometric colours whose original parametrization
is not amenable to available statistical techniques. In Richards et al.
(2009a) and Richards et al. (2009b), we apply the diffusion map
to two different astronomical problems. In Richards et al. (2009a),
we develop a framework combining diffusion map and adaptive
linear regression and apply it to Sloan Digital Sky Survey (SDSS)
spectroscopic data, demonstrating how it may be used to reduce the
dimensionality of the data space and to predict, for example, red-
shifts in a computationally efficient manner. We also demonstrate
the superiority of the diffusion map to principal components analy-
sis (PCA), a related, much more commonly used linear technique.
In Richards et al. (2009b), we utilize the diffusion map and the
K-means clustering algorithm to determine optimal bases of simple
stellar population spectra that we use to estimate the star formation
histories of galaxies.

In Section 2, we review the basics of our diffusion map and
regression framework, and introduce a new component: the ap-
plication of the Nyström extension (see e.g. Press et al. 1992), a
computationally efficient and accurate technique for estimating dif-
fusion coordinates for new objects given those of the training set.
In Section 3, we apply our framework to SDSS data, specifically
main sample galaxies (MSGs) and luminous red galaxies (LRGs),
and demonstrate that we achieve accuracy on par with that of more
computationally intensive techniques. We also apply our framework
to data from the DEEP2 Galaxy Redshift Survey that is matched to
ugriz photometry of the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS; Gwyn 2008) and demonstrate that it provides ac-
curate estimation of redshifts to z ≈ 0.75 given four colours alone.
We demonstrate that the bivariate distributions of photometric and
spectroscopic redshifts for SDSS and DEEP2 are affected by at-
tenuation bias, the tendency of measurement error in the predictor
to reduce the slope of linear models. Last, in Section 4, we sum-
marize our results and discuss how we can extend our framework
to the high-redshift regime where spectroscopic coverage will be
incomplete.

2 A LG O R I TH M

2.1 Diffusion map

In this section, we review the basics of diffusion map construc-
tion, an approach to SCA. For more details, we refer the reader to
Coifman & Lafon (2006), Lafon & Lee (2006) and Richards et al.
(2009a). In Richards et al., we compare and contrast the use of dif-
fusion maps with a more commonly utilized linear technique, PCA,
and demonstrate the superiority of diffusion maps in predicting
spectroscopic redshifts of SDSS data from the galaxy spectra.

Here, SCA refers to a class of methods that utilize a local dis-
tance measure to ‘connect’ similar observations. The eigenmodes

1 The name SCA is applied to these eigen-techniques by Lee & Wasserman
(2009), who study their statistical properties.

(i.e. ‘spectral decomposition’) of the rescaled matrix of similarities
(see below for the definition of this matrix) can reveal a natural
coordinate system for data that was absent in the original represen-
tation. For instance, imagine data in two dimensions that to the eye
clearly exhibit spiral structure (e.g. fig. 1 of Richards et al. 2009a).
For such data, the Euclidean distance between data points x and y
would not be an optimal description of the ‘true’ distance between
them along the spiral. Diffusion map is a leading example of an ap-
proach to SCA. In the diffusion map framework, the ‘true’ distance
is estimated via a fictive diffusion process over the data, with one
proceeding from x to y via a random walk along the spiral.

We construct diffusion maps as follows.
We define a similarity measure s(x, y) that quantitatively relates

two data points x and y. In this work, a data ‘point’ is a vector
of colours {c1, . . . , cp} of length p for a single galaxy, and the
similarity measure that we apply is the Euclidean distance

s(x, y) =
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p∑

i=1

(
cx,i − c y,i

)2
.

A key feature of SCA is that the choice of s(x, y) is not crucial, as
it is often simple to determine whether or not two data points are
‘similar’.

We remove extreme outliers from our data set, not because of their
effect on diffusion map construction (a hallmark of the diffusion
map is its robustness in the presence of outliers), but rather because
they can bias the coefficients of the linear regression model (see
Section 2.2) and because we find that individual predictions made
for these objects are highly inaccurate. We compute the empirical
distributions of Euclidean distances in colour space from each object
to its n th nearest neighbour, where n ∈ [1, 10]. These distributions
are well described as exponential, with estimated mean and standard
deviation µ̂n = σ̂n = x̃n/ log(2) for median value x̃n. We exclude all
data whose n th nearest neighbour is at a distance >µ̂n+5σ̂n = 6σ̂n,
for any value of n ∈ [1, 10]. We find that ≈80 per cent of extreme
outliers are removed with the first nearest-neighbour cut alone, with
the fraction of those removed falling as n increases.

With outliers removed, we construct a weighted graph where the
nodes are the observed data points:

w(x, y) = exp
(

− s(x, y)2

ε

)
, (1)

where ε is a tuning parameter that should be small enough that
w(x, y) ≈ 0 unless x and y are similar, but large enough such
that the graph is fully connected. (We discuss how we estimate
ε in Section 2.2.) The probability of stepping from x to y in one
step is p1(x, y) = w(x, y)/

∑
z w(x, z). We store the one-step

probabilities between all n data points in an n × n matrix P; then,
by the theory of Markov chains, the probability of stepping from x
to y in t steps is given by the element pt(x, y) of the matrix Pt. The
diffusion distance between x and y at time t is defined as

D2
t (x, y) =

∞∑

j=1

λ2t
j (ψ j (x) − ψ j ( y))2 ,

where ψ j and λj represent eigenvectors and eigenvalues of P, re-
spectively. By retaining the m eigenmodes corresponding to the m
largest non-trivial eigenvalues and by introducing the diffusion map

" t : x &→ [λt
1ψ1(x), λt

2ψ2(x), . . . , λt
mψm(x)] (2)

from Rp to Rm, we have that
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ψj = j th (right) eigenvector of P
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i.e. the Euclidean distance in the m-dimensional embedding defined
by equation (2) approximates diffusion distance. (We discuss how
we estimate m in Section 2.2, and show that, in this work, the choice
of t is unimportant.) We stress that the diffusion map reparametrizes
the data into a coordinate system that reflects the connectivity of
the data and does not necessarily affect dimension reduction. If the
original parametrization in Rp is sufficiently complex, then it may
be the case that m ! p.

2.2 Regression

As in Richards et al. (2009a), we perform linear regression to predict
the function z = r(! t), where z is true redshift and ! t is a vector of
diffusion coordinates in Rm, representing a vector of photometric
colours x in Rp:

r̂(! t ) = ! t β̂ =
m∑

j=1

β̂j"t,j (x)

=
m∑

j=1

β̂jλ
t
jψj (x) =

m∑

j=1

β̂ ′
jψj (x).

We see that the choice of the parameter t is unimportant, as changing
it simply leads to a rescaling in β̂j , with no change in β̂ ′

j . We present
relevant regression formulae in Appendix A.

We determine optimal values of the tuning parameters (ε, m)
by minimizing estimates of the prediction risk, R(ε, m) = E(L),
where E(L) is the expected value of a loss function L over all
possible realizations of the data [one example of L is the so-called
L2 loss function, which is simply the mean-squared error of the
fit; see e.g. Wasserman (2006) for a discussion of this and other
topics introduced below]. R quantifies the ‘bias-variance’ tradeoff:
too much smoothing (m too low) yields prediction estimators with
low variance and high bias, while too little smoothing (m too high)
yields estimators with high variance and low bias. Using the full
data set to estimate R underestimates the error and leads to a best-
fitting model with high bias, thus we apply 10-fold cross-validation
(CV). The data are partitioned into 10 blocks of (approximately)
equal size. We regress upon the data in nine of the blocks and use
the best-fitting regression model to predict the responses ẑi for the
data in the 10th block. (We note that for algorithmic consistency we
use the Nyström extension to estimate the diffusion coordinates of
the data in the 10th block; see Section 2.3.) The process is repeated
10 times, for different block combinations, so that predictions are
generated for each datum. The individual predictions are combined
into an overall risk estimate

R̂CV(ε, m) =
√

1
n

∑

i

δ2
i =

√√√√ 1
n

∑

i

( |̂zi − Zi |
1 + Zi

)2

, (3)

where we apply the redshift-corrected rms dispersion as our loss
function. Zi is the estimated spectroscopic redshift for object i. (We
capitalize to underscore the fact that the spectroscopic redshift is
a random variable not necessarily equal to the true redshift zi.) To
ensure robustness, for each set of tuning parameters (ε, m), we
compute the mean ¯̂

RCV(ε, m) of 10 estimates of R̂CV(ε,m), and
select those values of (ε, m) such that ¯̂

RCV(ε, m) is minimized, i.e.
(ε̂, m̂) = arg min ¯̂

RCV(ε, m).

2.3 Diffusion coordinate estimation via the Nyström extension

The computation of diffusion coordinates (equation 2) relies upon
eigen-decomposition, which is computationally intractable for data

sets of !104 galaxies. (However, see Budavári et al. 2009, who
propose an incremental methodology for computing eigenvectors.)
Photometric data sets can, of course, be much larger, and thus we
require a computationally efficient scheme for estimating eigen-
vectors for new galaxies given those computed for a small set of
galaxies used to train the regression model. A standard method in
applied mathematics for ‘extending’ a set of eigenvectors is the
Nyström extension.

The implementation is simple: determine the distance in colour
space from each new galaxy to its nearest neighbours in the training
set, then take a weighted average of those neighbours’ eigenvectors.
Let X represent the n × k matrix containing the colour data of the
training set, where n and k are the number of objects and colours,
respectively. Let X’ represent a similar n′ × k matrix containing
colour data for n′ objects in the validation set. The first step of the
Nyström extension is to compute the n′ × n weight matrix W, with
elements equivalent to those shown in equation (1) above (except
that there, x and y are both members of the training set, while here,
x is a new point while y belongs to the training set). We assume the
same value ε̂ as was selected during diffusion map construction;
since the training set is a random sample of galaxies from our
original set, we expect the validation set to be sampled from the
same underlying probability distribution. We row-normalize W by
dividing by each element in row i′ by ρi′ =

∑
i Wi′,i .

Let " be the n × m matrix of eigenvectors with corresponding
vector of eigenvalues λ. To estimate the eigenvectors for the new
galaxies, we compute the n′ × m matrix ! ′:

! ′ = W!# , (4)

where # is an m × m diagonal matrix with entries 1/λi. Then the
redshift predictions for the n′ objects are ẑ = ! ′β̂, where β̂ are
the linear regression coefficients generated for the original training
set.

3 APPLICATION TO SDSS AND DEEP2
DATA SETS

3.1 SDSS spectroscopic data

In this work, we use the Princeton/MIT reductions of SDSS
spectroscopic data.2 Features of these data include the so-called
‘uber-calibration’ of ugriz magnitudes in six magnitude systems
(Padmanabhan et al. 2008). To facilitate a direct comparison of
our results with those of Ball et al. 2008, we utilize colours, i.e.
differences between the magnitudes measured in different bands
determined in each of four magnitude systems: psf , fibre, petrosian
and model. Thus, the colour data occupy a p = 16-dimensional
space.

The necessary data are contained in the files SPALL-<REL>.FITS,
where <REL> = EDR and DR1−DR6. We extract data from all
publicly available plates for which PROGNAME = ‘main’ and PLATE-
QUALITY = ‘good’, keeping 1001 plates in all. (We keep only one
instance of each plate when repeated observations are made, making
the ad hoc choice to retain the most recent observation.) For each
plate, we examine data for those fibres for which CLASS = ‘GALAXY’,
Z > 0.01 and ZWARNING = 0. For each of these fibres, we apply
extinction corrections {A} (from column EXTINCTION) to the set of
fluxes {F} and the set of estimated standard errors {sF} (Finkbeiner

2 See http://spectro.princeton.edu
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et al. 2004):

F ′ = 100.4AF

sF ′ = sF√
10−0.8A

.

If for any object, one or more elements of the set {F ′} < 0, we
exclude the object from analysis. The flux units are nanomaggies;
the conversion from F′ to magnitude m′ is m′ = 22.5 − 2.5 log10F

′,
while the conversion to colours is c′

i−j = 2.5 log10(F ′
j/F

′
i).

The final number of galaxies in our sample is 417 224.

3.1.1 Main sample galaxies

From our data sample, we extract those 360 122 galaxies with
Petrosian r-band magnitude <17.77 (or F R

Petro > 77.983; Strauss
et al. 2002). This is our main sample galaxy or MSG sample. We
randomly select 10 000 galaxies from this sample to train our regres-
sion model. Application of the outlier-removal algorithm described
in Section 2.2 leads to the removal of 251 galaxies from this set.
The application of the algorithm outlined in Sections 2.1 and 2.2
yields tuning parameter estimates (ε̂, m̂) = (0.05, 150), i.e. in order
for a linear model to be appropriate, the 16-dimensional colour data
are reparametrized into 150-dimensional space.

As each object’s eigenvector estimates are independent of those
for other objects, we apply the Nyström extension to validation
set objects one plate at a time, then concatenate the resulting pre-
dictions. We determine which members of the validation set are
5σ outliers relative to the members of the training set, and com-
pute the value of R̂CV with those objects excluded. (Not excluding
these outliers, which lie too far from the training set in colour
space for their diffusion coordinates to be estimated accurately, re-
sults in R̂CV rising from ≈0.02 to 0.56.) Out of 350 122 objects
in the validation set, we exclude 9133; the percentage of outliers is
2.61 per cent. This is consistent with the 2.51 per cent rate of outliers
in the training set.

We show our results in Table 1 and the top panel of Fig. 1, in
which we display predictions for 10,000 randomly chosen objects
of the validation set. The accuracy of prediction via the Nyström

Table 1. Parameters of optimal regression.

Data set (̂ε, m̂) R̂CV η (per cent) n nout

MSG-T (0.05,150) 0.0206 0.010 9,749 251
(0.0231)

MSG-V 0.0211 0.018 340,989 9,384
(0.0240)

LRG-T (0.012,200) 0.0189 0.010 9,734 266
(0.0258)

LRG-V 0.0195 0.034 20,082 884
(0.0270)

DEEP2-T (0.002,850) 0.0507 1.67 5,223 304
(0.1063)

DEEP2-T (0.002,1050) 0.0539 2.14 6,067 351
(0.1123)

In the column ‘Data set’, T = training set and V = validation set. η is the rate
of catastrophic failures (i.e. the rate at which δ > 0.15), n is the number of
galaxies used in analysis after outlier removal and nout is the number of 5σ

outliers removed from sample. The number outside/inside the parentheses
in column R̂CV includes/does not include normalization by (1 + Z). u-band
data are excluded from LRG analyses. For DEEP2-T, the first and second
rows represent analyses of objects for which ZQUALITY = 4 and ZQUALITY ≥3,
respectively.
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Figure 1. Top: predictions for 10 000 randomly selected objects in the MSG
validation set, for (̂ε, m̂) = (0.05, 150). Bottom: same as top, for the LRG
validation set, with (̂ε, m̂) = (0.012, 200). In both cases, we remove 5σ

outliers from the sample prior to plotting, thus the actual number of plotted
points is 9740 (top) and 9579 (bottom).

extension versus directly fitting a linear regression model to the
diffusion map coordinates of the data is indicated in Table 1. We
find that R̂CV increases by 2.4 per cent from 0.0206 to 0.0211, with
catastrophic failure rate η increasing but still small. (Here, a catas-
trophic failure for object i is defined as δi > 0.15; see equation 3
and, e.g. Ilbert et al. 2006.) The small degradation in accuracy is
more than balanced by computational speed; our naive implemen-
tation allowed extension to 350 373 galaxies in ∼10 CPU hours on
a single GHz processor, a computation time that will be markedly
reduced in future implementations of the algorithm. R̂CV = 0.0211
(0.0240 without normalization by 1 + Z) compares favourably with
a myriad of other analyses of MSG data (see e.g. Ball et al., who
obtain σ = 0.0207 without 1 + Z normalization, and references
therein), and the empirical bivariate distribution of (̂z, Z) is visu-
ally indistinguishable from those of, for example, Ball et al. and
Collister & Lahav (2004).

We determine estimator bias by binning the predictions ẑ as a
function of Z, then in each bin computing ¯̂z − Z, with ¯̂z being a
10 per cent trimmed mean. See the top-left panel of Fig. 2. It is
readily apparent that there is a downward slope in the bias (i.e.
redshifts are overestimated at low Z, and underestimated at high
Z). This is not caused by model bias (a bias that one would miti-
gate by adding complexity to the model, e.g. changing from linear
to quadratic regression), but rather by attenuation bias, in which
measurement error (i.e. uncertainty in the predictor, in this case the
diffusion coordinates) reduces the slope of the regression line (see
Fig. 3; see also, e.g. Carroll et al. 2006). To demonstrate that our
data are affected by attenuation bias, we perform a simple experi-
ment. First, we take the MSG training set fluxes and resample them
according to the prescription given in Appendix B. This increases
all measurement errors. (To see this intuitively, imagine sampling

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 398, 2012–2021
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Application IV

✤ Classifying SNe in the 
Supernova Photometric 
Classification Challenge 
(Kessler et al. arXiv:
1001.5210)

✤ See talk by Joey Richards 
for more details!

The Supernova Classification Challenge

g

r

i

z

From the training set, Type Ia.

53

Richards et al. (2010; in preparation)



Future Application
The Big Picture

Data SpaceEncoding SpaceDistribution Space

Physically Possible Distributions

Confidence/Credible
Region

Component 3

Component 2

Component 1

Once represented in low-dimensional space encoding space,

nonparametric density estimation useful for comparing

observations and theory

97

Supernova light curves

Transform observed light curves and
theoretical light curves to a low-dimensional
encoding space, where they may be compared
using nonparametric density estimation.



Diffusion Map: Challenges

✤ Computational Challenge I: efficient construction of weighted 
graph w.
✤ Distance computation slow for high-dimensional data.
✤ Graph may be sparse: can we short-circuit the distance computation?

✤ Computational Challenge II: execution time and memory 
requirements for eigen-decomposition of the one-step 
probability matrix P.
✤ SVD limited to approximately 10,000 x 10,000 matrices on typical 

desktop computers.
✤ Slow: we only need the top n% of eigenvalues and eigenvectors, but 

typical SVD implementations compute all of them.
✤ P may be sparse: efficient sparse SVD algorithms?
✤ Would algorithm of Budavári et al. (2009; MNRAS 394, 1496) help?



Diffusion Map: Challenges

✤ Computational Challenge III: efficient implementation of the 
Nyström Extension to apply training set results to far larger 
test sets.
✤ Predictions for 350,000 SDSS MSGs computed in 10 CPU hours...is 

this too slow in the era of LSST?



And One Statistical Challenge...

✤ Flux measurement error causes attenuation bias:

✤ Can attenuation bias be effectively mitigated?  TBD.
✤ This is not diffusion map specific...

Applications
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Photometric redshift estimation (Freeman, Newman, Lee, Richards, Schafer (2009))

94

Photometric redshift estimation using SCA 2015

et al. 2004):

F ′ = 100.4AF

sF ′ = sF√
10−0.8A

.

If for any object, one or more elements of the set {F ′} < 0, we
exclude the object from analysis. The flux units are nanomaggies;
the conversion from F′ to magnitude m′ is m′ = 22.5 − 2.5 log10F

′,
while the conversion to colours is c′

i−j = 2.5 log10(F ′
j/F

′
i).

The final number of galaxies in our sample is 417 224.

3.1.1 Main sample galaxies

From our data sample, we extract those 360 122 galaxies with
Petrosian r-band magnitude <17.77 (or F R

Petro > 77.983; Strauss
et al. 2002). This is our main sample galaxy or MSG sample. We
randomly select 10 000 galaxies from this sample to train our regres-
sion model. Application of the outlier-removal algorithm described
in Section 2.2 leads to the removal of 251 galaxies from this set.
The application of the algorithm outlined in Sections 2.1 and 2.2
yields tuning parameter estimates (ε̂, m̂) = (0.05, 150), i.e. in order
for a linear model to be appropriate, the 16-dimensional colour data
are reparametrized into 150-dimensional space.

As each object’s eigenvector estimates are independent of those
for other objects, we apply the Nyström extension to validation
set objects one plate at a time, then concatenate the resulting pre-
dictions. We determine which members of the validation set are
5σ outliers relative to the members of the training set, and com-
pute the value of R̂CV with those objects excluded. (Not excluding
these outliers, which lie too far from the training set in colour
space for their diffusion coordinates to be estimated accurately, re-
sults in R̂CV rising from ≈0.02 to 0.56.) Out of 350 122 objects
in the validation set, we exclude 9133; the percentage of outliers is
2.61 per cent. This is consistent with the 2.51 per cent rate of outliers
in the training set.

We show our results in Table 1 and the top panel of Fig. 1, in
which we display predictions for 10,000 randomly chosen objects
of the validation set. The accuracy of prediction via the Nyström

Table 1. Parameters of optimal regression.

Data set (̂ε, m̂) R̂CV η (per cent) n nout

MSG-T (0.05,150) 0.0206 0.010 9,749 251
(0.0231)

MSG-V 0.0211 0.018 340,989 9,384
(0.0240)

LRG-T (0.012,200) 0.0189 0.010 9,734 266
(0.0258)

LRG-V 0.0195 0.034 20,082 884
(0.0270)

DEEP2-T (0.002,850) 0.0507 1.67 5,223 304
(0.1063)

DEEP2-T (0.002,1050) 0.0539 2.14 6,067 351
(0.1123)

In the column ‘Data set’, T = training set and V = validation set. η is the rate
of catastrophic failures (i.e. the rate at which δ > 0.15), n is the number of
galaxies used in analysis after outlier removal and nout is the number of 5σ

outliers removed from sample. The number outside/inside the parentheses
in column R̂CV includes/does not include normalization by (1 + Z). u-band
data are excluded from LRG analyses. For DEEP2-T, the first and second
rows represent analyses of objects for which ZQUALITY = 4 and ZQUALITY ≥3,
respectively.
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Figure 1. Top: predictions for 10 000 randomly selected objects in the MSG
validation set, for (̂ε, m̂) = (0.05, 150). Bottom: same as top, for the LRG
validation set, with (̂ε, m̂) = (0.012, 200). In both cases, we remove 5σ

outliers from the sample prior to plotting, thus the actual number of plotted
points is 9740 (top) and 9579 (bottom).

extension versus directly fitting a linear regression model to the
diffusion map coordinates of the data is indicated in Table 1. We
find that R̂CV increases by 2.4 per cent from 0.0206 to 0.0211, with
catastrophic failure rate η increasing but still small. (Here, a catas-
trophic failure for object i is defined as δi > 0.15; see equation 3
and, e.g. Ilbert et al. 2006.) The small degradation in accuracy is
more than balanced by computational speed; our naive implemen-
tation allowed extension to 350 373 galaxies in ∼10 CPU hours on
a single GHz processor, a computation time that will be markedly
reduced in future implementations of the algorithm. R̂CV = 0.0211
(0.0240 without normalization by 1 + Z) compares favourably with
a myriad of other analyses of MSG data (see e.g. Ball et al., who
obtain σ = 0.0207 without 1 + Z normalization, and references
therein), and the empirical bivariate distribution of (̂z, Z) is visu-
ally indistinguishable from those of, for example, Ball et al. and
Collister & Lahav (2004).

We determine estimator bias by binning the predictions ẑ as a
function of Z, then in each bin computing ¯̂z − Z, with ¯̂z being a
10 per cent trimmed mean. See the top-left panel of Fig. 2. It is
readily apparent that there is a downward slope in the bias (i.e.
redshifts are overestimated at low Z, and underestimated at high
Z). This is not caused by model bias (a bias that one would miti-
gate by adding complexity to the model, e.g. changing from linear
to quadratic regression), but rather by attenuation bias, in which
measurement error (i.e. uncertainty in the predictor, in this case the
diffusion coordinates) reduces the slope of the regression line (see
Fig. 3; see also, e.g. Carroll et al. 2006). To demonstrate that our
data are affected by attenuation bias, we perform a simple experi-
ment. First, we take the MSG training set fluxes and resample them
according to the prescription given in Appendix B. This increases
all measurement errors. (To see this intuitively, imagine sampling

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 398, 2012–2021
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Figure 2. Top left: estimated bias ẑ − Z for MSG redshift estimates ẑ,
computed in bins of width !Z = 0.01 in the range Z ∈ [0.01, 0.25]. Top
right: estimated standard deviation for MSG redshift estimates (normalized
by 1 + Z). Middle left and right: same as top left and right, except for LRG
redshift estimates in bins of width !Z = 0.02 in the range Z ∈ [0.20, 0.44].
Bottom left and right: same as top left and right, except for DEEP2 redshift
estimates (ZQUALITY = 4) in bins of width !Z = 0.05 in the range Z ∈ [0.0,
1.5].
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Figure 3. Simple demonstration of the effect of attenuation bias on linear
regression. Left: example of linear regression fit to data with no measurement
error in the predictor and with response Y ∼ N (x, 0.04), where x = {1,
2, 3, 4}, i.e. each value of Y is sampled from a Gaussian distribution with
mean x and variance 0.04. The black dots indicate the observed data, while
the open circles show the true (x, y) values. Right: same as left, but with
measurement error applied to the predictor: X ∼ N (x, 1). The effect of this
measurement error is to reduce the slope of the regression line, on average.
The mean reduction in slope for this toy example is 0.25 (from 1 to 0.75),
as estimated via 10 000 simulations.

random variables X ∼ N (0, 1), i.e. each value of X is sampled from
a Gaussian distribution with mean 0 and variance 1. Then resample
from the observed values X: Y ∼ N (X, 1). The standard deviation
of the resulting sample is now

√
2, i.e. the error has been artificially

increased by resampling.) Then, we resample fluxes for 1000 ran-
domly selected validation set objects. By doing each resampling
(training set and validation set) 25 times, we build up a set of 625
predictions of ẑ for each of the 1000 selected objects. Following
the same prescription as above, we estimate the bias; the top panel
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Figure 4. Top: change in the estimated bias ẑ − Z induced by resampling
MSG training and validation set fluxes and refitting. Because resampling
increases the measurement error (i.e. the error in the predictor, in this case the
diffusion coordinates), the slope of the regression line is reduced, increasing
overestimates of ẑ at low Z and underestimates of ẑ at high Z. Bottom: same
as top, for LRG data sets.

of Fig. 4 shows how for the MSG data set, increasing the measure-
ment error via resampling leads to a steepening of the bias slope,
i.e. the effect of attenuation bias is magnified.

There exist methods for correcting the bias in linear regression
coefficient estimation caused by additive, heteroscedastic (i.e. non-
constant) measurement errors of known magnitude that are based on
the SIMEX, or simulation-extrapolation, algorithm (Cook & Stefanski
1994; see e.g. Carroll et al. 2006 and references therein). Indeed,
one of the advantages to our approach is that the non-linearity is in
the reparametrization, not the fitted model. Hence, available meth-
ods for correcting for measurement error could be utilized. We are
currently exploring the implementation of SIMEX-based methods in
a computationally efficient manner, and we will present our results
in a future publication.

While attenuation bias is caused by measurement error, its magni-
tude is affected by the distribution of the predictors, i.e. the design.
Expressions relating the design to the bias magnitude are highly
problem dependent. In the simplest, one-dimensional example of
attenuation bias, the predictors are assumed to be normally dis-
tributed – X ∼ N (µx, σ 2

x) – and the effect on the slope β1 is to
reduce its value: β̂1 → λβ1, where λ = σ 2

x/(σ 2
x + σ 2

u) and σ u is
the measurement error. The smaller the value of σ 2

x , the greater the
effect upon the bias. We mention this explicitly to underscore that
analysing samples for which the predictors are, for example, uni-
formly distributed may reduce the magnitude of the bias magnitude
but will not eliminate it since measurement error is still present. In
Fig. 5, we show the estimated sample bias as a function of Z for a
10 000-galaxy sample constructed so as to be uniform in Z (though
the distribution of the predictors themselves – the diffusion coordi-
nates – is not necessarily uniform). Comparing these results with
the top panels of Fig. 2, we find that uniformity in Z reduces the bias

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 398, 2012–2021



And One Statistical Challenge...

Here, we are able to improve on this using the information
available in the PDFs. Figure 9 shows the same data as Figure 8,
but for those objects that have a single PDF peak. Although,
averaged over the 10 holdout validation runs, this reduces the
sample size from 11,149 to 4339 ! 24 and alters the selection
function, the improvement is dramatic. The dispersion is im-
proved from! ¼ 0:343 ! 0:005 to! ¼ 0:117 ! 0:001. The per-
centage of quasars within !z < 0:1, 0.2, and 0.3 is increased
from 53:8% ! 0:4%, 72:4% ! 0:3%, and 79:8% ! 0:3%5 to
73:6% ! 0:6%, 96:3% ! 0:1%, and 99:3% ! 0:1%. Just 33 ! 4
objects from4339 ! 24 (0.7%) remain as catastrophics.Weinstein
et al. (2004) obtained 83% of quasars within jzspec # zphotj < 0:3
for their whole sample, but their dispersion is much higher (cf.
their Figs. 4 and 8).

Figure 10 shows the alteration in the selection function if we
insist on only one peak in the PDF. The fraction of objects with
one peak is either significantly decreased or increased from the
average. Significant deficits occur at 0P zP 1 and 1:9P zP 2:8,
with excess in the remaining redshift ranges. These ranges cor-
respond to an increased dispersion of ! $ 0:5. We discuss pos-
sible reasons why these redshift ranges are poor in x 5.2.

4.2.2. SDSS DR5 + GALEX GR3

Figure 11 shows zphot versus zspec for the mean of the PDF in
a manner similar to Figures 6, 7, and 8. The sample size is re-
duced from 11,149 to 2066, but as shown in B07, the addition
of the two GALEX bands (FUV and NUV) substantially im-
proves the results for the remaining objects. Here, the disper-
sion is reduced from the SDSS value of ! ¼ 0:343 ! 0:005 to

Fig. 6.—Photometric vs. spectroscopic redshift for the 82,672 SDSS DR5
main sample galaxies of the blind testing set (20%of the sample). Here, zphot is the
mean photometric redshift from the PDF for each object. The result from a single
split (of the 10 used for validation) of the data into training and blind testing data
is shown. Here, ! is the RMS dispersion between zphot and zspec. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 7.—Same as Fig. 6, but for 13,254 SDSS DR5 luminous red galaxies.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Same as Fig. 6, but for 11,149 SDSS DR5 quasars. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 9.—Same as Fig. 6, but for SDSS DR5 quasars with single PDF peaks.
Over the 10 validation runs, the number of objects with one peak from the blind
test sample of 11,149 is 4339 ! 24. The alteration of the selection function, n(z),
is clear, but so is the dramatic improvement in the dispersion of the remaining
objects: 99:3% are within!z ¼ 0:3. [See the electronic edition of the Journal for
a color version of this figure.]

5 Ball et al. (2007) found 54:9% ! 0:7%, 73:3% ! 0:6%, and 80:7% !
0:3%. This is consistent within the errors.
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TABLE 1

Errors on Photometric Redshifts Obtained by
Csabai et al. (2003) for the SDSS Early Data

Release—Result Obtained Using ANNz
Appended for Comparison

Estimation Method jrms

CWW . . . . . . . . . . . . . . . . . . . . 0.0666

Bruzual-Charlot . . . . . . . . . . 0.0552

Interpolated . . . . . . . . . . . . . . 0.0451

Polynomial . . . . . . . . . . . . . . . 0.0318

Kd-tree . . . . . . . . . . . . . . . . . . . 0.0254

ANNz . . . . . . . . . . . . . . . . . . . . 0.0229

Fig. 2.—Spectroscopic vs. photometric redshifts for ANNz applied to 10,000
galaxies randomly selected from the SDSS EDR.

3. APPLICATION TO SDSS DATA

The SDSS4 (York et al. 2000) combines a large, five-band

(ugriz) imaging survey with a smaller spectroscopic follow-up

survey. This is an ideal situation for the application of ANNz,

since the spectroscopic survey represents an excellent training

set for the imaging survey.

The selection algorithm for the SDSS spectroscopic survey

results in two subsets of the data: a main galaxy catalog and

a luminous red galaxy catalog (LRG; Eisenstein et al. 2001).

The main galaxy catalog is a flux-limited sample ( )r ! 17.77

with a median redshift (Strauss et al. 2002), whilez p 0.104

the LRG catalog is flux- and color-selected to be a very uniform

and approximately volume limited sample (it is volume limited

to but probes out to at lower completion).z ≈ 0.4 z ≈ 0.6

3.1. Comparison of ANNz with Other Techniques

The SDSS consortium have themselves applied a range of

photometric redshift techniques to their commissioning data

(Csabai et al. 2003). Table 1 lists the estimation errors they

obtained. This commissioning data was made public in the

Early Data Release (EDR; Stoughton et al. 2002). In order

to allow a direct comparison of the accuracy of ANNz with

the methods used by Csabai et al. (2003), we selected the

main galaxy and LRG samples from the EDR. From these

∼30,000 galaxies, we randomly selected training, validation,
and evaluation sets with the respective sizes 15,000, 5000,

and 10,000. The network inputs were the dereddened model

magnitudes in each of the five filters, and the overall archi-

4 Funding for the creation and distribution of the SDSS Archive has been

provided by the Alfred P. Sloan Foundation, the Participating Institutions, the

National Aeronautics and Space Administration, the National Science Foun-

dation, the US Department of Energy, the Japanese Monbukagakusho, and the

Max Planck Society. The SDSS Web site is http://www.sdss.org. The SDSS

is managed by the Astrophysical Research Consortium (ARC) for the Partic-

ipating Institutions. The Participating Institutions are The University of Chi-

cago, Fermilab, the Institute for Advanced Study, the Japan Participation

Group, The Johns Hopkins University, Los Alamos National Laboratory, the

Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for

Astrophysics (MPA), New Mexico State University, University of Pittsburgh,

Princeton University, the United States Naval Observatory, and the University

of Washington.

tecture was . A committee of five such networks5 : 10 : 10 : 1

was trained on the training and validation sets, then applied

to the evaluation set. Figure 2 shows the ANNz photometric

redshift against the spectroscopic value for each galaxy in the

evaluation set. The rms deviation between these is j prms

, which compares well with the re-2 1/2A(z ! z ) S p 0.0229phot spec

sults in Table 1. For clarity, the estimated errors on the pho-

tometric redshifts are not shown in Figure 2. The results for a

randomly selected subset of 200 galaxies are shown with error

bars in Figure 3. Because of the high quality of the training

data in this case, network variance makes only a small con-

tribution, and the errors are therefore dominated by the pho-

tometric noise.

HYPERZ (Bolzonella, Miralles, & Pelló 2000) is a widely used

template-based photometric redshift package. In order to more

directly compare ANNz with the template-matching method, HY-

PERZ was applied to the same evaluation set using the CWW

template SEDs. It is clear from the results in Figure 4 that not

only is the rms dispersion in the photometric redshift consid-

erably greater than that for ANNz, but there are also systematic

deviations in the HYPERZ results. The SDSS consortium ob-

tained similar accuracies to HYPERZ in their implementation

of the basic template-fitting technique (the results labeled

“CWW” and “Bruzual-Charlot” in Table 1 are for the respective

template sets). With more sophisticated template-based meth-

ods, they were able to improve on these errors: the result labeled

“Interpolated” was obtained by first tuning the templates using

the spectroscopic sample as a training set, then producing a

continuous range of templates by interpolating between the

ANNz (Collister & Lahav 2004; PASP 116, 345) kNN (Ball et al. 2008; ApJ 683, 12)



Summary

✤ Methods of nonlinear data transformation such as diffusion 
map can help make statistical analyses of complex (and perhaps 
high-dimensional) data tractable.

✤ Analyses with diffusion map generally outperform (i.e., result 
in a lower predictive risk) similar analyses with PCA, a linear 
technique.

✤ Nonlinear techniques have great promise in the era of LSST, so 
long as certain computational challenges are overcome.  We 
seek
✤ Optimal construction of weighted graphs
✤ Optimal implementations of SVD (memory, execution time, sparsity)
✤ Optimal implementation of the Nyström Extension

✤ Regardless of whether the challenges are overcome, the 
accuracy of our results may be limited by measurement error.



Predictive Risk: an Algorithm

✤ Pick tuning parameter values ε and m.
✤ Transform the data into diffusion space.
✤ Perform k-fold cross-validation on the transformed data:

✤ Assign each datum to one of k groups.
✤ Fit model (e.g., linear regression) to the data in k-1 groups (i.e., leave the 

data of the kth group out of the fit).
✤ Given best-fit model, compute estimate ŷi for all data in the kth group.
✤ Repeat process until all k groups have been held out.

✤ Assuming the L2 (squared-error) loss function, our estimate of 
the predictive risk is generally

✤ We vary ε and m until the predictive risk estimate is minimized.
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R̂(ε, m) =
1

n
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[ŷj(ε, m)− Yj]
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Nyström Extension

✤ The basic idea: compute the similarity of a test set datum to 
the training set data, and use that similarity to determine the 
diffusion coordinate for that datum via interpolation, with no 
eigen-decomposition.

✤ Mathematically:

✤ W is the matrix of similarities between the test set data and the 
training set data, while Λ is a diagonal matrix with entries 1/λi.
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Ψ′:

Ψ′ = WΨΛ , (4)

where Λ is a m×m diagonal matrix with entries 1/λi. Then

the redshift predictions for the n′ objects are bz = Ψ′ bβ,
where bβ are the linear regression coefficients generated for
the original training set.

3 APPLICATION TO SDSS AND DEEP2
DATASETS

3.1 SDSS spectroscopic data

In this work, we use the Princeton/MIT reductions of SDSS
spectroscopic data2. Features of these data include the so-
called ‘uber-calibration’ of ugriz magnitudes in six magni-
tude systems (Padmanabhan et al. 2008). To facilitate a
direct comparison of our results with those of Ball et al.
2008, we utilize colours, i.e., differences between the magni-
tudes measured in different bands determined in each of four
magnitude systems: psf, fiber, petrosian, and model. Thus the
colour data occupy a p = 16 dimensional space.

The necessary data are contained in the files
spAll-<rel>.fits, where <rel> = EDR and DR1−DR6.
We extract data from all publicly available plates for which
PROGNAME = ‘main’ and PLATEQUALITY = ‘good,’ keeping
1001 plates in all. (We keep only one instance of each
plate when repeated observations are made, making the ad
hoc choice to retain the most recent observation.) For each
plate, we examine data for those fibers for which CLASS =
‘GALAXY,’ Z > 0.01, and ZWARNING = 0. For each of these
fibers, we apply extinction corrections {A} (from column
EXTINCTION) to the set of fluxes {F} and the set of esti-
mated standard errors {sF } (Finkbeiner et al. 2004):

F ′ = 100.4AF

sF ′ =
sF√

10−0.8A
.

If for any object, one or more elements of the set {F ′} <
0, we exclude the object from analysis. The flux units are
nanomaggies; the conversion from F ′ to magnitude m′ is
m′ = 22.5 − 2.5 log10 F ′, while the conversion to colours is
c′i−j = 2.5 log10(F

′
j/F ′

i ).
The final number of galaxies in our sample is 417,224.

3.1.1 Main sample galaxies

From our data sample, we extract those 360,122 galaxies
with Petrosian r-band magnitude < 17.77 (or F R

Petro >
77.983; Strauss et al. 2002). This is our main sample galaxy
or MSG sample. We randomly select 10,000 galaxies from
this sample to train our regression model. Application of
the outlier-removal algorithm described in §2.2 leads to the
removal of 251 galaxies from this set. The application of
the algorithm outlined in §§2.1-2 yields tuning parameter
estimates (bε, bm) = (0.05,150), i.e., in order for a linear
model to be appropriate, the 16-dimensional colour data is
reparametrized into 150-dimensional space.

As each object’s eigenvector estimates are independent

2 See http://spectro.princeton.edu

Table 1. Parameters of optimal regression

Dataset (bε, bm) bRCV η (%) n nout

MSG-T (0.05,150) 0.0206 0.010 9,749 251
(0.0231)

MSG-V 0.0211 0.018 340,989 9,384
(0.0240)

LRG-T (0.012,200) 0.0189 0.010 9,734 266
(0.0258)

LRG-V 0.0195 0.034 20,082 884
(0.0270)

DEEP2-T (0.002,850) 0.0507 1.67 5,223 304
(0.1063)

DEEP2-T (0.002,1050) 0.0539 2.14 6,067 351
(0.1123)

In the column ‘Dataset,’ T = training set and V = validation
set. η is the rate of catastrophic failures (i.e., the rate at which
δ > 0.15), n is the number of galaxies used in analysis after outlier
removal, and nout is the number of 5σ outliers removed from
sample. The number (outside/inside) the parantheses in column
bRCV (includes/does not include) normalization by (1+Z). u-band
data are excluded from LRG analyses. For DEEP2-T, the first and
second rows represent analyses of objects for which ZQUALITY =
4 and ZQUALITY ! 3, respectively.

of those for other objects, we apply the Nyström extension to
validation set objects one plate at a time, then concatenate
the resulting predictions. We determine which members of
the validation set are 5σ outliers relative to the members
of the training set, and compute the value of bRCV with
those objects excluded. (Not excluding these outliers, which
lie too far from the training set in colour space for their
diffusion coordinates to be estimated accurately, results in
bRCV rising from ≈ 0.02 to 0.56.) Out of 350,122 objects
in the validation set, we exclude 9,133; the percentage of
outliers is 2.61%. This is consistent with the 2.51% rate of
outliers in the training set.

We show our results in Table 1 and the top panel of
Fig. 1, in which we display predictions for 10,000 randomly
chosen objects of the validation set. The accuracy of pre-
diction via the Nyström extension versus directly fitting a
linear regression model to the diffusion map coordinates of
the data is indicated in Table 1. We find that bRCV increases
by 2.4% from 0.0206 to 0.0211, with catastrophic failure rate
η increasing but still small. (Here, a catastrophic failure for
object i is defined as δi > 0.15; see equation 3 and, e.g., Il-
bert et al. 2006.) The small degradation in accuracy is more
than balanced by computational speed; our naive implemen-
tation allowed extension to 350,373 galaxies in ∼ 10 CPU
hours on a single GHz processor, a computation time that
will be markedly reduced in future implementations of the
algorithm. bRCV = 0.0211 (0.0240 without normalization by
1 + Z) compares favorably with a myriad of other analyses
of MSG data (see, e.g., Ball et al., who obtain σ = 0.0207
without 1 + Z normalization, and references therein), and
the empirical bivariate distribution of (bz, Z) is visually in-
distinguishable from those of, e.g., Ball et al. and Collister
& Lahav (2004).

We determine estimator bias by binning the predictions
bz as a function of Z, then in each bin computing b̄z−Z, with b̄z
being a 10% trimmed mean. See the top left panel of Fig. 2.
It is readily apparent that there is a downward slope in the


