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Cases of covariate shift:

Natural language processing: Annotated
data (e.g. Wall street journal) is specialized.

Computer vision/Facial recognition:
Web-scraped images non-representative

Clinical studies/Medical imaging:
Configurations vary between centers.

Astronomy: Follow-up of astronomical
sources not at random.
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Definitions and Notation:

Feature space X ⊂ RF , F > 0, and label space Y the with K > 1
classes (or subset of RK in multivariate regression case).

Different domains defined as different joint probability distributions
p(x, y) over same feature-label space X ×Y (Kouw and Loog 2019).

Transductive, unsupervised domain adaptation:

Source data: DS = {(x (i)S , y (i)S )}
ns
i=1 with ns labelled samples,

from joint distribution pS (x, y) (Domain DS ),

Target data: DT = {x (i)T }
nt
i=1 with nt unlabelled samples,

from joint distribution pT (x, y) (Domain DT ).

Definition 1.1 (Moreno-Torres et al. (2012))
Covariate shift is defined as pS (y |x) = pT (y |x) but pS (x) ≠ pT (x).

Notation: pS (x, y) := p(x, y |s = 1), binary variable S indicating source selection.
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Univariate regression example (Shimodaira 2000):

Definition 1.2 (Moreno-Torres et al. (2012))
Covariate shift is defined as pS (y |x) = pT (y |x) but pS (x) ≠ pT (x).

Simulated data:

Source: XS ∼ N(0.5, 0.52)
Target: XT ∼ N(0.2, 0.52)

Outcome generation:

y = −x + x3 + n,
with n ∼ N(0, 0.32).

100 i.i.d. samples from XS and
XT , along with yS available.
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Univariate regression example (Shimodaira 2000):

Definition 1.3 (Moreno-Torres et al. (2012))
Covariate shift is defined as pS (y |x) = pT (y |x) but pS (x) ≠ pT (x).

Simulated data:

Source: XS ∼ N(0.5, 0.52)
Target: XT ∼ N(0.2, 0.52)

Outcome generation:

y = −x + x3 + n,
with n ∼ N(0, 0.32).

100 i.i.d. samples from XS and
XT , along with yS available.
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Problem setting and objective:

Let f : X → RK be the training function, f an element of the hypothesis
space H . Then,

ℓ : RK × Y → [0,∞) is the loss function

R(f ) := E[ℓ(f (x), y)] is the risk function

Objective: Accurately predicting target labels yT , by minimizing target risk

RT (f ) := E(x ,y)∼pT (x ,y) [ℓ(f (x), y)], (1)

via labelled source data DS and unlabelled target data DT .
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Univariate regression example (Shimodaira 2000):

Simulated data:

Source: XS ∼ N(0.5, 0.52)
Target: XT ∼ N(0.2, 0.52)

Outcome generation:

y = −x + x3 + n,
with n ∼ N(0, 0.32).

Objective:

Ordinary least square
regression to predict yT .

100 i.i.d. samples from XS and
XT , along with yS available.
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Figure: Illustrative univariate example.
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Previous methods – Importance weighting:

Under covariate shift conditions:

Proposition 1 (Shimodaira (2000), Bickel et al. (2009))

If the support of pT (x) is contained in pS (x), then

E(x ,y)∼DT [ℓ(f (x), y)] = E(x ,y)∼DS

[
pT (x)
pS (x)

ℓ(f (x), y)
]
. (2)

Proposition 2 (Bias Correction (Zadrozny 2004))

Let (x, y, s) be examples drawn from a distribution D, with
feature-label-selection space X ×Y × S. Then,

E(x ,y)∼D [ℓ(f (x), y)] = E(x ,y)∼D̂ [ℓ(f (x), y) |s = 1] , (3)

with D̂(x, y, s) :=
P (s = 1)

P (s = 1|x) D(x, y, s). (4)
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Importance weight estimation and limitations:

KLIEP – Kullback-Leibler Importance estimation procedure,
minimizing the KL-divergence (Sugiyama et al. 2008).

uLSIF – unconstrained least-squares importance fitting, minimizing
the L2-norm as domain discrepancy (Kanamori et al. 2009).

NN – Nearest-Neighbor (NN) importance weight estimator (Kremer
et al. 2015; Lima et al. 2008; Loog 2012).

IPS – Importance weights estimated through probabilistic
classification of source set assignment (Kanamori et al. 2009).

Issue of importance weighting: Large (noisy) weights cause high
variance and unreliable target predictions.
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Illustration – Importance weighting:
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Figure: Illustrative weighted model fit.
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Preliminaries – Propensity scores in causal inference:

Rosenbaum and Rubin (1983) introduce propensity score (PS):

e(X) = P (Z = 1|X).

Treatment assignment Z is strongly ignorable, if

(i) (Y1,Y0) ⫫ Z |X and (ii) 0 < e(X) < 1. (5)

Rosenbaum and Rubin (1983) demonstrate:
[Theorem 1] PS is a balancing score, that is x ⫫ z |e(x)
[Theorem 4] If (5) holds, conditional on PS, treatment effects unbiased

PS methods for unbiased treatment effects:
(i) Inverse probability of treatment weighting (IPTW),
(ii) PS covariate adjustment, (iii) matching and (iv) stratification on PS
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Methodology – Stratified Learning (StratLearn):

In our context we define the propensity score as:

e(xi) := P (si = 1|xS , xT ), with 0 < e(xi) < 1. (6)

Proposition 3 (Learning conditional on the propensity score)

Under covariate shift conditions, conditional on the propensity score:

pT (x, y |e(x)) = pS (x, y |e(x)). (7)

That is, given e(x) the joint source and target distributions are the same. It
directly follows, for any loss function ℓ = ℓ(f (x), y), that

E(x ,y)∼pT (x ,y |e (x)) [ℓ(f (x), y)] = E(x ,y)∼pS (x ,y |e (x)) [ℓ(f (x), y)] . (8)
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Methodology – StratLearn:

Verification of Proposition 3: Propensity score is a balancing score
(Rosenbaum and Rubin 1983) [Theorem 1], in our case:

x ⫫ s |e(x), (9)

Under covariate shift conditions, it follows:

pS (x, y |e(x)) :=p(x, y |e(x), s = 1)
=p(y |x, e(x), s = 1)p(x |e(x), s = 1) (10)

=p(y |x, e(x), s = 0)p(x |e(x), s = 0) (11)

=p(x, y |e(x), s = 0)
=:pT (x, y |e(x)).

Thus, conditional on the propensity score, the source and target data have
the same joint distribution. Equation (8) follows directly.
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Methodology – StratLearn:

Subdivide (“stratify”) target and source data in k subgroups according to
quantiles of the propensity scores. Then supervised learning in each
stratum (“stratified learner”).

Stratification: For j ∈ 1, . . . , k , we divide DS and DT into

D (k )Sj = {(x, y) ∈ DS : qk−j < e(x) ≤ qk−j+1} (12)

D (k )Tj = {x ∈ DT : qk−j < e(x) ≤ qk−j+1}, (13)

where qj is the j’th k-quantile of {e(xi) : xi ∈ (xS ∪ xT )} and q0 = 0, qk = 1.
As a consequence of Proposition 3, we have

pTj (y, x) ≈ pSj (y, x), for j ∈ 1, . . . , k , (14)

where subscript Sj means that we condition on assignment to the j’th
source stratum (analogously for target Tj). Then,

E(x ,y)∼pTj (x ,y) [ℓ(f (x), y)] ≈ E(x ,y)∼pSj (x ,y) [ℓ(f (x), y)], for j ∈ 1, . . . , k .

(15)
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StratLearn – Technical details:

Logistic regression to estimate PS (alternative: ML methods),
including all suspected confounders as main effects.

k = 5 strata – empirical evidence by Cochran (1968): five strata
enough to remove 90 percent of bias.

Given strata, model fj fitted to source data DSj , to predict respective
target samples in DTj , for j ∈ 1, . . . , k .

Model hyperparameters for fj through empirical risk minimization on
source DSj (e.g. cross-validation).

When higher strata have insufficient source data for model training,
source data from one or more adjacent stratum/strata added.
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Illustration – Importance weighting:
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Figure: Illustrative StratLearn fit.
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Balance diagnostics:

Covariate balance (following causal inference literature):
Balance measures to verify propensity score model and/or suitability
of choice of covariates (Austin 2011; Rosenbaum and Rubin 1984)
e.g. standardized mean differences, Kolmogorov-Smirnov test
statistics, comparison of higher order moments and interaction terms

Remark 1 (Outcome balance:)

In covariate shift framework

Potential outcomes are identical (Y0 ≡ Y1), no “treatment effect”

Only source data is observed (Y1 ≡ Y)

Given e(x), with 0 < e(x) < 1, and covariate shift conditions, source
data assignment is ’strongly ignorable’

Then, conditional on PS, source and target outcome are the same in
expectation [invoking Rosenbaum and Rubin (1983), Theorem 4].
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Univariate regression example (Shimodaira 2000):

Simulated data:

Source: XS ∼ N(0.5, 0.52)
Target: XT ∼ N(0.2, 0.52)

Outcome generation:

y = −x + x3 + n,
with n ∼ N(0, 0.32).

Objective:

Ordinary (weighted) least
square regression to predict yT .

100 i.i.d. samples from XS and
XT , along with yS available.
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Figure: Representative model fit.
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Univariate regression example:
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Figure: Left: Boxplot of the target MSE, obtained by m = 1000 Monte Carlo
simulations. Right: Representative model fit.
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Supernova classification – updated SPCC:

Objective: Reliable identification of Supernovae Type Ia (SNIa) based on
photometric light curve (LC) data, given non-representative
spectroscopically confirmed source data.

Data: Updated “Supernova photometric classification challenge” (SPCC)
(Kessler et al. 2010)

LC data of 21,319 simulated supernovae of type Ia, Ib, Ic and II.

Source data: 1102 spectroscopically confirmed SNe with known types

Target data: 20,216 SNe with photometric information alone

Preprocessing:

Gaussian process fit of LCs (four color bands C= (g,r,i,z)) combined
with diffusion map to extract 100 covariates, plus redshift and a
measure of brightness (Revsbech et al. 2018; Richards et al. 2012)
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Supernova classification – StratLearn results:

Random forest classification, cross validation to select hyperparameter

Figure: Left: Comparison of target ROC curves on updated SPCC data. Right:
Composition of the five strata on updated SPCC data (Kessler et al. 2010).

State-of-the-art:
Lochner et al. (2016): AUC=0.855; Pasquet et al. (2019): AUC=0.939;
Revsbech et al. (2018) (“STACCATO”): AUC=0.94;
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Supernova classification – Original SPCC data:

Original SPCC data:

Figure: Left: Composition of the five strata on original SPCC data (Kessler et al.
2010). Right: Comparison of target ROC curves on original SPCC data.

State-of-the-art:
Revsbech et al. (2018) (“STACCATO”): AUC=0.961;
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Photo-z conditional density estimation

Objective:
Conditional density estimation f (z |x) of redshift, z, given photometric
magnitudes x, in the presence of covariate shift.

Data (following Izbicki et al. (2017)):

467,710 galaxies (Sheldon et al. 2012),
spectroscopic redshift z, five photometric
covariates x (source DS ).

Target DT by rejection sampling from DS , with
p(s = 0|x) = fB (13,4) (x(r) )/maxx(r ) fB (13,4) (x(r) ).
Additional k ∈ {10, 50} i.i.d. standard normal
covariates as potential confounders.

Source: |D train
S | = 2800, |Dval

S | = 1200;
Target: |D test

T | = 6000
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Photo-z conditional density estimation

Generalized risk optimization (Izbicki et al. 2017) w.r.t:

R̂S ( f̂ ) =
1

nT

nT∑
k=1

∫
f̂2(z |x (k )T )dz − 2

1
nS

nS∑
k=1

f̂ (z (k )S |x
(k )
S )ŵ (x

(k )
S ), (16)

Conditional density estimation models:

hist-NN, ker-NN, Series

Comb (combination model):

f̂ U (z |x) =
p∑

k=1

Uk f̂k (z |x), with constraints (i): Ui ≥ 0, and (ii):
p∑

k=1

Uk = 1,

(17)
StratLearn:

Minimize (16) in each source stratum separately (with w (x) ≡ 1).

StratLearn version of Comb, optimizing (17) on each source stratum
(with w (x) ≡ 1), including StratLearn versions of ker-NN and Series.

CHASC-Astrostatistics talk June 15, 2021 28 / 48



Photo-z – Target results:

The target risk R̂T ( f̂ ) is computed as

R̂T ( f̂ ) =
1

nT

nT∑
k=1

∫
f̂2(z |x (k )T )dz − 2

1
nT

nT∑
k=1

f̂ (z (k )T |x
(k )
T ), (18)

where zT is the true target redshift, used for evaluation purposes only.
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Figure: Target risk (R̂T ) of photometric redshift estimation.

CHASC-Astrostatistics talk June 15, 2021 29 / 48



Photo-z – Target results:
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Figure: Target risk (R̂T ) of photometric redshift estimation models, using
different sets of predictors. Bars give the mean ± 2 bootstrap standard errors
(from 400 bootstrap samples).
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Photo-z – Strata composition:

Table: Composition of StratLearn strata for medium covariate shift on SDSS data,
using estimated propensity scores with different sets of predictors.

5 covariates 15 covariates 55 covariates
Stratum Set #galaxies (Mean z) #galaxies (Mean z) #galaxies (Mean z)

1 Source 1631 (0.06) 1583 (0.06) 1620 (0.06)
Target 7 (0.05) 9 (0.05) 7 (0.05)

2 Source 1500 (0.09) 1515 (0.09) 1546 (0.09)
Target 112 (0.08) 113 (0.09) 98 (0.08)

3 Source 618 (0.20) 641 (0.20) 594 (0.21)
Target 1481 (0.23) 1499 (0.23) 1480 (0.23)

4 Source 116 (0.30) 114 (0.28) 108 (0.28)
Target 2196 (0.27) 2215 (0.27) 2258 (0.27)

5 Source 135 (0.33) 147 (0.32) 132 (0.33)
Target 2204 (0.33) 2164 (0.34) 2157 (0.34)

All Source 4000 (0.11) 4000 (0.11) 4000 (0.11)
Target 6000 (0.28) 6000 (0.28) 6000 (0.28)
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Summary:

StratLearn provides statistically principled framework for supervised
learning under covariate shift (alternative to importance weighting)

Especially advantageous in presence of high dimensional covariate
space

Examples demonstrate advantage of using small subset of source
data chosen for its similarity to individuals in target data – markedly
different to widespread practice of including all possible available data
when fitting ML models.
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Future work:

Balance diagnostics via Remark 1, based on predicted outcome

Matching on the propensity score

Application of Deep Learning in StratLearn framework

Model selection and strata combination

Employ SNIa probabilities in secondary analysis in (pragmatic and
fully) hierarchical Bayesian framework to estimate cosmological
parameters
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Future work – Balance diagnostics via predicted outcome

Target labels yT in practice not observed, but source labels yS and
target and source label predictions (ŷT and ŷS ) are given

Future project: Model diagnostics using predicted outcomes (ŷT and ŷS )
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Future work – Balance diagnostics via predicted outcome

Table: Strata composition on updated
SPCC data.

Number Number Prop.
Stratum Set of SNe of SNIa of SNIa

1 Source 996 794 0.80
Target 2470 1759 0.71

2 Source 210 56 0.27
Target 3256 1010 0.31

3 Source 9 0 0
Target 3457 385 0.11

4 Source 2 1 0.50
Target 3464 258 0.07

5 Source 0 0 NA
Target 3466 180 0.05

Table: Strata composition on SDSS
photometric redshift data

5 covariates
Stratum Set #galaxies (Mean z)

1 Source 1631 (0.06)
Target 7 (0.05)

2 Source 1500 (0.09)
Target 112 (0.08)

3 Source 618 (0.20)
Target 1481 (0.23)

4 Source 116 (0.30)
Target 2196 (0.27)

5 Source 135 (0.33)
Target 2204 (0.33)

All Source 4000 (0.11)
Target 6000 (0.28)
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Future work – Matching on the propensity score

Ker-NN estimator (Izbicki et al. 2017):

f̂ (z |x) ∝
∑

k ∈NN (x)
ŵ (x (k )S )Kn (z − z (k )S ),

1 (19)

Nearest neighbor NN (x (i)T ) by distance:

(1 − U)d (x (i)T , x (j)s ) + Ud (e(x (i)T ), e(x
(j)
s )) (20)

1 with kernel smoother Kn (z − z (k ) ) = exp(−(z − z (k ) )2)/4n
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Future work – Matching on the propensity score

Nearest neighbor NN (x (i)T ) by distance:

(1 − U)d (x (i)T , x (j)s ) + Ud (e(x (i)T ), e(x
(j)
s ))

CHASC-Astrostatistics talk June 15, 2021 37 / 48



References I

Austin, P. C. (2011). An introduction to propensity score methods for
reducing the effects of confounding in observational studies.
Multivariate behavioral research, 46(3):399–424.

Bickel, S., Brückner, M., and Scheffer, T. (2009). Discriminative learning
under covariate shift. Journal of Machine Learning Research,
10(Sep):2137–2155.

Cochran, W. G. (1968). The effectiveness of adjustment by
subclassification in removing bias in observational studies. Biometrics,
pages 295–313.

Izbicki, R., Lee, A. B., Freeman, P. E., et al. (2017). Photo-z estimation: An
example of nonparametric conditional density estimation under
selection bias. The Annals of Applied Statistics, 11(2):698–724.

Kanamori, T., Hido, S., and Sugiyama, M. (2009). A least-squares
approach to direct importance estimation. Journal of Machine Learning
Research, 10(Jul):1391–1445.

CHASC-Astrostatistics talk June 15, 2021 38 / 48



References II

Kessler, R., Bassett, B., Belov, P., Bhatnagar, V., Campbell, H., Conley, A.,
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Thank you very much for your time!
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Additional univariate regression simulations (Shimodaira
2000):
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MSE − example (ii)
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Figure: Top: Representative fit for each of the target parameter setting (i)-(iii).
Bottom: Boxplot of the target MSE (m = 1000 Monte Carlo simulations)
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PhotoZ: Varying strengths of covariate shift

Weak covariate shift:

p(s = 0|x) = fB (9,4) (x(r) )/max
x(r )

fB (9,4) (x(r) ) (21)

Strong covariate shift:

p(s = 0|x) = fB (18,4) (x(r) )/max
x(r )

fB (18,4) (x(r) ), (22)
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PhotoZ – varying strengths of covariate shift:
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Figure: Target risk (R̂T ) of photometric redshift estimation models, using
different sets of predictors. Bars give the mean ± 2 bootstrap standard errors
(from 400 bootstrap samples). Top row: Weak covariate shift (following (21));
Bottom row: Strong covariate shift (following (22)).
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StratLearn under violation of the covariate shift
assumption (UCI data examples):

Table: Composition of the five StratLearn strata for the UCI wine and UCI
parkinson data. The number of samples/subjects in source and target stratum, as
well as the mean outcome (“quality score” and “UPDRS score” ) are presented.

UCI Wine data UCI Parkinson data
Stratum Set # samples (Mean “quality”) # subjects (Mean “UPDRS”)

1 Source 1299 (5.98) 627 (22.00)
Target 0 (0.00) 174 (29.15)

2 Source 1300 (5.92) 486 (26.36)
Target 0 (0.00) 315 (25.21)

3 Source 1300 (5.93) 314 (25.53)
Target 0 (0.00) 487 (24.86)

4 Source 999 (5.63) 269 (27.38)
Target 301 (5.49) 532 (28.15)

5 Source 0 (0.00) 181 (27.06)
Target 1298 (5.67) 619 (30.00)

All Source 4898 (5.88) 1877 (24.98)
Target 1599 (5.64) 2127 (27.58)
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StratLearn under violation of the covariate shift
assumption (UCI data examples):

Table: MSE of target predictions on UCI Wine and Parkinson data, based on
ordinary least squares regression (OLS), various importance weighted least
squares regression methods (WLS), and our proposed StratLearn method.

Method \ Data UCI wine data UCI Parkinson data

OLS (Biased) 1.024 130.88
WLS:uLSIF 2.363 120.81
WLS:KLIEP 3.968 116.72
WLS:NN 2.377 117.47
WLS:IPS 0.660 112.80
StratLearn 0.715 114.97
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