








Scientific method: hypothetico-deductive approach

• Form hypothesis (based on theory/past experiment)

• Devise experiment to test predictions of hypothesis

• Perform experiment

• Analysis →
• Devise new hypothesis if hypothesis fails

• Devise new experiment if hypothesis corroborated



The sequential alternative

Herman Chernoff on sequential analysis (1996):

I became interested in the notion of experimental design in a
much broader context, namely: what’s the nature of scientic
inference and how do people do science? The thought was not
all that unique that it is a sequential procedure. . .

Although I regard myself as non-Bayesian, I feel in sequential
problems it is rather dangerous to play around with
non-Bayesian procedures. . . . Optimality is, of course, implicit
in the Bayesian approach.



Bayesian Adaptive Exploration

Prior information & data Combined information

Interim

Strategy New data Predictions Strategy
Observ’n Design

Inference

results

Bayesian inference + Bayesian decision theory + Information theory

(Plus some computational algorithms. . . )
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Naive Decision Making

A Bayesian analysis results in probabilities for two hypotheses:

p(H1|I ) = 5/6; p(H2|I ) = 1/6

Equivalently, the odds favoring H1 over H2 are

O12 = 5

We must base future actions on either H1 or H2.

Which should we choose?

Naive decision maker: Choose the most probable, H1.



Naive Decision Making—Deadly!

Russian Roulette

H1 = Chamber is empty; H2 = Bullet in chamber

What is your choice now?

Decisions should depend on consequences!

Unattributed JavaScript at http://www.javascriptkit.com/script/script2/roulette.shtml

http://www.javascriptkit.com/script/script2/roulette.shtml


Experimental Design as Decision Making

When we perform an experiment we have choices of actions:

• What sample size to use

• What times or locations to probe/query

• Whether to do one sensitive, expensive experiment or several
less sensitive, less expensive experiments

• Whether to stop or continue a sequence of trials

• . . .

We must choose amidst uncertainty about the data we may obtain
and the resulting consequences for our experimental results.

⇒ Seek a principled approach for optimizing experiments,
accounting for all relevant uncertainties



Bayesian Decision Theory

Decisions depend on consequences
Might bet on an improbable outcome provided the payoff is
large if it occurs and/or the loss is small if it doesn’t.

Utility and loss functions
Compare consequences via utility quantifying the benefits of a
decision, or via loss quantifying costs.

Utility = U(a, o)
a =Choice of action (decide b/t these)

o =Outcome (what we are uncertain of)

Loss L(a, o) = Umax − U(a, o)



Russian Roulette Utility

Outcomes
Actions Empty (click) Bullet (BANG!)

Play $6,000 −$Life
Pass 0 0



Uncertainty & expected utility
We are uncertain of what the outcome will be
→ average over outcomes:

EU(a) =
∑

outcomes

P(o| . . .) U(a, o)

The best action maximizes the expected utility:

â = arg max
a

EU(a)

I.e., minimize expected loss.

Axiomatized: von Neumann & Morgenstern; Ramsey,
de Finetti, Savage



Russian Roulette Expected Utility

Outcomes
Actions Empty (click) Bullet (BANG!) EU

Play $6,000 −$Life $5000−$Life/6
Pass 0 0 0

As long as $Life > $30, 000, don’t play!



Bayesian Experimental Design
Actions = {e}, possible experiments (sample sizes, sample
times/locations, stopping criteria . . . ).

Outcomes = {de}, values of future data from experiment e.

Utility measures value of de for achieving experiment goals,
possibly accounting for the cost of the experiment.

Choose the experiment that maximizes

EU(e) =
∑
de

p(de | . . .) U(e, de)

To predict de we must consider various hypotheses, Hi , for the
data-producing process → Average over Hi uncertainty:

EU(e) =
∑
de

∑
Hi

p(Hi | . . .)p(de |Hi , . . .)

 U(e, de)



A Hint of Trouble Ahead

Multiple sums/integrals

EU(e) =
∑
de

∑
Hi

p(Hi |I )p(de |Hi , I )

 U(e, de)

Average over both hypothesis and data spaces

Plus an optimization

ê = arg max
e

EU(e)

Aside: The dual averaging—over hypothesis and data spaces—hints
(correctly!) of connections between Bayesian and frequentist approaches
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Information-Based Utility

Many scientific studies do not have a single, clear-cut goal.

Broad goal: Learn/explore, with resulting information made
available for a variety of future uses.

Example: Astronomical measurement of orbits of minor planets or
exoplanets

• Use to infer physical properties of a body (mass, habitability)

• Use to infer distributions of properties among the population
(constrains formation theories)

• Use to predict future location (collision hazard; plan future
observations)

Motivates using a “general purpose” utility that measures what is
learned about the Hi describing the phenomenon



Information Gain as Entropy Change

Entropy and uncertainty
Shannon entropy = a scalar measure of the degree of
uncertainty expressed by a probability distribution

S =
∑
i

pi log
1

pi
“Average surprisal”

= −
∑
i

pi log pi

Information gain
Existing data D → interim posterior p(Hi |D)
Information gain upon learning d = decrease in uncertainty:

I(d) = S[{p(Hi |D)}]− S[{p(Hi |d ,D)}]
=

∑
i

p(Hi |d ,D) log p(Hi |d ,D)− Const (wrt d)

Lindley (1956, 1972) and Bernardo (1979) advocated using
I(d) as utility



Helpful Conventions

As an argument of a functional, let Hi |d , I stand for the whole
distribution {p(Hi |d , I )}.

Use the Skilling conditional :

I[Hi |d , I ] =
∑
i

p(Hi |d , I ) log p(Hi |d , I )

→ I[Hi ] =
∑
i

p(Hi ) log p(Hi ) || d , I



Continuous spaces (e.g., parameter space, θ) need a measure:

• Proper treatment as a limit

• Parameterization invariance

• Makes argument of log(·) dimensionless

I[θ] =

∫
dθ p(θ) log

p(θ)

m(θ)
|| d , I

For simplicity, we adopt a uniform measure and drop m(·) below
(changing it doesn’t affect results).

Aside: Measuring information gain via Kullback-Leibler divergence
between prior & posterior does not change results (MacKay 1992).



A ‘Bit’ About Entropy

Entropy of a Gaussian

p(x) ∝ e−(x−µ)
2/2σ2 → I ∝ − log(σ)

p(~x) ∝ exp
[
−1

2~x · V−1 · ~x
]
→ I ∝ − log(det V)

→ Asymptotically like Fisher matrix criteria

Entropy is a log-measure of “volume,” not range

x

p(x)

x

p(x)

These distributions have the same entropy/amount of information.



Prediction & expected information

Information gain from datum dt at time t:

I(dt) =
∑
i

p(Hi |dt ,D) log p(Hi |dt ,D)

We don’t know what value dt will take → average over prediction
uncertainty

Expected information at time t:

EI(t) =

∫
ddt p(dt |D) I(dt)

Predictive distribution for value of future datum:

p(dt |D) =
∑
i

p(dt ,Hi |D) =
∑
i

p(Hi |D) p(dt |Hi )

=
∑

Interim posterior× Single-datum likelihood



Computational challenge!

Expected Information

EI(e) =
∑
de

p(de |I )I[Hi |de , I ]

=
∑
de

∑
Hi

p(Hi |I )p(de |Hi , I )

×
∑
H′

i

p(H ′i |de , I ) log
[
p(H ′i |de , I )

]

There is a heck of a lot of averaging going on!
Plus an optimization!



Simplification: Maximum entropy sampling

Parameter estimation setting

• We have specified a model, M, with uncertain parameters θ

• We have data D → current posterior p(θ|D,M)

• The entropy of the noise distribution doesn’t depend on θ,

→ EI(t) = Const−
∫

ddt p(dt |D, I ) log p(dt |D, I )

Maximum entropy sampling
(Sebastiani & Wynn 1997, 2000)

To learn the most, sample where you know the least



Nested Monte Carlo integration for EI
Entropy of predictive dist’n:

S[dt |D,M] = −
∫

ddt p(dt |D,M1) log p(dt |D,M)

• Sample predictive via θ ∼posterior, dt ∼sampling dist’n given θ

• Evaluate predictive as θ-mixture of sampling dist’ns

Posterior sampling in parameter space

• Many models are (linearly) separable → handle linear “fast”

parameters analytically

• When priors prevent analytical marginalization, use interim

priors & importance sampling

• Treat nonlinear “slow” parameters via adaptive or

population-based MCMC; e.g., diff’l evolution MCMC



Bayesian Adaptive Exploration

Prior information & data Combined information

Interim

Strategy New data Predictions Strategy
Observ’n Design

Inference

results

Greedy information-maximizing sequential design

• Observation — Gather new data based on observing plan

• Inference — Interim results via posterior sampling

• Design — Predict future data; explore where expected
information from new data is greatest
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Locating a bump
Object is 1-d Gaussian of unknown loc’n, amplitude, and width.
True values:

x0 = 5.2, FWHM = 0.6, A = 7

Initial scan with crude (σ = 1) instrument provides 11 equispaced
observations over [0, 20]. Subsequent observations will use a better
(σ = 1/3) instrument.



Cycle 1 Interim Inferences

Generate {x0,FWHM,A} via posterior sampling.



Cycle 1 Design: Predictions, Entropy



Cycle 2: Inference, Design



Cycle 3: Inference, Design



Cycle 4: Inferences

Inferences from non-optimal datum
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Finding Exoplanets via Stellar Reflex Motion
All bodies in a planetary system orbit wrt the system’s center of
mass, including the host star:

Astrometric Method
Sun’s Astrometric Wobble from 10 pc

-1000 -500 0 500 1000

-1000

-500

0

500

1000

Doppler Radial Velocity (RV)
Method

Doppler Shift Along Line-of-Sight

≈ 490 of ≈ 530 currently confirmed exoplanets found using RV method
RV method is used to confirm & measure transiting exoplanet candidates



RV Data Via Precision Spectroscopy

Millipixel spectroscopy Meter-per-second velocities

HD 3651

Fischer et al. 2003



Keplerian Radial Velocity Model
P = 62.23 d,   e = 0.63

m sin i = 0.20 M_J,   a = 0.28 AU 

Fischer et al. 2003

Parameters for single planet

• τ = orbital period (days)
• e = orbital eccentricity
• K = velocity amplitude (m/s)

• Argument of pericenter ω
• Mean anomaly at t = 0, M0

• Systemic velocity v0

Requires solving Kepler’s equation for every (τ, e,M0)—A strongly
nonlinear model!



A Variety of Related Statistical Tasks

• Planet detection — Is there a planet present? Are multiple
planets present?

• Orbit estimation — What are the orbital parameters? Are
planets in multiple systems interacting?

• Orbit prediction — What planets will be best positioned for
follow-up observations?

• Population analysis — What types of stars harbor planets?
With what frequency? What is the distribution of planetary
system properties?

• Optimal scheduling — How may astronomers best use
limited, expensive observing resources to address these goals?

Bayesian approach tightly integrates these tasks



BAE for HD 222582: Cycle 1
Prior information & data Combined information

Interim

Strategy New data Predictions Strategy
Observ’n Design

Inference

results

HD 222582: G5V at 42 pc in Aquarius, V = 7.7
Vogt+ (2000) reported planet discovery based on 24 RV
measurements
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Cycle 1 Interim inferences
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Cycle 1 Design
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The next period
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The distant future



New Data

Red points = 13 subsequent observations, Butler+(2006)
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• Use 37-point best fit to simulate three new optimal observations

• Compare 24 + 3 & all-data inferences



Cycle 1 Interim inferences (24 pts)
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Cycle 2 Interim inferences (25 pts)
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Cycle 3 Interim inferences (26 pts)
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Cycle 4 Interim inferences (27 pts)

0.5

0.7

0.9

e

550 575 600

τ (d)

4

5

6

M
0

(r
ad

)

0.5 0.7 0.9
e

4 5 6

M0 (rad)∏
σi is reduced further 30x



All-data inferences (37 pts)
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Outlook

• Explore more cases, e.g., multiple planets, marginal detections

• Explore other adaptive MCMC algorithms

• Extend to include planet detection:

• Total entropy criterion smoothly moves between
detection & estimation

• MaxEnt sampling no longer valid

• Marginal likelihood computation needed

• Non-greedy designs likely needed



Thanks to my collaborators!

Cornell Astronomy
David Chernoff

Duke Statistical Sciences
Merlise Clyde, Jim Berger, Bin Liu, Jim Crooks
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Jetsam

jetsam: material that has been thrown overboard from a ship, esp.
material discarded to lighten the vessel



Parameters for an Orbit — Single Planet

Size & shape: semimajor axis a, eccentricity e
Orientation: 3 Euler angles, i , ω, Ω
Time evolution: period τ , origin M0

Center-of-mass position & velocity

RV parameters: semi-amplitude K (a, e, τ), τ , e, M0, ω, COM velocity v0

Ultimate goal: multiple planets, astrometry → dozens of parameters!



Keplerian Radial Velocity Model

Parameters for single planet
• τ = orbital period (days)
• e = orbital eccentricity
• K = velocity amplitude (m/s)

• Argument of pericenter ω
• Mean anomaly at t = 0, M0

• Systemic velocity v0

Keplerian reflex velocity vs. time

v(t) = v0 + K (e cosω + cos[ω + υ(t)])

True anomaly υ(t) found via Kepler’s equation for eccentric
anomaly:

E (t)− e sin E (t) =
2πt

τ
−M0; tan

υ

2
=

(
1 + e

1− e

)1/2

tan
E

2

A strongly nonlinear model!



The Likelihood Function
Keplerian velocity model with parameters θ = {K , τ, e,M0, ω, v0}:

di = v(ti ; θ) + εi

For measurement errors with std dev’n σi , and additional “jitter”
with std dev’n σJ ,

L(θ, σJ) ≡ p({di}|θ, σJ)

=
N∏
i=1

1

2π
√
σ2i + σ2J

exp

[
−1

2

[di − v(ti ; θ)]2

σ2i + σ2J

]

∝

∏
i

1

2π
√
σ2i + σ2J

 exp

[
−1

2
χ2(θ)

]

where χ2(θ, σJ) ≡
∑
i

[di − v(ti ; θ)]2

σ2i + σ2J

Ignore jitter for now . . .



Know Thine Enemy: Likelihood Slices

di = v(ti ; θ) + εi ⇒ L(θ) ∝ exp

[
−1

2
χ2(θ)

]
(include jitter)

Bayesian calculations must integrate over θ.



Conventional RV Orbit Fitting
Analysis method: Identify best candidate period via periodogram;
fit parameters with nonlinear least squares/min χ2



Challenges for Conventional Approaches

• Multimodality, nonlinearity, nonregularity, sparse data →
Asymptotic uncertainties not valid

• Reporting uncertainties in derived parameters (m sin i , a) and
predictions

• Lomb-Scargle periodogram not optimal for eccentric orbits or
multiple planets

• Accounting for marginal detections

• Combining info from many systems for pop’n studies

• Scheduling future observations



Computational Tasks

Posterior sampling
Draw {θi} from

p(θ|D,Mp) =
π(θ|Mp)L(θ)

Z
≡ q(θ)

Z

An “oracle” is available for q(θ); Z is not initially known.
Use samples to approximate

∫
dθ p(θ|D,Mp) f (θ).

Model (marginal) likelihood computation

L(Mp) ≡ p(D|Mp) = Z =

∫
dθ q(θ)

Information functional computation

I[Hj ] =
∑
j

p(Hj) log p(Hi ) (over θ or Mp)



Two New Directions

Bayesian periodograms + population-based MCMC

• Use periodograms to:

• Reduce dimensionality (requires interim priors)

• Create an initial population of candidate orbits

• Evolve the candidate population using interactive chains

Annealing adaptive importance sampling (SAIS)

• Abandon MCMC!

• Use sequential Monte Carlo to build importance sampler from
q(θ)

• Gives posterior samples and marginal likelihood

• Blind start (currently . . . )



Periodogram-Based Bayesian Pipeline



Differential Evolution MCMC

Ter Braak 2006 — Combine evolutionary computing & MCMC

Follow a population of states, where a randomly selected state is
considered for updating via the (scaled) vector difference between
two other states.

Behaves roughly like RWM, but with a proposal distribution that
automatically adjusts to shape & scale of posterior

Step scale: Optimal γ ≈ 2.38/
√

2d , but occassionally switch to
γ = 1 for mode-swapping



Differential Evolution for Exoplanets

Use Kepler & harmonic periodogram results to define initial
population for DEMC.

Augment final {τ, e,M0} with associated {K , ω, v0} samples from
their exact conditional MVN distribution.

Advantages:

• Only 2 tuning parameters (# of parallel chains; mode swapping)
• Good initial sample → fast “burn-in”
• Updates all parameters at once
• Candidate distribution adapts its shape and size
• All of the parallel chains are usable
• Simple!



Results for HD 222582

24 Keck RV observations spanning 683 days; long period; hi e

Reaches convergence dramatically faster than PT or RWM

Conspiracy of three factors: Reduced dimensionality, adaptive
proposals, good starting population (from K-gram)



Expected Information via Nested Monte Carlo
Assume we have posterior samples θi ∼ p(θ|D,M)

Evaluating predictive dist’n:

p(de |D,M) =

∫
dθ p(θ|D,M) p(de |θ,M)

→ p̂(de) =
1

Nθ

Nθ∑
i=1

p(de |θi ,M)

Sampling predictive dist’n:
θi ∼ p(θ|D,M)
de,j ∼ p(de |θ,M)

Entropy of predictive dist’n:

S[de |D,M] = −
∫

dde p(de |D,M1) log p(de |D,M)

≈ − 1

Nd

Nd∑
j=1

log p̂(de,j)



Importance sampling

∫
dθ φ(θ)q(θ) =

∫
dθ φ(θ)

q(θ)

P(θ)
P(θ) ≈ 1

N

∑
θi∼P(θ)

φ(θi )
q(θi )

P(θi )

Choose Q to make variance small. (Not easy!)

(x)

x

Q*(x) P*(x)P(x)
q(x)

Can be useful for both model comparison (marginal likelihood
calculation), and parameter estimation.



Building a Good Importance Sampler
Estimate an annealing target density, πn, using a mixture of
multivariate Student-t distributions, qn:

qn(θ) = [q0(θ)]1−λn × [q(θ)]λn , λn = 0 . . . 1

Pn(θ) =
∑
j

MVT(θ;µnj ,S
n
j , ν)

Adapt the mixture to the target using ideas from sequential Monte
Carlo.

Initialization



Sample, weight, refine

Overall algorithm

{θi, wi}

AnnealTarget

Design Sample

q1

Adapt P1

q0

P0

AAIS Step

Anneal

Sample

q2



2-D Example:
Many well-separated correlated normals
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λ1 = 0.01 λ3 = 0.11 λ8 = 1
scales
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samples from q1

d.o.f.=5; weights vary
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Observed Data:
HD 73526 (2 planets)

Data and RV Curve for 2-Planet Fit
Periods:  188 d, 377 d (weakly resonant)

1-D and 2-D Marginals for Orbital Parameters
(longer-period planet)

Bayes factors:
1 vs 0 planet:  6.5x106

2 vs 1 planet(s):  8.2x104

Sampling efficiency of final mixture ESS/N ≈ 65%



Design for Model Comparison

For comparing M1 to M0 (e.g., signal detection) again consider
information as utility, but information in model posterior,
p(Mi |de ,D, I ).

The predictive is now a finite mixture:

p(de |D, I ) = p(M0|D, I )p(de |D,M0) + p(M1|D, I )p(de |D,M1)

The conditional predictive is also a mixture (for parametric
models):

p(de |D,Mi ) =

∫
dθi p(θi |D,Mi ) p(de |θi ,Mi )

Parameter uncertainty → this typically depends on e



Three Complications

• Marginal likelihoods appear : p(Mk |D, I )
→ Need ML algorithm

• No MaxEnt sampling : The conditional predictive is
p(de |D,Mk); its entropy does depend on Mk .
→ Utility is computationally expensive

• Non-greedy design: Greedy algorithms typically behave poorly
for model discrimination (Bayes factors may not change much
with just a single new sample).
→ Design space is higher dimensional

⇒ There is limited work in this direction.



Total Entropy Criterion

Can we automate switching between detection & estimation in a
principled way?

Look at information in joint posterior for (Mk , θk):

p(Mk , θk |D) = p(Mk |D)p(θk |D,Mk) ≡ pk qk(θk)

Calculate information:

I[Mk , θk |D] =
∑
k

∫
dθkpkqk(θk) log[pkqk(θk)]

=
∑
k

pk log pk +
∑
k

pk

∫
dθkqk(θk) log qk(θk)

Balances entropy changes in the model posterior and the
parameter posteriors (Borth 1975).
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