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I High-Energy Astrophysics

I Spectral Analysis

I Calibration Products

I Scientific Goals
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High-Energy Astrophysics

I Provide understanding into high-energy regions of the
Universe.

I Chandra X-ray Observatory is designed to observe X-rays from
high-energy regions of the Universe.

I X-ray detectors typically count a small number of photons in
each of a large number of pixels.

I Spectral Analysis aims to explore the parameterized pattern
between the photon counts and energy.
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An Example of One Dataset

TITLE = EXTENDED EMISSION AROUND A GIGAHERTZ
PEAKED RADIO SOURCE
DATE = 2006-12-29 T 16:10:48
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Calibration Uncertainty

I Effective area records sensitivity as a function of energy.
I Energy redistribution matrix can vary with energy/location.
I Point Spread Functions can vary with energy and location.
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Incorporate Calibration Uncertainty

I Calibration Uncertainty in astronomical analysis have been
generally ignored.

I No robust principled method is available.

I Our goal is to incorporate the uncertainty by Bayesian
Methods.

I In this talk, we focus on uncertainty in the effective area.
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Calibration Samples

Two Main Problems

I The true effective area curve can’t be observed, when we try
to incorporate calibration uncertainty in estimating source
parameters.

I We don’t have parameterized form for effective area curve. It
makes sampling hard to approach.
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Calibration Samples

Generating Calibration Samples

I Drake et al. (2006),
suggests to generate
calibration samples of
effective area curves to
represent the uncertainty.

I Calibration Samples:
{A1,A2,A3, ...,AL}
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Three Main Steps

I Use Principle Component Analysis to parameterize effective
area curve.

I Model Building, that it combining source model with
calibration uncertainty.

I Three source parameter sampling schemes.
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Use PCA to represent effective area curve

A = A0 + δ̄ +
∑m

j=1 ej rjvj

A0 : default effective area,

δ̄ : mean deviation from A0,

rj and vj : first m principle component eigenvalues & vectors,

ej : independent standard normal deviations.

Capture 95% of uncertainty with m = 6 - 9.
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Use PCA to represent effective area curve

PCA method has nicely parameterized effective area curve.
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

A simplified model of telescope response, only concerning
effective area uncertainty

M(E ; θ) = S(E ; θ) ∗ A(E )

M(E ; θ): Observed Photon Distribution,

S(E ; θ): True Source Model, we set it as poisson distribution with
expectation equal to
exp(−nH ∗ sigma(E )) ∗ Amp ∗ E (−gamma) + bkg

A(E ): Effective Area Curve.

θ: source parameter, θ = {nH ,Amp, gamma, bkg}
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Scheme One: Fixed Effective Area Curved

I We assume A = A0, where A0 is the default affective area
curve, and may not be the true one,

I This scheme doesn’t incorporate any calibration uncertainty,

I The estimation may be biased and error bars may be
underestimated.

I Only one sampling step involved:
p(θ|M,A0) ∝ L(M|θ,A0)p(A0)

JIN XU New Results of Fully Bayesian



Outline
Background

Problem description
Methodology Research

New Results
Updates

Principle Component Analysis
Model Building
Three source parameter sampling schemes

Scheme Two: Pragmatic Bayesian, Lee et al(2011, Apj)

I Main purpose is to reduce complexity of sampling.

I This scheme ”completely” incorporates the calibration
uncertainty,

I Step One: sample A from p(A)

I Step Two: sample θ from p(θ|M,A) ∝ L(M|θ,A)p(θ)
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Scheme Three: Fully Bayesian

I Use correct Bayesian Approach,

I This scheme concerns about letting the current data influence
calibration products,

I Step One: sample A from p(A|M, θ) ∝ L(M|θ,A)p(A)

I Step Two: sample θ from p(θ|M,A) ∝ L(M|θ,A)p(θ)

I Most difficult approach to sample.

JIN XU New Results of Fully Bayesian



Outline
Background

Problem description
Methodology Research

New Results
Updates

Simulation
Quasar data sets

Eight simulated data sets

The first four data sets were all simulated without background
contamination using the XSPEC model wabs*powerlaw, nominal
default effective area A0 from the calibration sample of Drake et
al. (2006), and a default RMF for ACIS-S.

I Simulation 1: Γ = 2,NH = 223cm−2, and 105 counts;

I Simulation 2: Γ = 1,NH = 221cm−2, and 105 counts;

I Simulation 3: Γ = 2,NH = 223cm−2, and 104 counts;

I Simulation 4: Γ = 1,NH = 221cm−2, and 104 counts;

The other four data sets (Simulation 5-8) were generated using an
extreme instance of an effective area.
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Simulation
Quasar data sets

Results for Simulation 1
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Results for Simulation 2

0.8 0.9 1.0 1.1 1.2 1.3

0
10

20
30

40

Γ

[SIM 2] NH=1021; Γ=1; N=105

fix ARF

fully bayesian

pragmatic bayesian

JIN XU New Results of Fully Bayesian



Outline
Background

Problem description
Methodology Research

New Results
Updates

Simulation
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Results for Simulation 3
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Results for Simulation 4
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Simulation
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Results for Simulation 5
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Results for Simulation 6
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Results for Simulation 7
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Results for Simulation 8
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Quasar results

I 16 Quasar data sets were fit by these three models: 377, 836,
866, 1602, 3055, 3056, 3097, 3098, 3100, 3101, 3102, 3103,
3104, 3105, 3106, 3107.

I Most interesting founding for fully bayesian model is shift of
parameter fitting, besides the change of standard errors.

I Both comparisons of mean and standard errors among three
models are shown below.
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Simulation
Quasar data sets

mean: fix-prag
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Simulation
Quasar data sets

mean: fix-full

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

µfix(Γ)

µ fu
ll(Γ

)

●

●

●

●

●

●

●

●

377
836
866
1602
3055
3056
3097
3098
3100
3101
3102
3103
3104
3105
3106
3107

JIN XU New Results of Fully Bayesian



Outline
Background

Problem description
Methodology Research

New Results
Updates

Simulation
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mean: prag-full
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sd: fix-prag
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sd: fix-full
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sd: prag-full
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more plots

µ̂prag (Γ) =
µprag (Γ)−µfix (Γ)

σfix (Γ) , these lines cover 2 sd.
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Simulation
Quasar data sets

more plots

µ̂full (Γ) = µfull (Γ)−µfix (Γ)
σfix (Γ) , these lines cover 2 sd.
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SCA or Wavelets

New approach for Pragmatic Bayesian

Repeat 50 times

I Draw A

I run 10 inner iterations of PyBlocks, THROWING OUT the
draws of theta

I run an additional L/50 iterations of PyBlocks, KEEPING the
draws of theta.

This approach speeds the sampling up a lot, since it only needs 50
sherpa fit(). eg, 3000 iterations, old approach needs 3 hours, new
approach needs less than 15min
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Frequency Analysis of Fully Bayesian
Importance sampling for Fully Bayesian
SCA or Wavelets

Dataset 0000-1-21-e4
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Dataset 0000-1-21-5e4
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Speed Up Pragmatic Bayesian Method
Frequency Analysis of Fully Bayesian
Importance sampling for Fully Bayesian
SCA or Wavelets

10 simulated Datasets 0000-1-21-e4
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Speed Up Pragmatic Bayesian Method
Frequency Analysis of Fully Bayesian
Importance sampling for Fully Bayesian
SCA or Wavelets

10 simulated Datasets 0000-1-21-5e4
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10 simulated Datasets 0000-1-21-5e4
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Scheme

I Introduce posterior distribution of pragmatic sampling as the
biasing density

I Get the draws from Pragmatic Bayesian Method

I Calculate the ratio r = Pfully (A, θ|data)/Pprag (A, θ|data)

Now, I still have some problem to calculate R. Hope this method
can solve all fully bayesian problems.
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Use PCA to represent effective area curve

A = A0 + δ̄ +
∑m

j=1 ej rjvj

A0 : default effective area,

δ̄ : mean deviation from A0,

rj and vj : first m principle component eigenvalues & vectors,

ej : independent standard normal deviations.

This approach not only reduces the dimension of ARF, but also
provides a nice and convenient way to sample ARF.
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SCA or Wavelets

I Usually, Spectral Clustering Analysis is only used for
clustering. First step is nonlinear dimension reduction, Then
use K-mean algorithm to do clustering.

I If we apply this method to samples of ARF, we can get K
clusters of ARF. The main problem here is how to take the
advantage of clustering to sample new ARF.

I Wavelet transformation is usually used to find out the hidden
pattern inside the signal. If we use wavelets to analyze ARF,
we can get a lot of parameters, making a summary of these
parameters and then sampling back is still the main problem.
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