
Background Bayes Factor Simulation Study BF And PPP

Using Bayes Factors for Model Selection in
High-Energy Astrophysics

Shandong Zhao

Department of Statistic, UCI

April, 2013



Background Bayes Factor Simulation Study BF And PPP

Model Comparison in Astrophysics

Nested models (line detection in spectral analysis):
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Non-nested models:
Powerlaw vs Bremsstrahlung for the red curve.

Bottom line: need more than a confidence interval on “nesting
parameter” to formally compare or select a model.
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Spectral Analysis in High Energy Astrophysics

Goal: Study the distribution of the energy of photons originating
from a source (We use a Poisson model)

The photon detector
1 Counts photons into energy bins, with energy E1, . . . ,EJ .
2 May misclassify photons into wrong energy bins. (Redistribution

Matrix, M)
3 Has sensitivity that varies with energy. (effective area, d)
4 Is subject to background contamination, θB

Mathematically: Ξ(Ei ) =
∑

j∈J Mij Λ(Ej )dj + θB
i

We ignore 2-4 in our initial simulations.
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Model Selection in Spectral Analysis

The spectral model can often be formulated as a finite mixture
model. A simple form consists of a continuum and an emission
line: Λ(Ei ) = αEβ

i + ωIµ==i
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The line detection problem:

H0 : Λ(Ei ) = αEβ
i

Ha : Λ(Ei ) = αEβ
i + ωIµ==i
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Challenges with Spectral Model Selection

A naive method is to use the likelihood ratio test. However, the
standard asymptotics of the LRT statistic do not apply.

µ has no value under H0.
ω must be non-negative under Ha while its target tested value
under H0, zero, is on the boundary of the parameter space.

For ”precise null hypotheses”, p-values bias inference in the
direction of false discovery.

When compared to BF or Pr(H0|Y ), p-values vastly overstate the
evidence for H1 (even using the prior most favorable to H1)
Computed given data as extreme or more extreme than Y , which is
much stronger evidence for H1.

Protassov et al. (ApJ, 2002) address the first set of concerns by
simulating the null dist’n of the Likelihood ratio statistic and use
posterior predictive p-values (PPP) instead.
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Bayesian Model Selection

Bayesian Evidence: The average likelihood over the prior
distribution of the parameters under a specific model choice:

p(Y |M) ≡
∫

p(Y |M,θ)p(θ|M)dθ

where Y ,θ and M are the observed data, parameters, and
underlying models respectively.

Bayes Factor (BF): The ratio of candidate model’s Bayesian
Evidence:

B01 ≡
p(Y |M0)

p(Y |M1)
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Interpretation of BF

BF and posterior probability ratio.

p(M0|Y )

p(M1|Y )
= B01

p(M0)

p(M1)

Interpretation against the Jeffreys’ scale.

BF Strength of evidence (toward M0)
1 ∼ 3 Barely worth mentioning
3 ∼ 10 Substantial
10 ∼ 30 Strong
30 ∼ 100 Very strong
> 100 Decisive
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Disadvantage of the Bayes Factor

Assumes that one of the two models is true.

Computation could be hard.

Sensitive to prior specification.
How does the prior dependency of BF compare to that of PPP?

BF is ill-defined with an improper prior.
Non-informative prior for parameters in common?
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The Computation of BF

Task is to compute p(Y |M) ≡
∫

p(Y |M,θ)p(θ|M)dθ.

Gaussian Approximation.
If the posterior dist’n is approximately Gaussian.

Monte Carlo Method.
If could get a sample from either the prior or posterior dist’n.

Nested Sampling.

None of the method is perfect for spectral analysis.

The joint posterior dist’n has many local modes.

Most Monte Carlo methods are inefficient.

Nested Sampling has bias up to 25% in simulation studies.
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A New Method

On the other hand, B01 =
p(M0|Y )

p(M1|Y )

/
p(M0)

p(M1)

Computing the ratio of the posterior probability is not easy.

Challenge is to sample from (IM0 ,Θ0, IM1 ,Θ1), where Θ0 and Θ1
might have different parameter settings and dimensions.

Example: Θ0 for Powerlaw while Θ1 for Bremsstrahlung.

It’s usually straightforward, however, to sample from p(Θ0|M0,Y )
and p(Θ1|M1,Y ), seperately.



Background Bayes Factor Simulation Study BF And PPP

Jump between the Parameter Space

Assume we run 2K MCMC chains with half of them starting from Θ0
and Θ1 respectively. The parameter space for each chain is (IM ,ΘM).

1 Run usual M-H algorithm for each chain with q0(θold
0 , θnew

0 ) and
q1(θold

1 , θnew
1 ) being the proposal dist’n for sampling within

p(Θ0|M0,Y ) and p(Θ1|M1,Y ), respectively.

2 For chain i , randomly pick one of the other chains, j , and propose
a new draw based on its corresponding proposal dist’n. Doing so
is equivalent to use the proposal dist’n of:

1
K−1

∑
j 6=i q j (θj , θnew ), where q j (θj , θnew ) = 0 if IM(θj ) 6= IM(θnew )

3 Combine all the chains, compute the ratio of IM0/IM1 as the Monte
Carlo estimate of the posterior probability ratio.
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Why It Works

The parallel MCMC algorithm was first introduced to help MCMC
chain jump between modes.

For step 2, the acceptance rate is

p(θnew |M(θnew ),Y )

p(θi |M(θi ),Y )

/∑
j 6=i q j (θj , θnew )∑

j 6=i q j (θj , θi )

Challenge now is to find a good local proposal dist’n.
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Is Improper Prior Always Improper?

If θ? only shows up in M1, using improper prior for θ? is improper.

p(Y |M1) ≡
∫

p(Y |θ?, θ̃)p(θ̃|θ?)p(θ?)d θ̃dθ?, Θ1 = (θ?, θ̃)

What if θ? is one of the parameters in common?
In the line detection problem with β, µ being fixed and assuming
p(ωα ) ∼ U(0, η),

H0 : Λ(Ei ) = αEβ
i vs Ha : Λ(Ei ) = αEβ

i + ωIµ==i

The BFs under the prior of p(α) ∼ U(0,N) converge as N →∞,
to the BF under the prior of p(α) ∝ 1.

What about the priors for ω and µ?
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The Example

If p(α) ∝ 1,

BF = η

/∫ η

0

(
1 + ω̃/E−βµ

)Yµ(
1 + ω̃/ΣE−βi

)ΣYi +1 d ω̃

If p(α) ∼ U(0,N),

BFN = η

/∫ η

0

(
1 + ω̃/E−βµ

)Yµ(
1 + ω̃/ΣE−βi

)ΣYi +1 ·
Pr(z̃ ≤ N)

Pr(z ≤ N)
d ω̃

where z ∼ Gamma(ΣYi + 1, 1
ΣE−β

i
), z̃ ∼ Gamma(ΣYi + 1, 1

ΣE−β
i +ω̃

)



Background Bayes Factor Simulation Study BF And PPP

The Example, cont’d

Because (
1 + ω̃/E−βµ

)Yµ(
1 + ω̃/ΣE−βi

)ΣYi +1 · Pr(z̃ ≤ N) ≤
(
1 + ω̃/E−βµ

)Yµ(
1 + ω̃/ΣE−βi

)ΣYi +1

lim
N→∞

BFN = lim
N→∞

∫ η

0

(
1 + ω̃/E−βµ

)Yµ(
1 + ω̃/ΣE−βi

)ΣYi +1 · Pr(z̃ ≤ N)d ω̃
/

lim
N→∞

Pr(z ≤ N)

=

∫ η

0
lim

N→∞

(
1 + ω̃/E−βµ

)Yµ(
1 + ω̃/ΣE−βi

)ΣYi +1 · Pr(z̃ ≤ N)d ω̃

= BF

where the second “=” holds by Lebegue dominated convergence theorem.
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How to Assign a Proper Prior

Compared to α and β, priors for ω and µ have much more
influence on the BF. And they have to be proper.

Different priors on ω and µ can totally change your decision
based on BF. For example, with everything else held the same,
under p(µ) ∼ N(µ0, σ1), BF supports M0

under p(µ) ∼ N(µ0, σ2), BF can’t distinguish btwn the models
under p(µ) ∼ N(µ0, σ3), BF supports M1

Is the prior dependency always a problem?

How does the prior influence of BF compare to that of the PPP?
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Simulation Study Design

Simulation Models: We compare a power law continuum with
one delta function emission line model, with 1000 energy bins
equally spaced between 0.3 to 7(keV).

H0 : Λ(Ei ) = αEβ
i

Ha : Λ(Ei ) = αEβ
i + ωIµ==i

with i = 1 ∼ 1000 and α = 50, β = 1.69.

The prior influence of α and β are negligible compared to that of
ω and µ. Thus, they will be fixed in the simulation study.

Assume:
ω ∼ U(0, η);µ ∼ discrete[N(µ0, σ

2)]

Using a Gamma prior for ω will have similar results.
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The Non-Gaussian Posterior Dist’n

The ordinary Gibbs breaks down here because the subchain for
µ does not move from its starting value, regardless of what it is.
We use the PCGS to draw posterior samples.

5000 posterior draws with α = 50, β = 1.69, ω = 10, µ = 150.
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To Study The Prior Influence

Fix α and β throughout. Calculate BF by numerical integration.
The “true” emission line is set at bin 150, or µ = 1.3 keV.
The intensity from the continuum in this bin is 32.
We control the strength of data support toward Ha by altering the
observed counts at 1.3 keV.
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Prior Settings

Recall ω ∼ U(0, η). We control its strength by changing its upper
range η.

η will range from 10 to 108 with a step size of 2.

For µ, because µ ∼ discrete[N(µ0, σ
2)], we control both its mode

µ0 and s.d σ.

We use two different value for µ0, 1.3keV and 1.97keV respectively
(150 and 250 in terms of bin number).

For σ, it will range from 1 to 99 (bin width) with a step size of 2.
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Visualize The Prior Influence

We will plot the heatmap of log(BF ) against η, µ0, and σ on the
simplified Jeffrey’s scale.

BF log(BF ) Evidence
> 30 > 1.5 Very strong to overwhelming for H0
[3,30] [0.5,1.5] Substantial to strong for H0
[−3,3] [−0.5,0.5] Not worth mentioning
[−30,−3] [−1.5,−0.5] Substantial to strong for Ha
< −30 < −1.5 Very strong to overwhelming for Ha
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Results: A Weak Spectral Line

Y (E = 1.3) is about 3 s.d above null model intensity.
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Diffuse or misplaced priors weaken evidence
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Results: A Stronger Spectral Line

Y (E = 1.3) is about 5 s.d above null model intensity.
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Diffuse or misplaced priors could completely change the decision
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Results: Stronger Prior

We use a stronger prior for µ: uniform prior with a span of 11 ∼ 51 bin
width centered at the true location.
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Take Home Messages

If the data is dominantly strong, we probably don’t need BF.

The priors can reflect different scientific questions

p(µ): where to look for the lines
p(ω): how strong are the lines that we’re looking for

Even for likelihood ratio test, looking for lines

at a fixed bin location,
within a restricted region,
over the whole energy range

will return tests with varied strength of the evidence.

How does the prior dependency of BF compared to the PPP?
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Compare BF with P-values
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Y(E=1.3keV) 32+17 32+22 32+28
HA: known line location 0.008 0.002 0.000
HA: fitted line location(0.3-7.0keV) 0.539 0.184 0.006
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Compare BF with P-values, cont’d

Prior on line intensity: ω ∼ U(0, η) and µ ∼ U(1.3± κ).

HA: known line location
ppp-value = 0.002.

HA: Unknown line location
ppp-value = 0.184.

minimum Bayes Factor = 0.044
(span=0.07, η = 30)

Both ppp-value and Bayes Factor
depend on where we look for line.

Can we calibrate the dependence?
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Compare BF with P-values, cont’d

Assuming P(M0)/P(M1) = 1, we plot the PPP against P(M0|Y )

Evidence decreases with more
diffuse prior, for both.

BFs are more conservative.

Prior on µ

let’s decide where to look,

penalize us for looking too
many place. i.e., look
elsewhere effect

Sensitivity of BF to prior for µ
is sensible.
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A Bayesian Strategy for Line Search, Summary

Bayes Factors for Detection:

BF =
p0(Y )

pA(Y )
=

∫
p(Y |θ, ω = 0)p(θ)dθ∫

p(Y |θ, µ, ω)p(θ, µ, ω)dθdµdω

Setting priors

θ = (α, β) : Non-informative / diffuse priors.
µ : Where we want to look for the line.
ω : How strong of a line do we want to look for?

Narrower prior ranges yield stronger results.
If strong lines are easy to see, maybe we can confine attension to

weak lines.
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