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Outline

• Quasars
• structure, emission, variability

• Data characteristic
• Observed variability
• Stochastic modeling
• Conclusions and future
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Quasars

X-rays

Optical

Chandra X-ray Observatory

Redshift - a shift of emission lines 
in the spectrum gives the distance
Quasars are detected at high distances
The most distance know today is at
z=7.1 (0.763 Gyr after BB, now 13.67 Gyr) 

z=4.7
~1.3 Gyr

GB1428+4217

optical

X-rays
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Quasar Structure

• Accretion Disk
• Hot corona
• Torus
• Clouds
• Relativistic Jet
All contribute to the emission

Black Hole gravity is fundamental to the quasar power

Artist View 

Data
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Why study variability?
• The primary emission is not resolved!
• The variability allows us to “look inside” the

unresolved region:
– constrain the emission region size
– learn about energetics of the system
– understand the physics, e.g. viscosity constraints, connection

between different emission sites
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Origin of Variability

• On the line of site
• Occultation events - clouds, torus, wind
• Microlensing

• Intrinsic to the quasar
• Optical emission

» Continuum - Accretion flow
» Emission lines -  BLR

• X-rays
» Corona, hot plasma
» Outflow (also in radio, γ-rays)
» Reflection
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Variability Timescales
• Light crossing time at the characteristic radius 100 rs

tlc = 1.1 M8 R100rS days

• Orbital time
torb = 104 M8 (R100rS )3/2 days

• Thermal (note the viscosity dependence) time

tth= 4.6 (α0.01)-1 M8 (R100rS )3/2 years

R100rS = R /100rS - characteristic radius rs = 2 GMbh/c2

M8 = Mbh /1e8Msun - black hole mass
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Radio Outbursts3C 273  Optical Variations
>100 years Outbursts in radio typically every 8.1 year (Zhang 2010)

Outbursts are accompanied by ejections of superluminal blobs

Long-term Quasar Variability

100 yrs

20 yrs
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10 yrs 6.5 yrs

Short-term Quasar Variability

The best sampled optical light curves (every 30 min)
from Kepler - only a few AGN known 
Probe orbital timescales to thermal timescales

Mushotzky et a 2011 ~90 days
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0.6

57 days

fit data pointsNo data

• Good optical data covering a few years
       MACHO, OGLE, AGN Watch, PanSTARRS 
• Continuum variations on long and short times
• Relatively small amplitude (10-20%)
• No periodic variations

Kelly, Bechtold & Siemiginowska 2009
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X-ray and γ-ray Variability

NGC4051

Vaughan et al. 2011

XMM-Newton X-rays

5 days HESS

Aharonian et al 2007 

2 hrs

Fermi

5 yrs

γ-rays

Δt = dayΔt = week

TeV

PKS 2155-304
• Variations on all the observed timescales
• Difference in time-bins and coverage
• Flares?
• Origin in a jet or hot corona
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• PSD modeling:
– Non-parametric
– good for quantifying the variability (e.g.

characteristic time-scales)
• But has several limitations:

 limited in discriminating between physical
models for variability.

 Shape evolves with time, e.g. dramatic changes
between different spectral states

 Light curves have a finite duration time and often
non-uniform sampling causing windowing effects

 Power from low frequency can leak into high
frequency (e.g. red noise leak) and from high
frequency to low frequency (aliasing)

 Periodicity in the optical data due to
observational constraints by the Earth orbit etc.

Modeling Variability: PSD

Log (frequency)

Lo
g 

P
(f)

α > 2

α ~ 1

α = 0 

breaks

see Uttley & McHardy 2001, Uttley et al. 2002, Vaughan et al. 2003, Uttley et al. 2005
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Modeling Variability: Time-series

• Assume that the observed variations are generated by an
underlying stochastic process - a parametric model

• Observations are different realizations (samples) from that process
• Main goal: determine the NATURE of the physical system

responsible for that process.
• Modeling the data (light curves) directly is free of the windowing

effects.
• Gives unbiased estimates of the characteristic timescales and

variance of the process.
• Needs a parametric model for a light curve - use CAR (continuous

auto-regression or OU)  - characteristic frequency, rate of
perturbations and the amplitude

• Link to the accretion disk equations: a perturbation in the accretion
rate driving the changes in the emitted flux
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Parameters:
Mean value, characteristics frequency and
the amplitude of the driving noise

Relaxation time

Stochastic process White noise

Stochastic Model for Quasar Light curves

mixing weights

frequency
po

w
er flat

Superposition
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Disk Equations
Evolution of the Standard Disk

Surface density

Accretion rate

   x=r1/2

Perturbation of  r1/2νΣ
=> u(x,t) = xΔ(νΣ)

Disk Evolution with a noise term
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• Simple Stochastic process
• P(ƒ) ~ ƒ-2   are consistent with damped

random walk
• P(ƒ)  - Break at the characteristic

timescale of the process
• Possible link to physical parameters:

- Characteristic frequency, i.e.
relaxation time of the process, might
relate to the time required for diffusion to
smooth out local accretion rate
perturbations
- Amplitude of the driving noise,
variability resulting from local turbulence
or other perturbations to the magnetic
field etc.

Kelly, Bechtold & Siemiginowska,  2009 ApJ 730 52

MBH = 108 Msun and with different  timescales
7 years, sampled every 5 days

Light crossing time

Orbital time

Thermal

Time [years]
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MBH = 108 Msun and with different  timescales
7 years, sampled every 5 days

Light crossing <  5 days sampling

Orbital time

Thermal

Kelly, Bechtold & Siemiginowska,  2009 ApJ 730 52

flat

Power Spectrum

red noise leak

Break shift

CAR Lightcurves
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Modeling Optical Light curves

• 100 quasars with optical light curves
•  Defined likelihood and performed MCMC
analysis to model the observed light curves.
•  Best fit light curve, characteristic timescales and
variability parameters
•  NGC 5548 fit  with the characteristic timescale
of 214 daysresiduals

Fit and data

NGC 5548

R
 M

ag
ni
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~12 years
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Modeling Optical Light curves
Sample of 100 quasars: MACHO,
PG sample, AGN Watch

timescale Short-term variations

tim
es

ca
le

Mass

Luminosity

10-104 days

 < 0.02 
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Andrae, Kim D-W, Bailer-Jones, 2013, A&A, 554, A137

Model Comparison:
Deterministic v. Stochastic

6304 quasars
SDSS Stripe 82
20 models

Bayes Factors 
 for model comparison
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Simulating X-ray Light curves

• X-rays from hot corona
• Two breaks in PSD =>

two characteristic timescales
• Linear Combination of Stochastic

processes
• Model  light curves - Likelihood

analysis

White noise (flat PSD)

Pink noise (1/f)

Red noise (1/f2) Observations probe different parts
of the same process

Kelly, Sobolewska & Siemiginowska,  2011 ApJ 730 52
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Kelly, Sobolewska & Siemiginowska,  2011 ApJ 730 52

Modeling X-ray Variability
MCG-6-30-15

model

XMM ~1.5 days XTE ~10 years

Time [sec]Time [days]

data
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Modeling X-ray Variability
100 realizations of the PSD given the observed lightcurves

MCG-6-30-15 Akn 564

One break

Two breaks

best-fit

median
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Modeling X-ray Light Curves

Mass

tim
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Mass

Best method to measure a black hole mass (see also Kelly et al 2013 for Poisson case)
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Modeling γ-ray Light Curves
Single OU process Superposition
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Modeling γ-ray Light Curves

timescales

PSD slope
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Modeling γ-ray Light Curves: Outliers
How can we  separate the flares/outbursts 
from the continuous stochastic variations?

Flux

outliers
Bi-modal
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Identifying Flares

When does the
flare begin?
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Modeling Light Curves:
Summary

• Variations consistent with the stochastic process -perturbations
to the luminosity could be caused by magnetic turbulence.

• Perturbations smoothed on the timescales shorter than the
orbital or thermal timescales

• Timescales correlates with Mbh and luminosity
• Significant anticorrelation between Mbh the amplitude of the

driving noise => very good constraints on the mass.
• Both short and long-term observed light curves due to the same

process.
• Origin of optical and X-ray variations partially shared.
• Mixed stochastic process describes the evolution of viscous,

thermal and radiative perturbations
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Stochastic View of the Accretion Disk

Dexter and Agol 2011 ApJ 727 L24

n=2200 n=550 n=140

Temperature maps assuming that Temp(φ, r, time) follows a
damped random walk in each independent zone n assuming
the local temperature characteristic timescale of 200 days.
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Outbursts, Flares and
Shortest Timescales

• Large amplitude, rapid rise and short durations events
are not described by the stochastic random walk in
linear regime - variability due to physical processes
related to a relativistic jet?

• Best observational examples of rapid outbursts can
be found in gamma-rays and TeV

• Optical variations in Kepler data - probe shortest
dynamical timescales, these data are not consistent
with the linear regime
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Optical  lightcurves from Kepler
slope < -2
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Future Projects

How to model the flares?
Non-linear models for Kepler light curves

NGC4051

Vaughan et al. 2011

XMM-Newton X-rays

5 days


