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Measuring Mass

● Motivation

– Mass-luminosity 
relationships

– Globular Cluster 
(GC) population 
studies

– Dark matter halos
– Compare to 

cosmological 
simulations

● Observed Satellites

– GC
– dwarf galaxies
– planetary nebulae
– halo stars



http://calgary.rasc.ca/globulars.htm

Globular Cluster distribution



Wiki Commons, author: Andrew Z. Colvin



Galactocentric Measurements

Chaisson & McMillan, Astronomy, 2004



Galactocentric Velocities

● Kinematic data
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Galactocentric vs Heliocentric 
Reference Frames
● Milky Way (MW) mass models are simplest to 

implement from Galactocentric point of view
● We have a combination of heliocentric data that is

– Complete (known velocity vector)
– Incomplete (missing proper motion component)



Galactocentric vs Heliocentric 
Reference Frames
● Milky Way (MW) mass models are simplest to 

implement from Galactocentric point of view
● We have a combination of heliocentric data that is

– Complete (known velocity vector)
– Incomplete (missing proper motion component)

● In the past, incorporating incomplete data into 
analyses meant using galaxy mass estimators that 
relied only on line of sight velocities. 

● Our method: use both complete and incomplete data 
simultaneously in the Galactocentric frame



Bayesian method:
incorporate both complete and incomplete data

● How this works
● Simulations and testing
● Preliminary application of method to the Milky Way

Eadie, Harris, & Widrow (2015), Astrophysical Journal
(in press, posted to astro-ph in the next couple days)



Using Bayes' Theorem

● Little & Tremaine (1987) 
● Bayes' Theorem
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Likelihood:



Deriving the Distribution Function (DF)

● Relative energy:

● Model: potential, mass density, and mass profile

● write density as a function of relative potential

● solve an Abel transform (Binney & Tremaine)



Deriving the Distribution Function (DF)

● For isotropic cases:

● DF goes into the likelihood



Example: Hernquist Model

● potential, mass density, and mass profile

parameters:parameters:    M    M
tottot

 ,  a ,  a

In the case of an isotropic velocity distribution:

Hernquist (1990), ApJ 356: 359-364.



Example Posterior Distribution
(Isotropic Hernquist model, simulated data)

Sample using
Metropolis algorithm
---> Markov Chain:

 M
tot

 and  a pairs 

Probability of parametersparameters
(posterior distribution)(posterior distribution)



true M(r)

Credible 
Regions

Example Cumulative Mass Profile
(Isotropic Hernquist model)



Advantage of Bayesian Approach

● If v
t
 of the satellites are unknown

?



Advantage of Bayesian Approach

● If v
t
 of the satellites are unknown

?

SOLUTION: 
Treat the tangential 
velocities as 
parameters



Method

(Mtot ,  a, vt1 , vt2, ... , vtn)

 Gather kinematic data
 Choose a model (likelihood) and priors
 Sample the Posterior Distribution

• (Metropolis step, hybrid-Gibbs for vt)

 Result: Markov Chain proportional to p(θ|y)



Simulations & Testing

Scenario Simulated Data Data Availability

1 Isotropic complete

2 Isotropic 50% incomplete

3 Anisotropic 50% incomplete

Analyze each scenario assuming
isotropic Hernquist model



Scenario 1: distribution of estimates

Eadie, Harris, & Widrow (2015) ApJ, in press



Scenario 1: example mass profile

Eadie, Harris, & Widrow (2015),
in press



Simulations & Testing

Scenario Simulated Data Data Availability

1 Isotropic complete

2 Isotropic 50% incomplete

3 Anisotropic 50% incomplete

Analyze each scenario assuming
isotropic Hernquist model



Scenario 2 & 3: distributions of estimates

Eadie, Harris, & Widrow (2015), in press



Scenario 2 & 3: example mass profiles

Eadie, Harris, & Widrow (2015), in press



On to real data!



Satellite data:

● 88 satellites, covering 3kpc < r < 261kpc

– 59 GCs

– 29 Dwarf galaxies

  

Data compiled from: Dinescu et al. (1999), Casseti-Dinescu et al (2010, 
2013), Harris (1996), Boylan-Kochlin (2013), and Watkins et al (2010)
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Satellite data:

● 88 satellites, covering 3kpc < r < 261kpc

– 59 GCs

(26 are missing tangential velocities)
– 29 Dwarf galaxies

(18 are missing tangential velocities)

*Aside from the incomplete data, all other data have 
already been converted to the Galactocentric reference 
frame in previous studies  

Data compiled from: Dinescu et al. (1999), Casseti-Dinescu et al (2010, 
2013), Harris (1996), Boylan-Kochlin (2013), and Watkins et al (2010)



MW Mass profile

● Isotropic Hernquist
model assumed

● Total mass estimate:

1.55 x 1012 Msol

(1.42, 1.73)

● Mass within 260 kpc

– 1.37 x  1012 Msol

(1.27, 1.51)
Eadie, Harris, & Widrow (2015), in press



Energy
Profile

● Isotropic Hernquist
model assumed

● Incomplete data

– estimate of vt 
from posterior 
distribution

● Gravitational 
potential

– parameter 
estimates from 
posterior 
distribution



Preliminary Check: Sensitivity Analysis



Preliminary Check: Sensitivity Analysis

● Create 100 data sets 
with different tangetial 
velocities

– Adjust velocities via 
random draw from a 
normal distribution 
with variance equal to 
the uncertainty 



Sensitivity Analysis Results

100 synthetic data sets



Next step:
Include uncertainties via a hierarchical model

● incorporate uncertainty in r and v

● The problem becomes a hierarchical one...

observed r and v = a probability distribution 
involving the known 
measurement  uncertainty

hyperprior



Conclusion

● Developed a Bayesian method to incorporate complete 
and incomplete data in the Galactic Mass estimation 
problem

● Simulations showed method is robust and effective 
when there is a mix of complete and incomplete data

● Preliminary analysis gives very encouraging results

– Consistent between models
– Results consistent with other methods

Eadie, Harris, & Widrow, ApJ 2015 (in press) will be posted to 
astro-ph in the next couple days



Some Future Work

● Milky Way

– Proper hierarchical Bayesian analysis 
incorporating measurement uncertainties

– Implementing the NFW model into the code
● Models where satellites do not follow the same 

distribution as dark matter halo particles
● Looking ahead to GAIA data
● R package Galactic Mass Estimator (GME)



Thank you!
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