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Note to self (delete before presentation):

Don’t talk about earthquakes
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Sparse signal recovery (compressed sensing)

m d

n < m under-determined: i Sparse state vector

more unknowns than data with k£ non-zero
elements




Variations on state vector regularization

Damped least squares: Lo regularization

min ||Gm — d||2 HA|m||2| damp oscillations

Solutions vary smoothly in space (common in various formulations)
Classical approach with exact single step solution

Sparsity promoting methods: Lo regularization

min ||[Gm — d||2 +|A||m||g| promote sparsity

The Lo pseudo-norm simply counts the number of non-zero elements

This is combinatorial and seemingly unfeasible to solve in reasonable time
(<years) for any large system (>100 elements)




Variations on state vector regularization

Damped least squares: Lo regularization

min ||Gm — d||2 HA|m||2| damp oscillations

Solutions vary smoothly in space (common in various formulations)
Classical approach with exact single step solution

Sparsity promoting methods: L1 regularization
min ||[Gm — d||2 +|A||m||1| promote sparsity

The L1 norm can often be used to recover the Lo pseudo-norm solution

Global minimum can be found by convex optimization (e.g., quadratic
programming) and many new algorithms




A geometric view of compressed sensing
Minimize data misfit and p-norm of state vector

n 1/p
f=1Gm —d|j2 + Aljml|, |Iml[, = (Z fl?z'p>

fit to data
model regularization
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A geometric view of compressed sensing
Minimize data misfit and p-norm of state vector

n 1/p
f=1Gm —d|j2 + Aljml|, |Iml[, = (Z fl?z'p>

fit to data

model regularization
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A geometric view of compressed sensing
Minimize data misfit and p-norm of state vector

f=lIGm —df|z + Afjml|, Imflp, = | ) lasf”

i=1
fit to data

model regularization
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When does this work”?

Theory Empirical evidence
Candes, Romberg, and Tao (2006) Donoho and Tanner (2009)
| L1 # Lo R " Ly # Lo
5 5
\ 0.5 - \ 0.5
0.1 L]' — Iﬂz = 014 L]. — LO
n/p n/p

Frequency distribution of operator elements (Davenport et al., 2011)
Good: Power-law, Gaussian, ...
Bad: Uniform, anything with any negative eigenvalues



How sparse?

Replace unconstrained problem with an equivalent constrained problem
(Tibshirani, 1990):

min |Gm — d||2 subject to |m|; <7

T -selection: How sparse?

O.SO -
O sparse recoverable

g O X not sparse recoverable
‘Qa)‘ 0.4 O @ selected T value ’
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Z O % St 23
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Some stuff Doug made me do

True stars (10) Pixels (100) Amplified PSF

10 + 10 10
L &
0 0 0
0 10 0 10 0 10
T t PSF N True Stars + PSF + Noise
10 10 10
0 0 0

0 10 0 10 0 10

Over parameterize geometry (100 grid points per pixel)

- 100 x 10,000 linear flux & quantized position operator
Gaussian point spread function
Solve in < 0.2 seconds (van den Berg and Friedlander, 2008)




More stuft that Doug made me do

True stars (10) Found stars (12)

10 + 10 *
+ 4
+ T
P + 4

0 10 0 10

True Stars + PSF + Noise Predicted
10 l. 10 l 10

Residual

To do:

Constrain flux distributions

How many stars can we recover? vs. How many are there”
If PSFs are localized in space we can go very fast







10

10

10

True stars (10)

+
+

+
Pt

10
True stars + PSF
10

Found stars (12)

10

Pixels (100)
10
Noise
10
Predicted
10

10

10

10

Amplified PSF

0 10
True Stars + PSF + Noise
0 10
Residual
0 10




Imaging fault behavior...how well can we do?

north (km)

800

700 1
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400 1

300+

2001

1001

Synthetic slip
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100 200 300 400 500
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-30 -20 -10 0 10 20 30
slip (m)

600
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Synthetic observations

800 —

0 100 200 300 400 500
east (km)

0 1 2 3 4

displacement (m)

600



Resolution test - ring

Synthetic
slip
800 . .(/b -

7001 o

6001

500+

400

north (km)

3001

200+

100+

0
0 100 200 300 400 500 600
east (km)

[ aaaae— ]
-30 -20 -10 0 10 20 30
slip (m)



Resolution test - ring

north (km)

Synthetic
slip

800

700
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500+

400

3001
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0 100 200 300 400 500
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600

north (km)

800

Smooth
recovery
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Resolution test - ring

Synthetic Smooth Sparse
slip recovery recovery

800 ! : 800 800
©
L

7004 o 7001 o 7001 .
600 A 600 A 600
500+ 500 500
£ g ]
@ 400 = 400+ = 400
g g g
300+ 300 300
200 200 200
100+ 100 100
0 0 0
0 100 200 300 400 500 600 600 0 100 200 300 400 500 600
east (km) east (km)
[ oesssessees | [ eoeessesssees
-30 -20 -10 ) 0 10 20 30 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
slip (m) slip (m) slip (m)

Sparsity promoting recovery methods are not perfect at this
density and may exhibit low magnitude outliers

Evans and Meade, (2012)



Why does sparsity work for this problem?: Elasticity

The combination of elasticity and effectively random GPS locations gives rise to
a power law frequency distribution of partial derivatives. This distribution is
known to support sparse solutions (Davenport et al., 2011)







Selection by a modified version of sparse recovery

Damped
regularization

True signal Noisy data

Total variation
regularization




Selection by a modified version of sparse recovery

min ||GQ — Vous|l2 + B Q|2

True signal Noisy data



How kinematically complex are plate boundaries?

Thatcher (2009)



More complex
3 fault bounded blocks
3 Euler poles

Euler pole |
1 a

Blockl Euler pole 2

How kinematically complex are plate boundaries?

Less complex
3 fault bounded blocks
2 Euler poles

Tl Euler poles | & 2

\

L4
Blockl ,-°
]

.:"Block 2 ANy Block 3




Selection by a modified version of sparse recovery

144 fault bounded blocks 1686 horizontal GPS velocities
48°N - - 48°N -
44°N - - 44°N -
40°N - - 40°N -
36°N - - 36°N -
32°N - - 32°N -
Z F
Q >
0 10 20 30 40

velocity magnitude (mm/yr)

McClusky et al., (2001); Shen et al., (2003); Hammond and Thatcher, (2005); Williams et al., (2006); McCaffrey et al., (2007); and PBO



Selection by a modified version of sparse recovery

132°W
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How many active plates are required?

140\ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 14
120 12
100 - 10
B
80 - 8 £
= E
60 6 E
=
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20- 2
0 0

1000 2000 3000 4000 5000 6000 7000 8000 9000
A



The active fault system of the western US

48°N
44°N
40°N
36°N

32°N

05 . 1 1.5
log1 0(Velocuy magnitude) (mm/yr)

Evans and Meade, (submitted)



Where are we”?

1) Sparse recovery algorithms can perform some model selection and
recovery many of the things that we’ve always been interested in

2) Algorithm development is very rapid. Dantzig selector (Candes et al.,
2007) 1000 times slower than spectral projection algorithm just one year
later (Friedlander and van den Berg, 2008)!

CSMPSPx = 122 “Cojgrodatedr = 1
« £ CaRTTS 1

3) Empirical conditions for successful
recovery rapidly evolving too. o

0 0.2 0.4 0.6 038 1
o=m/n

Dimension Time
SDPT3 TFOCS
4) Large problems now becoming possible as 2 234 034

Prony style issues are overcome.

1096 1.0 s

16384
131072
1048576




We almost always solve underdetermined problems

model data

solution



Prony had a precursor >200 years ago...
Approximate signals with exponentially damped cosines (1795)

N

f(t) = Z akebkt COS(QT&‘C}J -+ dk)
k=1
Proposed recovery algorithm only stable up to

N = 25 and, curiously, returned estimates that
were 50% zeros and 50% non-zeros.




Prony had a precursor >200 years ago...
Approximate signals with exponentially damped cosines (1795)

N

f(t) =" are’ cos(2mext + di)
k=1
Proposed recovery algorithm only stable up to

N = 25 and, curiously, returned estimates that
were 50% zeros and 50% non-zeros

Legendre (1795) Clear statement of least
VA squares, turned out to be somewhat popular



Early CS developments

1948 - DantZ/g maximize c¢'x
Simplex algorithm for linear programming subject to Ax < b

and x>0

1973 - Claerbout and Muir
Linear programming for sparse state vectors T |

| .

1984 - Karmarkar
Interior point methods make linear and quadratic programming fast

1995 - Chen et al.
Mathematicians start to take notice

e Sparsity. We should obtain the sparsest possible representation of the object
— the one with the fewest significant coefficients.

o Superresolution. We should obtain a resolution of sparse objects that is
much higher-resolution than that possible with traditional non-adaptive ap-

proaches.




Growth of CS theory

1996 - Tibshirani min [|Gm — d||
Connection to quadratic programming subject to [mlj; <7

2005 - Candes et al.
Conditions for exact reconstruction, k/n < 0.01

2008 - van den Berg and Friedlander
Fast & robust spectral gradient methods

2009 - Donoho and Tanner
Broader recovery conditions, k/n < 0.30




Some recent intentional CS in solid Earth geophysics

2011 - Loris et al.
Synthetic tomography

2011 - Simons et al.
Setup for global tomography

2011 - Yao et al.
Tohoku dominant frequencies

2012 - Evans and Meade

Input model

!1-Haar reconstruction

A - Input L
39 ........

. 0.5
371 ------ ........
| i=oz3ti| |

B 9=001 lo.4
ﬁ 0.3

0.1

140 142 144 ° 140 142 144 ° 1

Tohoku coseismic and postseismic slip




Resolution test - block

Synthetic
slip
800 . .Ub -

7004 o

600+

500+

400+

north (km)

300+

200+

100+

0 100 200 300 400 500 600
east (km)

L onasses——
-30 20 -10 O 10 20 30
slip (m)



Resolution test - block

Synthetic Smooth
slip recovery
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The role of state vector regularization

Damped least squares: Lo regularization

min ||Gm — d||2 HA|m||2| damp oscillations

Solutions vary smoothly in space (common in various formulations)
Classical approach with exact single step solution

So what about the other extreme; a not necessarily smooth and sparse/
compact solution?



Resolution test - block

Synthetic Smooth Sparse
slip recovery recovery

800 ! b 800 800
.
[ )

7004 o
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600 1 6001

500+

5001 5001
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Recovery of localized signals is possible with current GPS
station spacing if signal is sufficiently sparse

Evans and Meade, (2012)



