Disambiguating Sources II Valentine's Day Edition

Luis Campos (with David Jones)

February 14, 2017

- Discovered in 2012
- Part of a system containing multiple young stellar objects (YSOs)
- Difficult to Study: One study pulished in 2017 Principe, et.al. 'The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity'

- Discovered in 2012
- Part of a system containing multiple young stellar objects (YSOs)
- Difficult to Study: One study pulished in 2017 Principe, et.al. 'The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity'

Methods:

- "The point spread functions of the two binary components overlap significantly, however, complicating their photometric and spectral decomposition."
- "Hence, we used two spectral extraction regions for each of the component sources"

Given:

- (x_i, y_i) : photon-level location information
- \triangleright E_i : photon-level Energy information
- ▶ *t_i*: photon-level time-arrival info.
- ▶ S: number of sources (assume known for now)

Given:

- (x_i, y_i) : photon-level location information
- \triangleright E_i : photon-level Energy information
- ▶ t_i: photon-level time-arrival info.
- ▶ S: number of sources (assume known for now)

Can we

- ▶ allocate photon *i* to one of the sources? $z_i = s$
- ▶ approximate the source centers? $(\mu_x(s), \mu_y(s))$

Given:

- (x_i, y_i) : photon-level location information
- \triangleright E_i : photon-level Energy information
- ▶ *t_i*: photon-level time-arrival info.
- S: number of sources (assume known for now)

Can we

- ▶ allocate photon *i* to one of the sources? $z_i = s$
- ▶ approximate the source centers? $(\mu_x(s), \mu_y(s))$

From these, we can then go on and calculate more complex things,

- source intensities
- distance between sources
- better models for time arrival (O-U process, flares, etc)...

Given:

- (x_i, y_i) : photon-level location information
- ▶ t_i: photon-level time-arrival information
- ► E_i: photon-level Energy info. (/ht/ D. Jones #BASCS)
- ▶ S: number of sources (assume known for now)

Can we

- ▶ allocate photon *i* to one of the sources? $z_i = s$
- ▶ approximate the source centers? $(\mu_x(s), \mu_y(s))$

From these, we can then go on and calculate more complex things,

- source intensities
- distance between sources
- better models for time arrival (O-U process, flares, etc)...

Using time-arrival?

Distribution of Time Arrivals

How do we model this?

We're going to model the location and time arrival conditionally independent given z_i , i.e. $(x_i, y_i) \perp t_i | z_i$

How do we model this?

We're going to model the location and time arrival conditionally independent given z_i , i.e. $(x_i, y_i) \perp t_i | z_i$

$$p(z_i = s | x_i, y_i, t_i = t) \propto p(x_i, y_i, t_i = t | z_i = s) p(z_i = s)$$

= $p(x_i, y_i | z_i = s) p(t_i = t | z_i = s) p(z_i = s)$

How do we model this?

We're going to model the location and time arrival conditionally independent given z_i , i.e. $(x_i, y_i) \perp t_i | z_i$

$$p(z_i = s | x_i, y_i, t_i = t) \propto p(x_i, y_i, t_i = t | z_i = s) p(z_i = s)$$

= $p(x_i, y_i | z_i = s) p(t_i = t | z_i = s) p(z_i = s)$

- ▶ $p(x_i, y_i | z_i = s)$: Can use the King Profile (a 2-d Cauchy)
- $p(z_i = s)$: Can use a Dirichlet distribution.
- $p(z_i = s | t_i = t)?$

Model the time-arrival as piece-wise constant. For each source (s):

- $ightharpoonup n_s$: number of photons from source s
- Break time into K bins (fixed)
- ... at fixed locations $(b_0, b_1, ..., b_K)$
- ▶ $n_{s1}, n_{s2}, ..., n_{sK}$: photon counts in each bin.
- ▶ For now, $(b_0, b_1, ..., b_K)$ are shared across sources.

Model the time-arrival as piece-wise constant. For each source (s):

- $ightharpoonup n_s$: number of photons from source s
- Break time into K bins (fixed)
- ... at fixed locations $(b_0, b_1, ..., b_K)$
- ▶ $n_{s1}, n_{s2}, ..., n_{sK}$: photon counts in each bin.
- ▶ For now, $(b_0, b_1, ..., b_K)$ are shared across sources.

$$(\alpha_{s1},...,\alpha_{sK})|n_s \sim \textit{Dir}(n_{s1} + \tilde{\alpha}_s, n_{s2} + \tilde{\alpha}_s,...,n_{sK} + \tilde{\alpha}_s)$$

- ▶ Time arrival parameters: $(\alpha_{s1},...,\alpha_{sK})$, for s=1,..,S
- ▶ Prior on arrival dist: α_s , for s = 1, ..., S

$$p(z_i = s | t_i = t)?$$

$$p(z_i = s | t_i = t)?$$

We'll assign the probabilities as follows, for each photon:

- ▶ Find k such that $b_{k-1} < t_i < b_k$
- Assign the probabilities

$$p(z_{i} = 1 | t_{i} = t) = \frac{\alpha_{1k}}{\sum_{s=1}^{S} \alpha_{sk}}$$

$$p(z_{i} = 1 | t_{i} = t) = \frac{\alpha_{2k}}{\sum_{s=1}^{S} \alpha_{sk}}$$

$$\vdots$$

$$p(z_{i} = S | t_{i} = t) = \frac{\alpha_{Sk}}{\sum_{s=1}^{S} \alpha_{sk}}$$

Simulated Data

We want to first study a few simple things:

- 1. If we incorporate time, will we do better than not incorporating?
- 2. If (1), at what point do our gains fall apart?
- 3. A simple example for (2), how does the distance between the sources affect out ability to distinguish them?

Simulation:

- 1. Two sources with background
- 2. Source separation (0.5, 1, 1.5, 2)
- 3. Ideal time arrival distributions (for now)

Simulated Data (separation = 2)

Simulated Data (separation = 0.5)

What we have to work with (separation = 2)

What we have to work with (separation = 0.5)

Source Location (separation = 2)

Source Location (separation = 0.5)

Source Separation (with replicates)

Posterior CI: Separation

Source Intensity (separation = 2)

(e) Location and Time Model

(f) Location Only Model

Source Intensity (separation = 0.5)

(g) Location and Time Model

(h) Location Only Model

Source Intensity: Bright Source (with replicates)

Posterior CI: Weight - Bright Source

Source Intensity: Dim Source (with replicates)

Posterior CI: Weight - Dim Source

Source Intensity: Background (with replicates)

Posterior CI: Weight - Background

Average Correct Source Allocation (with replicates)

Average Correct Source Allocation by Source (with replicates)

Where do we go from here?

What we've done:

- ▶ We've shown that using time **can** help disambiguate sources.
- Even simple models (constant functions) can prove useful.

Future directions:

- Real light curve shapes (mine were too simple)
- More complex time models?
 - vary cut-offs per source
 - more comlex models per source

Light Curves with Spikes (Seperation = 1)

Light Curves with Spikes (Seperation = 1)

Light Curves with Spikes (Seperation = 0.5)

