X-ray observations of neutron stars and black holes in nearby galaxies

Andreas Zezas

Harvard-Smithsonian Center for Astrophysics

The lives of stars : fighting against gravity

- Defining parameter : Mass
- To avoid implosion stars must generate energy from fusion reactions
- •The stages of stars are determined by the type of fuel left: hydrogen, helium, carbon etc

... and then the end

... but, after some time they run out of fuel White dwarf (≤8 M_☉)

Supernova (≥8 M_☉)

→ Neutron star (M~1.4-3.0 M_o) → Black-hole (M >3.0 M_o)

Black-holes and Neutron stars

- Neutron stars (~1.4M_o): Pulsars (magnetized NS) Non-magnetized NS
- "Stellar" Black-holes (1.4 \sim 20M $_{\odot}$)
- \cdot "Supermassive" Black-holes (>10⁶ M $_{\odot}$)

Some numbers :

M White Dwarves : <1.4 Neutron stars : 1.4 -3 Black holes : >3 Sun : 1

MassRadiusTemp.DensityRotationMkmKton/cm³ s^{-1} <1.4</td> 5×10^3 $10^4 - 10^5$ 1.0.4 - 310 - 20 $\sim 10^7$ 2×10^8 $10^{-3} - 10^3$ >3>10 $10^5 - 10^7$ inf?1 7×10^3 5700 1.4×10^{-6} 27 days

How do we find them

Accretion !

binary stars (X-ray binaries) interstellar gas (supermassive BH)

When gas falls onto a BH/NS it forms a rotating accretion disk, like water swirling down the drain.

How do we find them

Accretion disks :

Gravitational energy of gas is converted to thermal energy L= <u>GM</u> mc² R <u>For BH, NS GM/R</u> ~ 0.1

For M=10 M_{\odot} , L = 2×10³² W = 10⁷ L_{\odot} M=1 M \odot , L = 2×10³¹ W = 10⁶ L_{\odot}

The complicated lives of binary stars

Sky &

Studying X-ray binaries

- Why bother ?
 - Stellar evolution
 - General relativity (extreme gravity)
 - Extreme physics (very hot, dense matter)
 - Is exciting !
- How ?
 - Find them (detection)
 - Spectroscopy
 - Timing (light curves, power spectra etc)
 - Spatial distribution

• Problems

- Background
- Confusion

• Problems

- Background
- Confusion
- Point Spread Function
- Limited sensitivity

- Methods
 - •Sliding cell
 - Wavelets
 - "Divide and conquer"

Statistical issues

- Source significance : what is the probability that my source is a background fluctuation ?
- Intensity uncertainty : what is the real intensity (and its uncertainty) of my source given the background and instrumental effects ?
- Extent : is my source extended?
- Position uncertainty : what is the probability that my source is the same as another source detected 3 pixels away in a different exposure ?

what is the probability that my source is associated with sources seen in different bands (e.g. optical, radio)?

• Completeness (and other biases) : How many sources are missing from my set?

Spectra

- Spectra : Intensity as function of energy
- Standard method : Fit spectra with models describing physical processes
- e.g. Disk-BB to measure BH mass $T \approx 2 \times 10^7 \left(\frac{M}{M}\right)^{-1/4} K$

power-laws to distinguish pulsar from BH binaries

$$I_E = K \times e^{-N_H \sigma(E)} E^{-\Gamma}$$

Spectra : bright sources

Statistical issues :

- Significance of components
- Correlated parameter uncertainties
- Estimation of source intensity

$$I \approx \int_{E_{low}}^{E_{up}} I(params, E) dE$$

where params (e.g. T, N_H, photon index) often have correlated uncertainties

Spectra : few counts

• Few counts: Use hardness ratio Ratio (in various flavors) of intensity in two bands, e.g. :

$$R = \frac{H}{S}$$
, $R = \frac{S-H}{S+H}$, $C = log(\frac{H}{S})$

•Problems :

- HRs in the Poisson regime (T. Park)
- Separate source populations in HR diagrams (mixing etc)

Zezas et al, 2002

Spectra : few counts

• Few counts: Use hardness ratio Ratio (in various flavors) of intensity in two bands, e.g. :

$$R = \frac{H}{S}$$
, $R = \frac{S-H}{S+H}$, $C = log(\frac{H}{S})$

•Problems :

- HRs in the Poisson regime (T. Park)
- Separate source populations in HR diagrams (mixing etc)

Variability

Accreting sources are variable
 Now we can do this in other galaxies !

Looking for :

- Variable sources (flickering, systematic trends) → Identify binaries
- Pulsations
 → Identify pulsar binaries
- Variability amplitude
- Spectral variability \rightarrow Determine binary types; study the accretion process

Variability

Methods

- χ^2 , KS test
- rms excess variance
- Fourier analysis (power-spectra)
- Bayesian blocks

Problems:

- FAINT sources
- uneven sampling

Spatial distribution

Questions:
Separate point-like from extended sources
Study spatial distribution of sources
Comparison with optical/radio etc
Significance of spatial patterns (or, is it really spiral ?)

Comparison between different populations

(e.g. BH, neutron stars, SSS)

Spatial distribution

Definition

 $\frac{dN}{dL} = K' \times L^{-(\alpha+1)}$

or
$$N(>L) = K \times L^{-\alpha}$$

•Why is important?

 Provides overall picture of source pops

 Compare with models for binary evolution

Kong et al, 2003

Statistical issues

- Incompleteness
 Background
 PSF
 Confusion
- Other biases
- Non parametric
 comparison taking into
 account all sources of
 uncertainty

Statistical issues

- Incompleteness
- Other biases

Non parametric comparison taking into account all sources of uncertainty
Spectrum dependent incompleteness

Summary

- Accreting binary systems are very interesting objects which allow us to study aspects of fundamental physics and astrophysics
- For these studies we use techniques involving spectral, timing and spatial data.
- With the new generation of X-ray satellites, we can study black-holes and neutron stars in environments other than our galaxy.
- However, we still need powerful statistical tools in order to apply these techniques on our data.