Poisson processes and Upper Limits

Vinay Kashyap CHASC AstroStatistics Collaboration Smithsonian Astrophysical Observatory

Tutorials on AstroStatistics and R by Eric Feigelson at CfA, 2014 Jan 31

Outline

I. Poisson likelihood II. Intro to Bayesian Analysis 1.Bayes' Theorem 2.Priors 3.Credible Ranges III. Aperture Photometry IV. Upper Limits

Outline

I. Poisson likelihood II. Intro to Bayesian Analysis 1.Bayes' Theorem 2.Priors 3.Credible Ranges (also Confidence Intervals) III. Aperture Photometry **IV.** Upper Limits

Consider N counts uniformly distributed over an interval τ

Constant rate $R = N/\tau$

What is the probability of finding k counts in δt ?

consider a randomly selected interval δt

 $\rho = \delta t / \tau \equiv R \delta t / N$

consider a randomly selected interval δt

 $\rho = \delta t / \tau \equiv R \delta t / N$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t}$$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!} e^{-R\,\delta t}$$

$$\frac{N!}{(N-k)!k!} \left(\frac{R\,\delta t}{N}\right)^k \left(1 - \frac{R\,\delta t}{N}\right)^{N-k}$$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t}$$

$$\frac{N!}{(N-k)!k!} \left(\frac{R\,\delta t}{N}\right)^k \left(1 - \frac{R\,\delta t}{N}\right)^{N-k} \\ \frac{N!}{(N-k)!N^k} \frac{(R\,\delta t)^k}{k!} \left(1 - \frac{R\,\delta t}{N}\right)^N \left(1 - \frac{R\,\delta t}{N}\right)^{-k}$$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!} e^{-R\,\delta t}$$

$$\frac{N!}{(N-k)!k!} \left(\frac{R\,\delta t}{N}\right)^k \left(1 - \frac{R\,\delta t}{N}\right)^{N-k}$$
$$\frac{N!}{(N-k)!N^k} \frac{(R\,\delta t)^k}{k!} \left(1 - \frac{R\,\delta t}{N}\right)^N \left(1 - \frac{R\,\delta t}{N}\right)^{-k}$$
$$N \to \infty, \delta t \to 0: \frac{N!}{(N-k)!N^k} \to 1, \left(1 - \frac{R\,\delta t}{N}\right)^N \to e^{-R\,\delta t}$$
$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!} e^{-R\,\delta t}$$

II. Bayesian Analysis

II. Bayesian Analysis

a calculus for *conditional* probabilities

II. Bayesian Analysis

a calculus for **conditional** probabilities

Notation

- *p*(..)
- p(A) probability of a proposition
- p(AB) probability of A and B
- p(A|B) probability of A given B
- p(x)dx probability density (without the dx)

All you need to remember

- p(A or B) = p(A) + p(B) p(A and B)
- $p(A and B) = p(A given B) \cdot p(B)$

II.a Bayes' Theorem

$p(AB) = p(A|B) \cdot p(B) = p(B|A) \cdot p(A)$ $p(A|B) = \frac{p(B|A) \cdot p(A)}{p(B)}$

II.a Bayes' Theorem

 $p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)}$

II.a Bayes' Theorem

Data

 $p(D|\theta) \cdot p(\theta)$ prior p(D)

posterior probability

normalization

likelihood

"Extraordinary claims require extraordinary evidence."

- Carl Sagan

"Extraordinary claims require extraordinary evidence."

- Carl Sagan

"Extraordinary claims require extraordinary evidence."

- Carl Sagan

Why?

"Extraordinary claims require extraordinary evidence."

- Carl Sagan

Why?

Because priors.

$p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)}$

II.b Priors

- Unfairly maligned as "subjective", but actually a mechanism to explicitly encode your assumptions
- When your data are weak, your prior beliefs don't change; when your data are strong, your prior beliefs don't matter.
- You update your prior belief with new data, using Bayes' Theorem. Lets you daisy-chain analyses.
- When your prior is informative, takes more data to make a large change.
- Technically, the biggest difference between likelihood analysis and Bayesian analysis: converts $p(D|\theta)$ to $p(\theta|D)$

$\frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t}$

II.b Example: γ -Priors

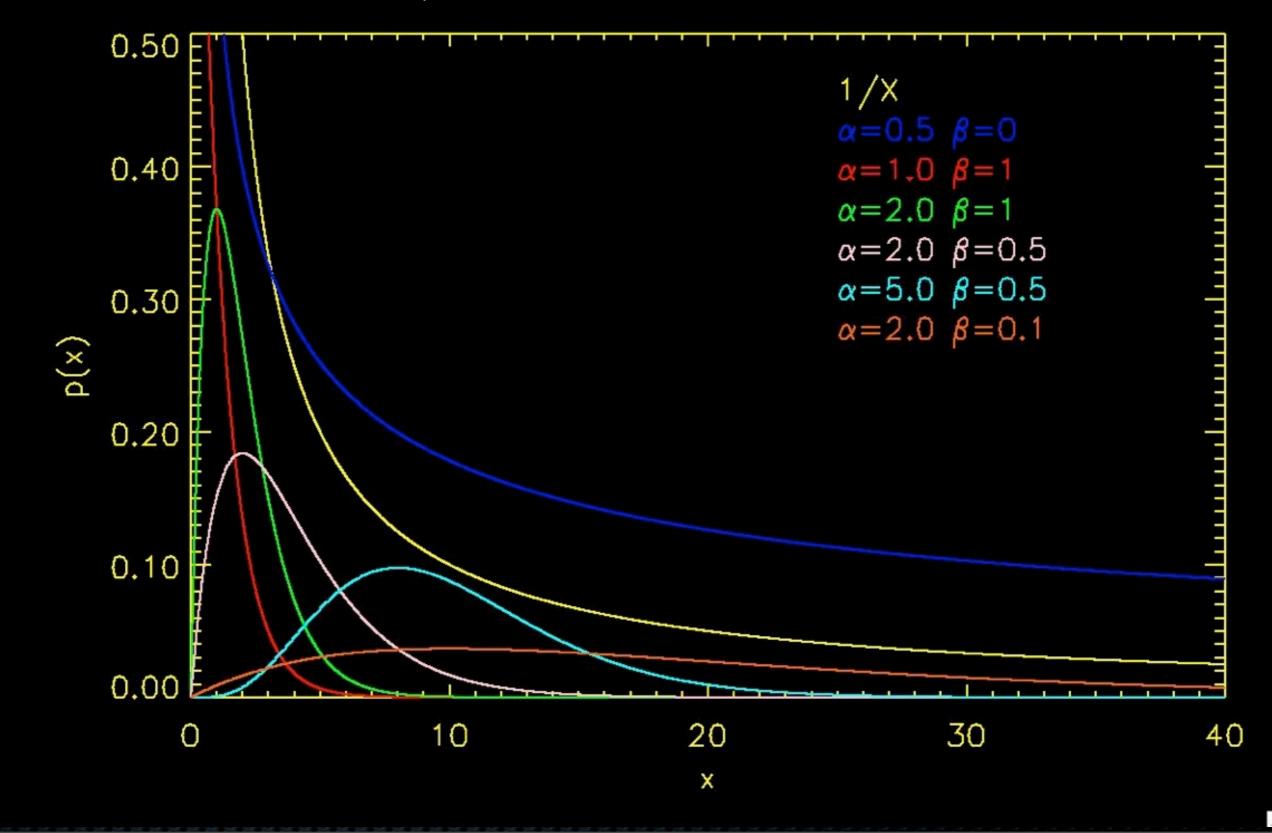
- Highly flexible distribution, defined on non-negative reals, $[0,\infty)$
- Conjugate prior to the Poisson distribution

$$\gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha} / \Gamma(\alpha)$$

- $\alpha = \text{mean}^2/\text{variance}, \beta = \text{mean}/\text{variance}$
- As $\alpha \rightarrow 1, \beta \rightarrow 0$, approaches a flat, non-informative prior
- For non-trivial α, β , acts as an informative prior where you expect to observe α counts in β "exposure"

 $\gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha} / \Gamma(\alpha)$ mean= α/β variance= α/β^2

II.b Example: γ -Priors



II.c Confidence Ranges

The uncertainty in a parameter is defined by the width of its probability distribution.

II.c Confidence Ranges

The uncertainty in a parameter is defined by the width of its probability distribution.

Frequentist confidence interval:

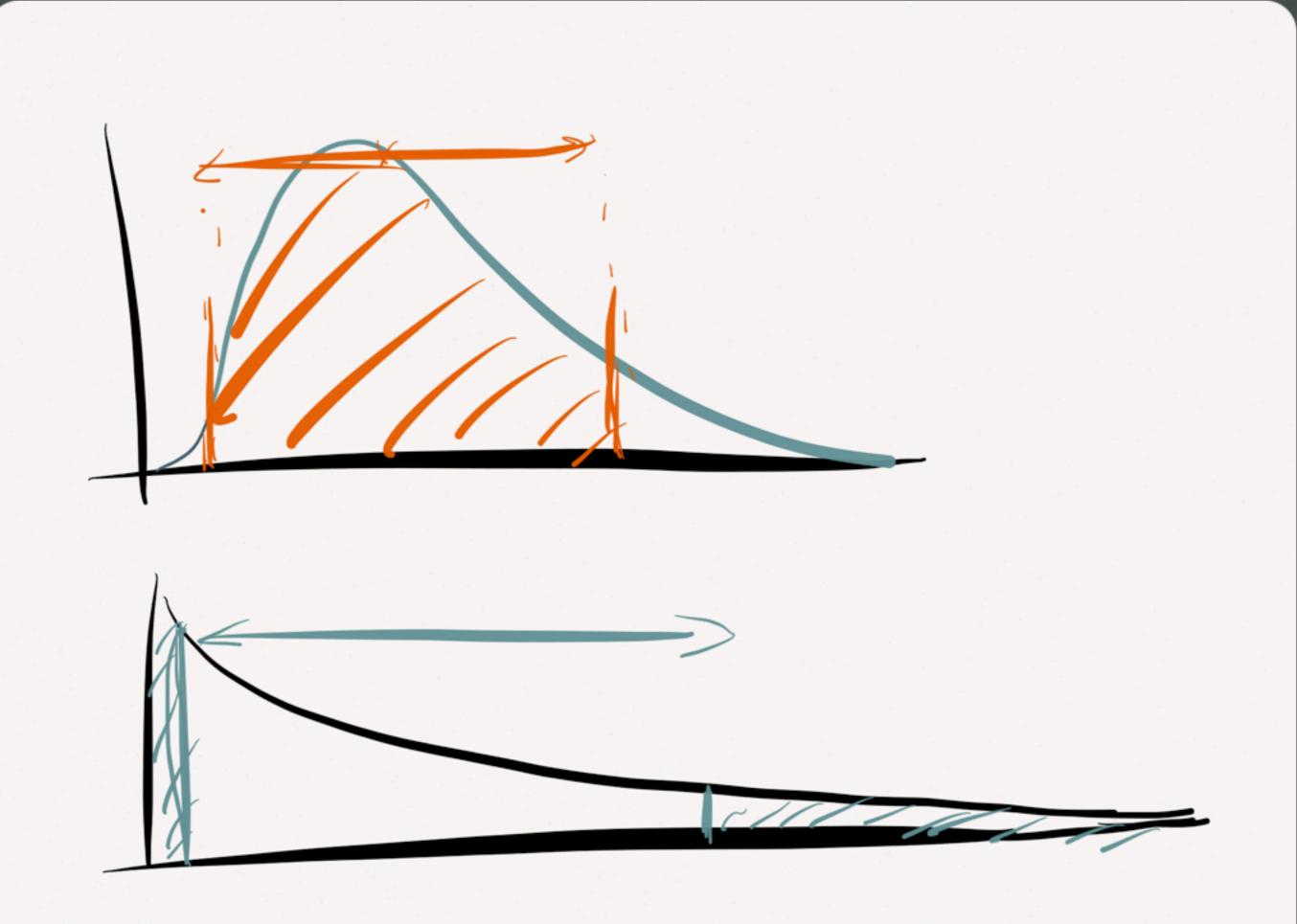
Intervals computed at some significance p will contain the true value a fraction p of the times the experiment is repeated

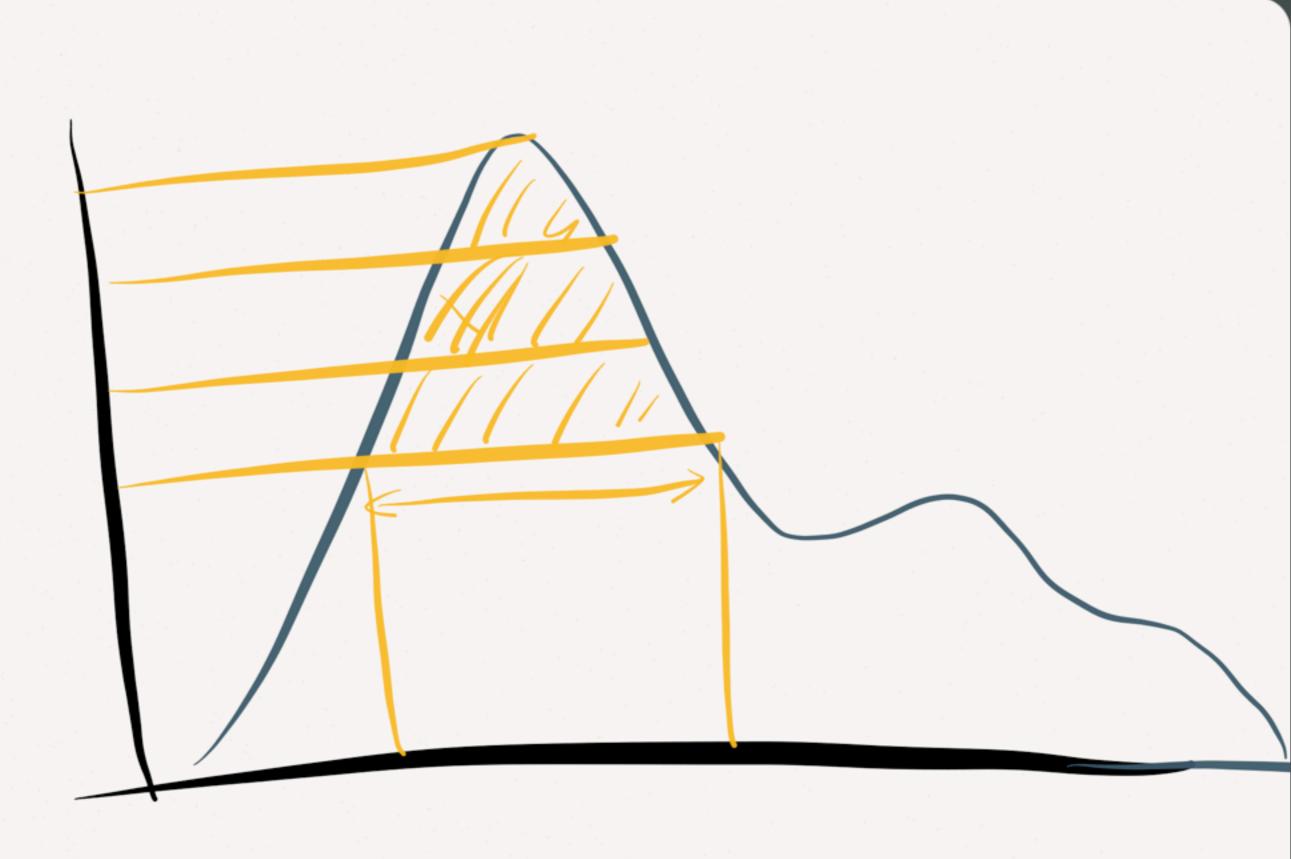
Bayesian credible range:

 An interval at significance p will contain the true value of the parameter with probability p

II.c.1 Credible Ranges

- Not unique!
- Set bounds on parameters
- many types: Equal-tail, Highest Posterior-density, Gaussianequivalent σ , mode-outward, etc.





II.c.1 Credible Ranges

- Not unique!
- Set bounds on parameters
- many types: Equal-tail, Highest Posterior-density, Gaussianequivalent σ , mode-outward, etc.
 - Equal-tail is transformation invariant
 - HPD guaranteed to include mode; also smallest
 - Using Gaussian-equivalent $\pm \sigma$ is often a very bad idea

II.c.2 Confidence Interval

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and define a confidence region at level $1-\gamma$ as that set of parameters which are not rejected at significance γ .

II.c.2 Confidence Interval

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and define a confidence region at level $I-\gamma$ as that set of parameters which are not rejected at significance γ .

- e.g., Poisson when n counts are observed:
 - upper bound, $s = s_u$ such that

$$1 - \gamma = p(k \le n; s) = \sum_{k=0..n} s^k e^{-s} / \Gamma(k+1)$$

• lower bound, $s = s_l$ such that

$$1 - \gamma = p(k > n; s) = 1 - \sum_{k=0..n-1} s^k e^{-s} / \Gamma(k+1)$$

II.c.2 Confidence Interval

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and define a confidence region at level $1-\gamma$ as that set of parameters which are not rejected at significance γ .

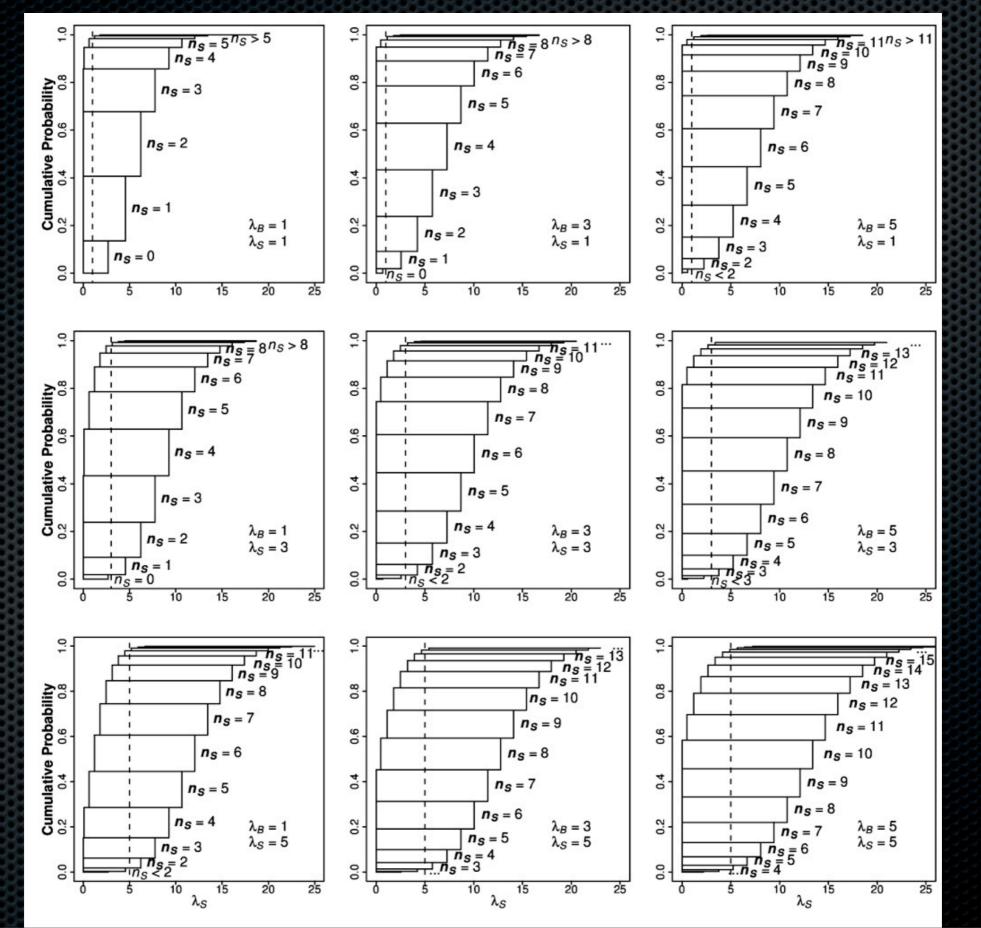
- e.g., Poisson (n counts) with background (b, known)
 - upper bound, find $s = s_u$ (for given b) such that

$$1-\gamma = p(k \le n; s, b) = \sum_{k=0..n} (s+b)^k e^{-(s+b)} / \Gamma(k+1)$$

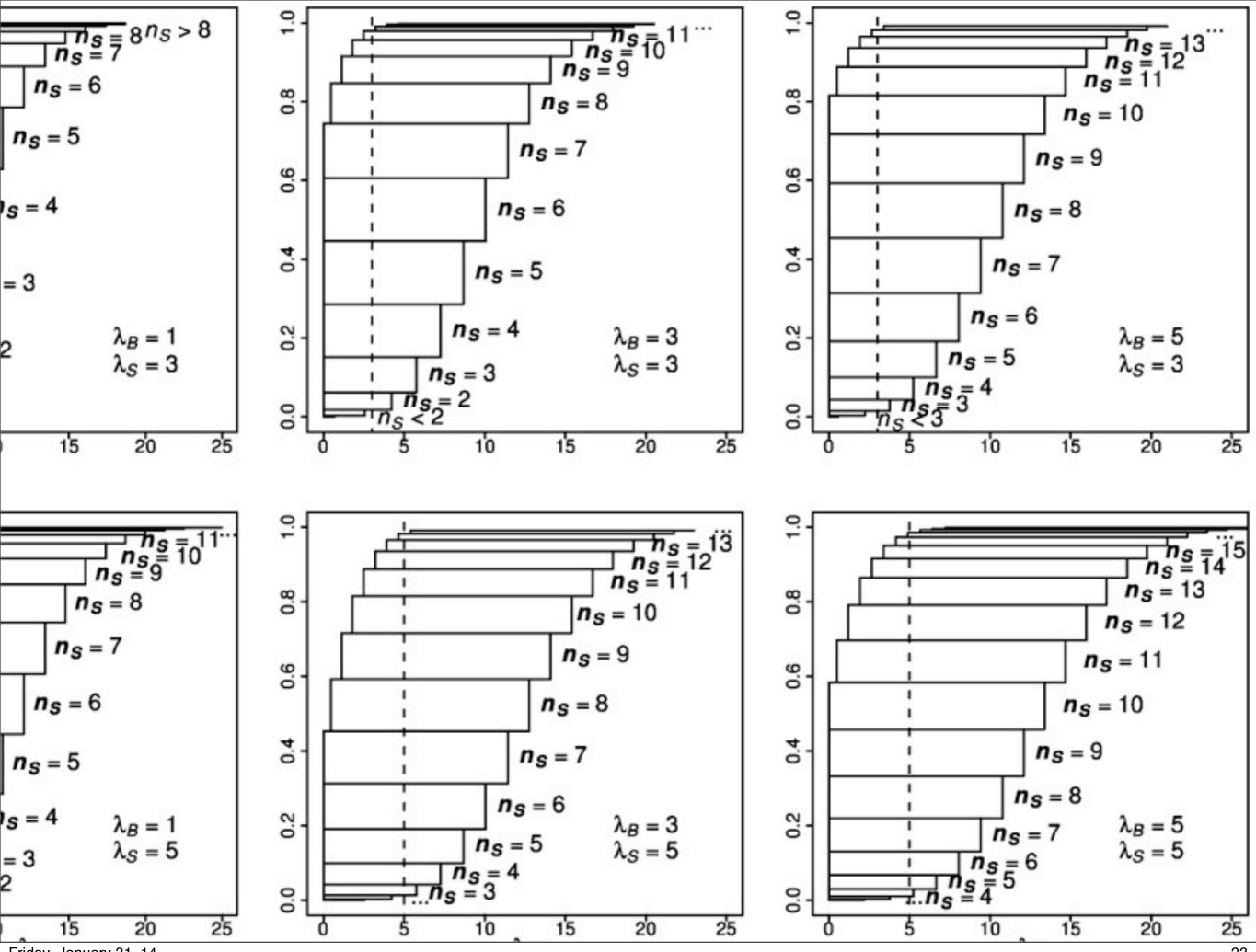
• lower bound, find $s = s_l$ (for given *b*) such that

$$1-\gamma = p(k>n; s,b) = 1 - \sum_{k=0..n-1} (s+b)^k e^{-(s+b)} / \Gamma(k+1)$$

Confidence intervals for given background (λ_B) and when different counts (n_S) are observed. Width of boxes are 95% intervals. Height of boxes are $p(n_S|\lambda_S\lambda_B)$. Dashed vertical line is true value of λ_S .



Friday, January 31, 14



Friday, January 31, 14

23

II.c.3 Feldman-Cousins Confidence Interval

Invert a hypothesis test: ask what is the likelihood of the data for different possible parameter values, and define a confidence region at level $1-\gamma$ as that set of parameters which are not rejected at significance γ .

- But: sometimes intervals can be empty (e.g., if $n \ll b$)
- invert the ratio of likelihoods,

 $l(s) = L(n|s,b) / L(n|\hat{s},b)$

 unique, unified intervals where the lower bound automatically drops to 0 for small n – no need to select between one-sided and two-sided intervals

III. Aperture Photometry

Friday, January 31, 14

Given measured counts

Infer expected counts

 $\theta_{\rm S}, \theta_{\rm B}$ C ~ $Pois(\theta_{\rm S} + \theta_{\rm B})$

 $\mathbf{B} \sim Pois(r \, \mathbf{\theta}_{\mathbf{B}})$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t} \quad p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)} \quad \gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha}/\Gamma(\alpha) \quad \frac{C \sim Pois(\theta_S + \beta)}{B \sim Pois(r,\theta)} = \frac{P(D|\theta) \cdot p(\theta)}{B \sim Pois(r,\theta)}$$

 θ_B)

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t} \quad p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)} \quad \gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha}/\Gamma(\alpha) \quad \frac{C \sim Pois(\theta_S + \theta_B)}{B \sim Pois(r\,\theta_B)}$$

 $p(\theta_{S}) = \theta_{S}^{\alpha_{S}-1} e^{-\beta_{S} \theta_{S}} \beta_{S}^{\alpha_{S}} / \Gamma(\alpha_{S})$ $p(\theta_{B}) = \theta_{B}^{\alpha_{B}-1} e^{-\beta_{B} \theta_{B}} \beta_{B}^{\alpha_{B}} / \Gamma(\alpha_{B})$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t} \quad p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)} \quad \gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha}/\Gamma(\alpha) \quad \frac{C \sim Pois(\theta_S + \theta_B)}{B \sim Pois(r \theta_B)}$$

 $p(\theta_S) = \theta_S^{\alpha_S - 1} e^{-\beta_S \theta_S} \beta_S^{\alpha_S} / \Gamma(\alpha_S)$ $p(\theta_B) = \theta_B^{\alpha_B - 1} e^{-\beta_B \theta_B} \beta_B^{\alpha_B} / \Gamma(\alpha_B)$ $p(B|\theta_B) = (r\theta_B)^B e^{-r\theta_B} / \Gamma(B+1)$ $p(C|\theta_{S}\theta_{B}) = (\theta_{S}+\theta_{B})^{C} e^{-(\theta_{S}+\theta_{B})} / \Gamma(C+1)$ $s(r \theta_B)$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t} \quad p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)} \quad \gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha}/\Gamma(\alpha) \quad \frac{C \sim Pois(\theta_S + \theta_B)}{B \sim Pois(r\,\theta_B)}$$

 $p(\theta_{S}) = \theta_{S}^{\alpha_{S}-1} e^{-\beta_{S}} \theta_{S} \beta_{S}^{\alpha_{S}} / \Gamma(\alpha_{S})$ $p(\theta_{B}) = \theta_{B}^{\alpha_{B}-1} e^{-\beta_{B}} \theta_{B} \beta_{B}^{\alpha_{B}} / \Gamma(\alpha_{B})$ $p(B|\theta_{B}) = (r\theta_{B})^{B} e^{-r\theta_{B}} / \Gamma(B+1)$ $p(C|\theta_{S}\theta_{B}) = (\theta_{S}+\theta_{B})^{C} e^{-(\theta_{S}+\theta_{B})} / \Gamma(C+1)$

 $p(\theta_{S}\theta_{B}|C,B) \propto p(C,B|\theta_{B}\theta_{S}) p(\theta_{S}) p(\theta_{B})$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!}e^{-R\,\delta t} \quad p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)} \quad \gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha}/\Gamma(\alpha) \quad \frac{C \sim Pois(\theta_S + \theta_B)}{B \sim Pois(r\,\theta_B)}$$

 $p(\theta_{S}) = \theta_{S}^{\alpha_{S}-1} e^{-\beta_{S}} \theta_{S} \beta_{S}^{\alpha_{S}} / \Gamma(\alpha_{S})$ $p(\theta_{B}) = \theta_{B}^{\alpha_{B}-1} e^{-\beta_{B}} \theta_{B} \beta_{B}^{\alpha_{B}} / \Gamma(\alpha_{B})$ $p(B|\theta_{B}) = (r\theta_{B})^{B} e^{-r\theta_{B}} / \Gamma(B+1)$ $p(C|\theta_{S}\theta_{B}) = (\theta_{S}+\theta_{B})^{C} e^{-(\theta_{S}+\theta_{B})} / \Gamma(C+1)$

 $p(\theta_{S}\theta_{B}|C,B) \propto p(C,B|\theta_{B}\theta_{S}) p(\theta_{S}) p(\theta_{B})$ $p(\theta_{S}\theta_{B}|C,B) \propto p(C|\theta_{B}\theta_{S}) p(B|\theta_{B}) p(\theta_{S}) p(\theta_{B})$

$$p(k|R\,\delta t) = \frac{(R\,\delta t)^k}{k!} e^{-R\,\delta t} \quad p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)} \quad \gamma(x;\alpha,\beta) = x^{\alpha-1} e^{-\beta x} \cdot \beta^{\alpha} / \Gamma(\alpha) \quad \begin{array}{l} C \sim Poil \\ B \sim Poil \end{array}$$

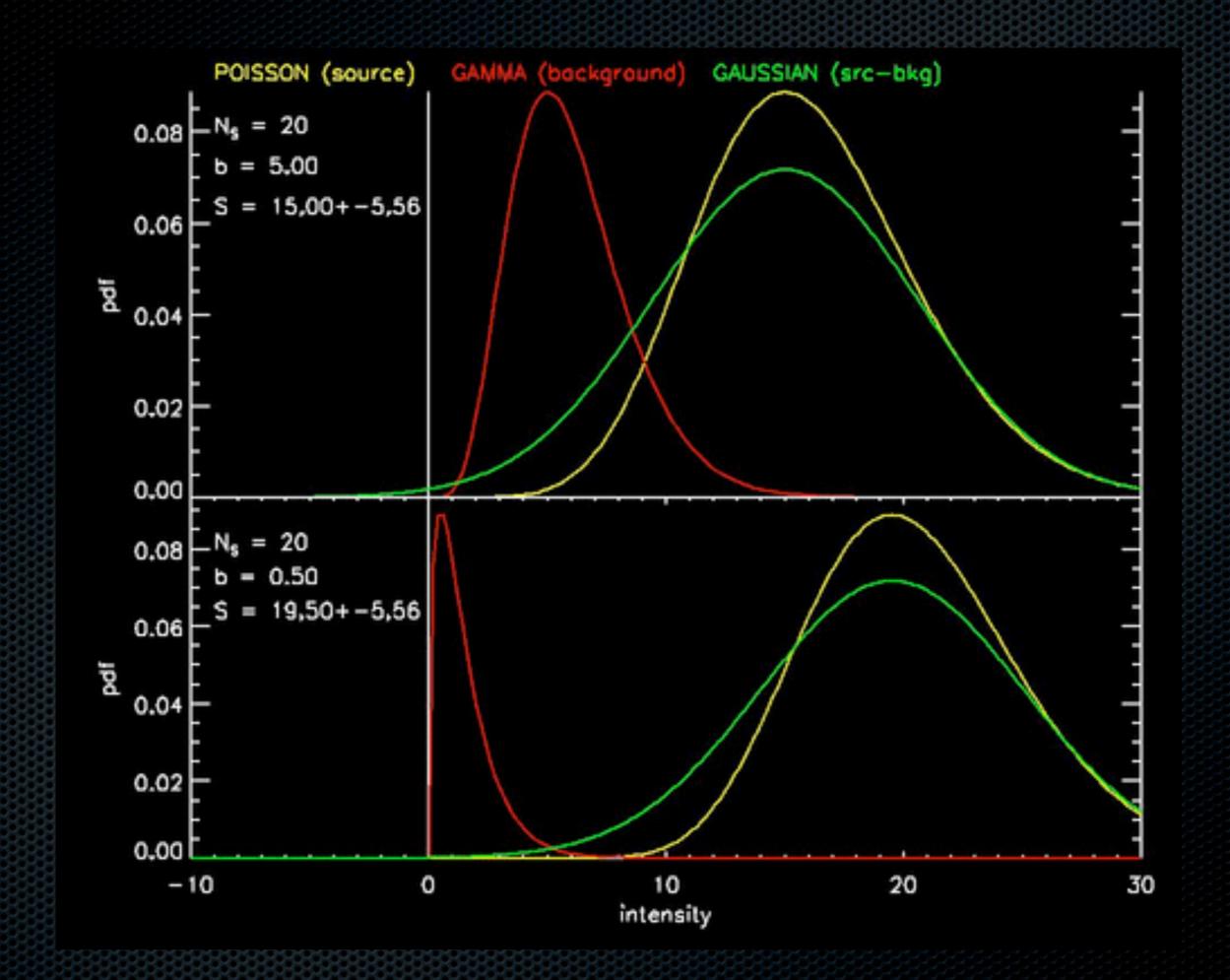
 $C \sim Pois(\theta_S + \theta_B)$ $B \sim Pois(r \ \theta_B)$

III. Aperture Photometry

 $p(\theta_{S}) = \theta_{S}^{\alpha_{S}-1} e^{-\beta_{S}} \theta_{S} \beta_{S}^{\alpha_{S}} / \Gamma(\alpha_{S})$ $p(\theta_{B}) = \theta_{B}^{\alpha_{B}-1} e^{-\beta_{B}} \theta_{B} \beta_{B}^{\alpha_{B}} / \Gamma(\alpha_{B})$ $p(B|\theta_{B}) = (r\theta_{B})^{B} e^{-r\theta_{B}} / \Gamma(B+1)$ $p(C|\theta_{S}\theta_{B}) = (\theta_{S}+\theta_{B})^{C} e^{-(\theta_{S}+\theta_{B})} / \Gamma(C+1)$

 $p(\theta_{S}\theta_{B}|C,B) \propto p(C,B|\theta_{B}\theta_{S}) p(\theta_{S}) p(\theta_{B})$ $p(\theta_{S}\theta_{B}|C,B) \propto p(C|\theta_{B}\theta_{S}) p(B|\theta_{B}) p(\theta_{S}) p(\theta_{B})$ $p(\theta_{S}|C,B) \propto \int d\theta_{B} p(C|\theta_{B}\theta_{S}) p(B|\theta_{B}) p(\theta_{S}) p(\theta_{B})$

$$p(\theta_S|C, B) d\theta_S = d\theta_S \frac{1}{\Gamma(C+1)\Gamma(B+1)} \\ \times \sum_{k=0}^C (r^{B+1}\theta_S{}^k e^{-\theta_S} \\ \times \frac{\Gamma(C+1)\Gamma(C+B-k+1)}{\Gamma(k+1)\Gamma(C-k+1)(1+r)^{C+B-k+1}})$$



IV. Upper Limits

- A confidence interval or a credible range gives a range of values that a parameter can have for a specified significance.
- The interval has two ends. A lower bound, and an upper bound. The true value is likely higher than the lower bound. And lower than the upper bound.
- Why is this not an upper limit?

IV. Upper Limit

The largest intensity a source can have without being detected.

The smallest intensity a source should have to be detected.

IV. Upper Limit

We define an upper limit in the context of detection

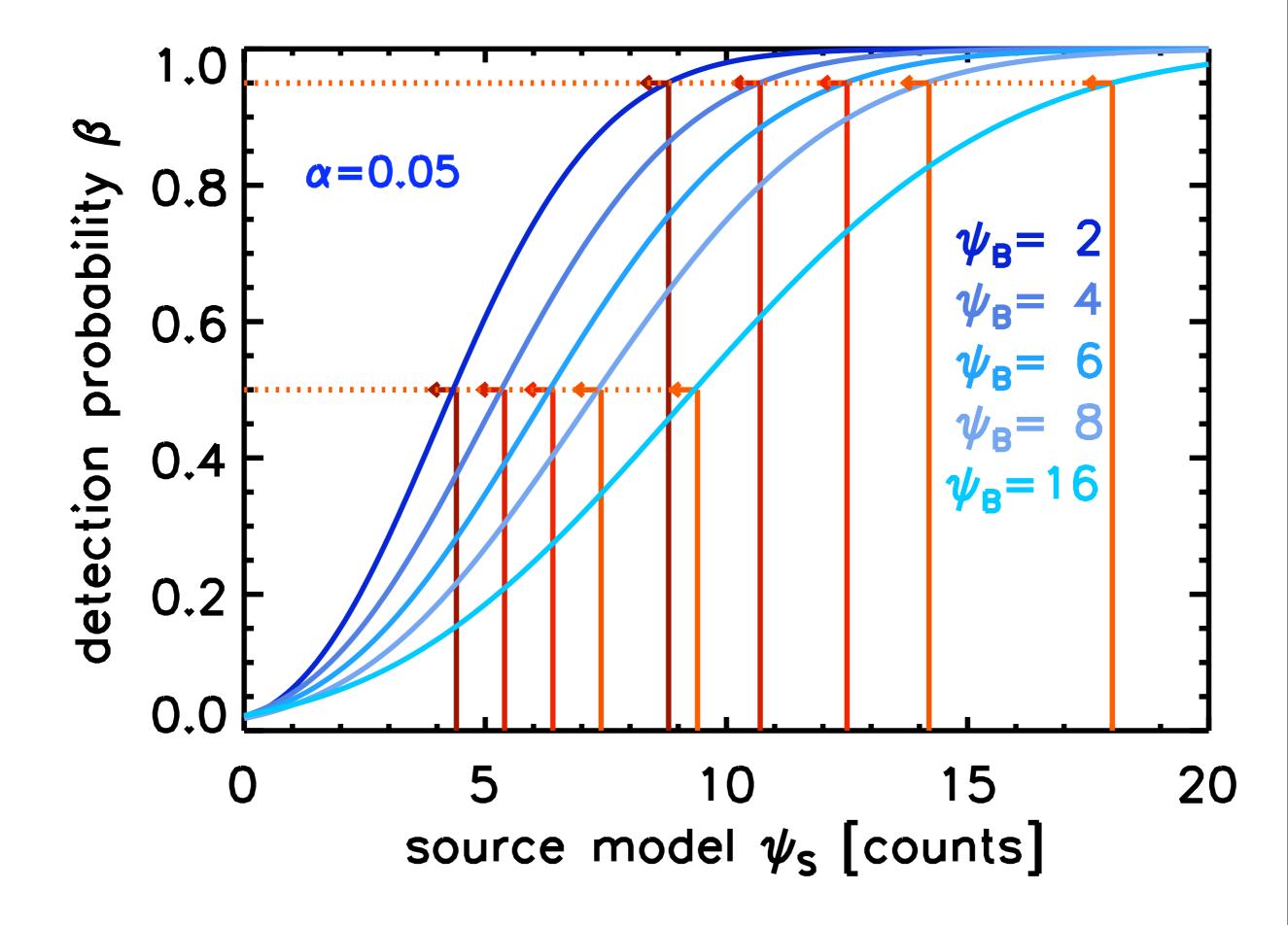
- Something is *detected* when some measurable statistic that is a function of the observed data exceeds a pre-set *threshold*
- e.g., test statistic $\mathbf{S} \equiv n_S$ and threshold $\mathbf{S}^* \equiv 5$ counts. If more than 5 counts are seen, claim detection. If fewer are seen, the source must be less bright than some value, aka Upper Limit
- Need both Type I and Type II errors to define Upper Limits

IV. Upper Limit

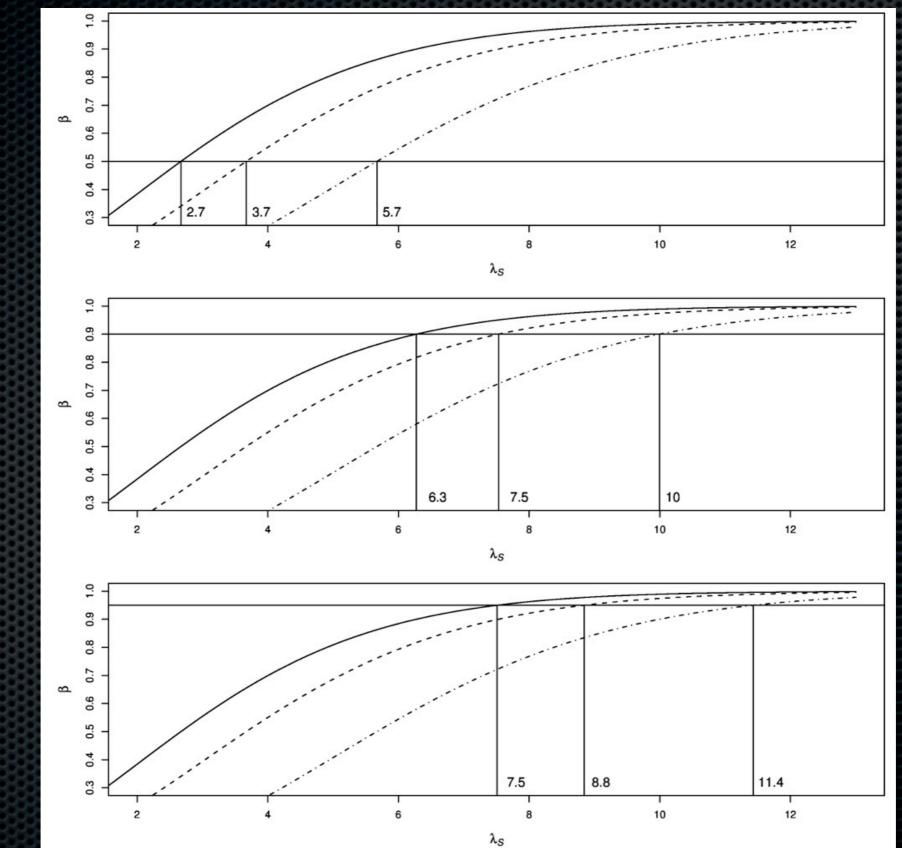
- Suppose the threshold *S** is defined by a false positive probability of *α* (e.g., the probability that a background fluctuation results in test statistic value *S*>*S**)
- A source with intensity θ_S will produce a signal that falls below the threshold \mathbf{S}^* with false negative probability $1-\beta$
- $U(\alpha,\beta)$ is the upper limit on θ_S such that

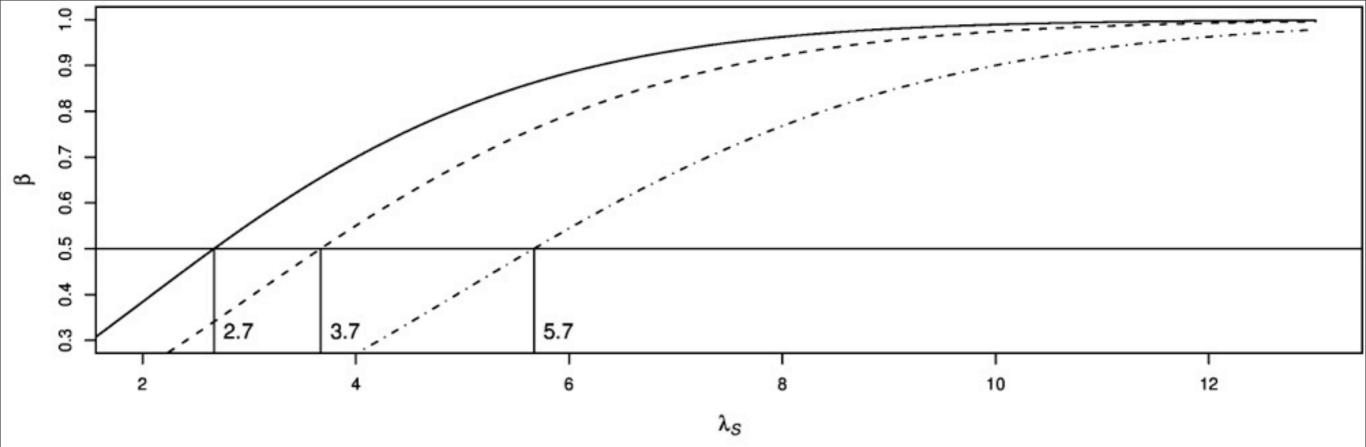
 $Pr(\mathbf{S} > \mathbf{S}^*(\alpha) | \theta_S, \theta_B) \geq \beta$

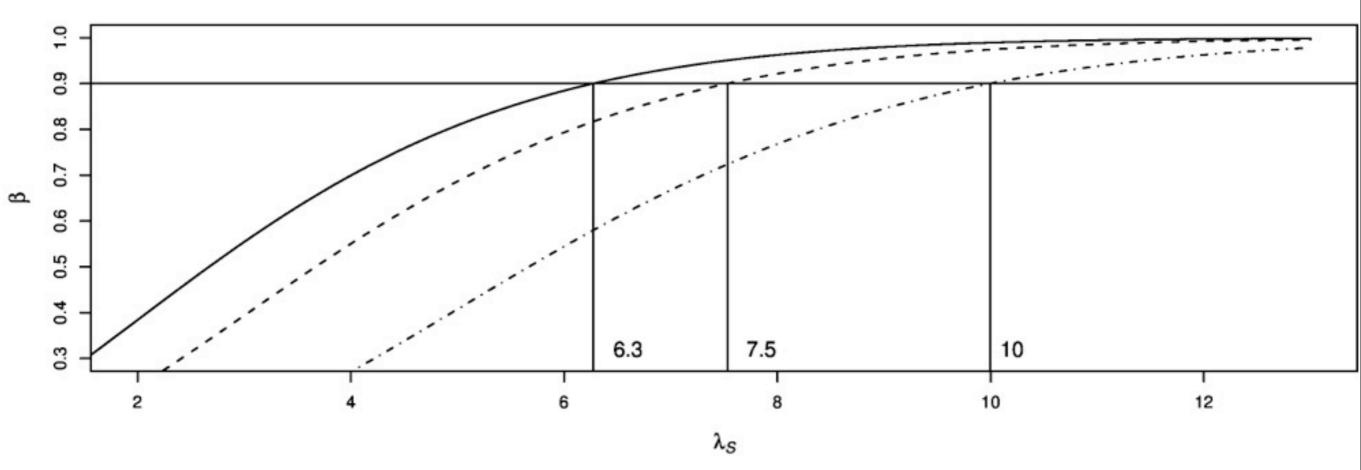


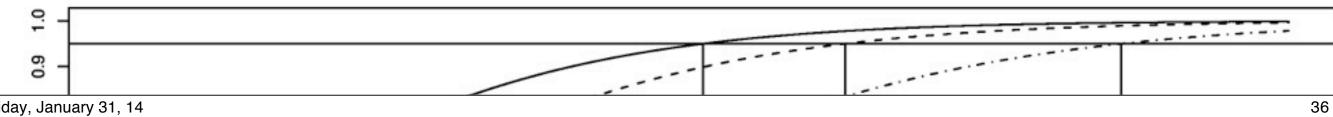


Upper limits for different choices of α , \mathbf{S}^* , and β_{min} , for a background of 5 counts in 10x source area. Curves are for $\mathbf{S}^*=5, \alpha=0.1$ (solid), $\mathbf{S}^*=6, \alpha=0.05$ (dashed), $\mathbf{S}^*=8, \alpha=0.01$ (dash-dotted). Intercepts are for $\beta_{min}=0.5$ (top), 0.9 (middle), 0.95 (bottom).









IV. Upper Limit – Properties

- Depends on the detection process (wavdetect will produce different upper limits than celldetect)
- Does not depend on the number of counts in source region
- Does depend on the background and exposure

IV. Upper Limit – Recipe

- Define a test statistic \$\mathcal{S}\$ for measuring the strength of a source signal
- 2. Set the max probability of a false detection, α (e.g., $\alpha = 0.003$ for a " 3σ " detection) and compute the corresponding detection threshold $\mathbf{S}^*(\alpha)$
- 3. Compute the probability of detection $\beta(\theta_S)$ for \mathbf{S}^*
- 4. Define the min probability of detection β_{min} (e.g., $\beta_{min}=0.5$)
- 5. Compute upper limit as value of θ_S such that $\beta(\theta_S) \ge \beta_{min}$.

Further Reading

 Loredo 1990, Maximum Entropy and Bayesian Methods, Kluwer, Dordrecht, 81-142 : *Bayesian inference in Astrophysics*

http://bayes.wustl.edu/gregory/articles.pdf

- Isobe, Feigelson, & Nelson, 1986, ApJ 306, 490 : Statistical Methods for astronomical data wth upper limits
- Feldman & Cousins, 1998, Phys. Rev. D, 57, 3873 : *Unified confidence intervals*
- van Dyk, Connors, Kashyap, & Siemiginowska, 2001, ApJ 548, 224 : Bayesian analysis of spectra with low counts
- Protassov, van Dyk, Connors, Kashyap, & Siemiginowska, 2002, ApJ, 571, 545: Limitations of Likelihood Ratio Tests
- Park, Kashyap, Siemiginowska, van Dyk, Zezas, Heinke, & Wargelin, 2006, ApJ, 652, 610 : *Bayesian hardness ratios*
- Kashyap, van Dyk, Connors, Freeman, Siemiginowska, Xu, & Zezas, 2010, ApJ, 719, 900 : Upper limits
- Primini & Kashyap, 2014, circulated : *Aperture photometry for overlapping sources*