
From least squares to multilevel modeling:
A graphical introduction to

Bayesian inference

Tom Loredo
Cornell Center for Astrophysics and Planetary Science

—
Session site:

http://hea-www.harvard.edu/AstroStat/aas227_2016/lectures.html

AAS 227 — 6 Jan 2016

1 / 37

http://hea-www.harvard.edu/AstroStat/aas227_2016/lectures.html


A Simple (?) confidence region

Problem

Estimate the location (mean) of a Gaussian distribution from
a set of samples D = {xi}, i = 1 to N. Report a region
summarizing the uncertainty.

Model

p(xi ;µ, σ) =
1

σ
√

2π
exp

[
−(xi − µ)2

2σ2

]

Here assume σ is known; we are uncertain about µ.
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Classes of variables

• µ is the unknown we seek to estimate—the parameter. The
parameter space is the space of possible values of µ—here the
real line (perhaps bounded). Hypothesis space is a more
general term.

• A particular set of N data values D = {xi} is a sample. The
sample space is the N-dimensional space of possible samples.

Standard inferences

Let x̄ = 1
N

∑N
i=1 xi .

• “Standard error” (rms error) is σ/
√
N

• “1σ” interval: x̄ ± σ/
√
N with conf. level CL = 68.3%

• “2σ” interval: x̄ ± 2σ/
√
N with CL = 95.4%

3 / 37



Some simulated data

Consider a case with σ = 4 and N = 16, so σ/
√
N = 1

Simulate data with true µ = 5

What is the CL associated with this interval?

−5 0 5 10 15

5.49 +- 2.0

The confidence level for this interval is 79.0%.
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Two intervals

−5 0 5 10 15

5.49 +- 2.0, CL=79.0%

5.49 +- 2.0, CL=95.4%

• Green interval: x̄ ± 2σ/
√
N

• Blue interval: Let x(k) ≡ k’th order statistic
Report [x(6), x(11)] (i.e., leave out 5 outermost each side)

Moral

The confidence level is a property of the procedure, not of
the particular interval reported for a given dataset.
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Performance of intervals

Intervals for 15 datasets

−10 −5 0 5 10 15 20
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Probabilities for procedures vs. arguments

“The data Dobs support conclusion C . . . ”

Frequentist assessment

“C was selected with a procedure that’s right 95% of the time
over a set {Dhyp} that includes Dobs.”

Probability is a property of a procedure, not of a particular
result

Procedure specification relies on the ingenuity/experience of
the analyst
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“The data Dobs support conclusion C . . . ”

Bayesian assessment

“The strength of the chain of reasoning from the model and
Dobs to C is 0.95, on a scale where 1= certainty.”

Probability is a property of an argument: a statement that a
hypothesis is supported by specific, observed data

The function of the data to be used is uniquely specified by
the model

Long-run performance must be separately evaluated (and is
typically good by frequentist criteria)
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Bayesian statistical inference

• Bayesian inference uses probability theory to quantify the
strength of data-based arguments (i.e., a more abstract view
than restricting PT to describe variability in repeated
“random” experiments)

• A different approach to all statistical inference problems (i.e.,
not just another method in the list: BLUE, linear regression,
least squares/χ2 minimization, maximum likelihood, ANOVA,
product-limit estimators, LDA classification . . . )

• Focuses on deriving consequences of modeling assumptions
rather than devising and calibrating procedures
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Agenda

1 Probability: variability vs. argument strength

2 Computation: mock data vs. mock hypotheses
Confidence vs. credible regions
Posterior sampling
Nuisance parameters & marginalization

3 Graphical models: mock data and mock hypotheses
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Understanding probability

“X is random . . . ”

Frequentist understanding

“The value of X varies across repeated observation or
sampling.”

Probability quantifies variability

Bayesian understanding

“The value of X in the case at hand is uncertain.”

Probability measures the strength with which the available
information supports possible values for X (before and/or
after measurement or observation)
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Interpreting PDFs

Frequentist

Probabilities are always (limiting) rates/proportions/frequencies

that quantify variability in a sequence of trials. p(x) describes how

the values of x would be distributed among infinitely many trials:

x

PD
F

x is distributed
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Bayesian

Probability quantifies uncertainty in an inductive inference. p(x)

describes how probability is distributed over the possible values x

might have taken in the single case before us:

x

PD
F

x has a single,
uncertain value

P is distributed
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Twiddle notation for the normal distribution

Norm(x , µ, σ) ≡ 1

σ
√

2π
exp

[
−(x − µ)2

σ2

]
Frequentist

random fixed but unknown

p( x ; µ, σ ) = Norm(x , µ, σ)

x ∼ N(µ, σ2)

“x is distributed as normal with mean. . . ”

Bayesian
random random or known

p( x | µ, σ ) = Norm(x , µ, σ)

x ∼ N(µ, σ2)

“The probability for x is distributed as normal with mean. . . ”
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Agenda

1 Probability: variability vs. argument strength

2 Computation: mock data vs. mock hypotheses
Confidence vs. credible regions
Posterior sampling
Nuisance parameters & marginalization

3 Graphical models: mock data and mock hypotheses
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Confidence interval for a normal mean
Suppose we have a sample of N = 5 values xi ,

xi ∼ N(µ, 1)

We want to estimate µ, including some quantification of
uncertainty in the estimate: an interval with a probability attached.

Frequentist approaches: method of moments, BLUE,
least-squares/χ2, maximum likelihood

Focus on likelihood (equivalent to χ2 here); this is closest to Bayes.

L(µ) = p({xi}|µ)

=
∏
i

1

σ
√

2π
e−(xi−µ)2/2σ2

; σ = 1

∝ e−χ
2(µ)/2

Estimate µ from maximum likelihood (minimum χ2).
Define an interval and its coverage frequency from the L(µ) curve.
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Construct an interval procedure for known µ
Likelihoods for 3 simulated data sets, µ = 0
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Likelihoods for 100 simulated data sets, µ = 0
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[Skip some crucial steps here: CL vs. coverage, pivotal quantities. . . ]
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Apply to observed sample
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Report the green region, with coverage as calculated for ensemble of
hypothetical data (green region, previous slide).
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Likelihood to probability via Bayes’s theorem
Recall the likelihood, L(µ) ≡ p(Dobs|µ), is a probability for the
observed data, but not for the parameter µ.

Convert likelihood to a probability distribution over µ via Bayes’s
theorem:

p(A,B) = p(A)p(B|A)

= p(B)p(A|B)

→ p(A|B) = p(A)
p(B|A)

p(B)
, Bayes’s th.

⇒ p(µ|Dobs) ∝ π(µ)L(µ)

p(µ|Dobs) is called the posterior probability distribution.

This requires a prior probability density, π(µ), often taken to be
constant over the allowed region if there is no significant
information available (or sometimes constant w.r.t. some
reparameterization motivated by a symmetry in the problem).
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Gaussian problem posterior distribution

For the Gaussian example, a bit of algebra (“complete the square”)
gives:

L(µ) ∝
∏
i

exp

[
−(xi − µ)2

2σ2

]

∝ exp

[
−1

2

∑
i

(xi − µ)2

σ2

]

∝ exp

[
− (µ− x̄)2

2(σ/
√
N)2

]
The likelihood is Gaussian in µ.
Flat prior → posterior density for µ is N (x̄ , σ2/N).
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Bayesian credible region
Normalize the likelihood for the observed sample; report the region that includes
68.3% of the normalized likelihood
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Credible region via Monte Carlo: posterior sampling
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200 post. samples
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Inference as manipulation of the joint distribution

Bayes’s theorem in terms of the joint distribution:

p(µ)× p(~x |µ) = p(µ, ~x) = p(~x)× p(µ|~x)

Components of Bayes’s theorem for a problem with a
1-D parameter space (θ) and a 2-D sample space (y),
with observed data yd, and modeling assumptions A

Box 1980
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Nuisance Parameters and Marginalization

To model most data, we need to introduce parameters besides
those of ultimate interest: nuisance parameters.

Example

We have data from measuring a rate r = s + b that is a sum
of an interesting signal s and a background b.

We have additional data just about b.

What do the data tell us about s?

26 / 37



Marginal posterior distribution
To summarize implications for s, accounting for b uncertainty, the
law of total probability → marginalize:

p(s|D,M) =

∫
db p(s, b|D,M)

∝ p(s|M)

∫
db p(b|s,M)L(s, b)

= p(s|M)Lm(s)

with Lm(s) the marginal likelihood function for s:

Lm(s) ≡
∫

db p(b|s)L(s, b)

≈ p(b̂s |s) L(s, b̂s ) δbs

best b given s

b uncertainty given s

Profile likelihood Lp(s) ≡ L(s, b̂s) gets weighted by a parameter
space volume factor
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Bivariate normals: Lm ∝ Lp
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Flared/skewed/bannana-shaped: Lm and Lp differ

Lp(s) Lm(s)

s

b

b̂s

s

b

b̂s

Lp(s) Lm(s)

General result: For a linear (in params) model sampled with
Gaussian noise, and flat priors, Lm ∝ Lp
Otherwise, they will likely differ, dramatically so in some settings

Marginalization offers a generalized form of error propagation,
without approximation
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Roles of the prior

Prior has two roles

• Incorporate any relevant prior information

• Convert likelihood from “intensity” to “measure”
→ account for size of parameter space

Physical analogy

Heat Q =

∫
d~r [ρ(~r)cv (~r)]T (~r)

Probability P ∝
∫

dθ p(θ)L(θ)

Maximum likelihood focuses on the “hottest” parameters

Bayes focuses on the parameters with the most “heat”

A high-T region may contain little heat if its cv is low or if its

volume is small

A high-L region may contain little probability if its prior is low or if

its volume is small
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Agenda

1 Probability: variability vs. argument strength

2 Computation: mock data vs. mock hypotheses
Confidence vs. credible regions
Posterior sampling
Nuisance parameters & marginalization

3 Graphical models: mock data and mock hypotheses
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Density estimation with measurement error
Introduce latent/hidden/incidental parameters

Suppose f (x |θ) is a distribution for an observable, x .

From N precisely measured samples, {xi}, we can infer θ from

L(θ) ≡ p({xi}|θ) =
∏
i

f (xi |θ)

p(θ|{xi}) ∝ p(θ)L(θ) = p(θ, {xi})

(A binomial point process)
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Graphical representation

• Nodes/vertices = uncertain quantities (gray → known)

• Edges specify conditional dependence

• Absence of an edge denotes conditional independence

θ

x1 x2 xN

Graph specifies the form of the joint distribution:

p(θ, {xi}) = p(θ) p({xi}|θ) = p(θ)
∏
i

f (xi |θ)

Posterior from BT: p(θ|{xi}) = p(θ, {xi})/p({xi})
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But what if the x data are noisy, Di = {xi + εi}?

{xi} are now uncertain (latent) parameters
We should somehow use member likelihoods `i (xi ) = p(Di |xi ):

p(θ, {xi}, {Di}) = p(θ) p({xi}|θ) p({Di}|{xi})
= p(θ)

∏
i

f (xi |θ) `i (xi )

Marginalize over {xi} to summarize inferences for θ
Marginalize over θ to summarize inferences for {xi}

Key point: Maximizing over xi and integrating over xi can give
very different results!
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Graphical representation

DND1 D2

θ

x1 x2 xN

p(θ, {xi}, {Di}) = p(θ) p({xi}|θ) p({Di}|{xi})
= p(θ)

∏
i

f (xi |θ) p(Di |xi ) = p(θ)
∏
i

f (xi |θ) `i (xi )

A two-level multi-level model (MLM)
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Recap of Key Ideas
Probability as generalized logic

Probability quantifies the strength of arguments

To appraise hypotheses, calculate probabilities for arguments
from data and modeling assumptions to each hypothesis

Use all of probability theory for this

Bayes’s theorem

p(Hypothesis | Data) ∝ p(Hypothesis)× p(Data | Hypothesis)

Data change the support for a hypothesis ∝ ability of
hypothesis to predict the data

Law of total probability

p(Hypotheses | Data) =
∑

p(Hypothesis | Data)

The support for a compound/composite hypothesis must
account for all the ways it could be true
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Bayesian tutorials (basics & MLMs):
CASt 2015 Summer School

2014 Canary Islands Winter School

Tutorials on Bayesian computation:
SCMA 5 Bayesian Computation tutorial notes

CASt 2014 Supplement Sessions

Literature entry points:
Overview of MLMs in astronomy: arXiv:1208.3036
Discussion of recent B vs. F work: arXiv:1208.3035

See online resource list for an annotated list
of Bayesian books and software
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