
 
      

 

 
 

 
 

 
     

 
  

 
 

 
             

   
 

 
   

     
     

 
 
         

        

 
         

           

 
         

        

 
         

                             

 
         

        

 
 

HARVARD UNIVERSITY 
Graduate School of Arts and Sciences 

DISSERTATION ACCEPTANCE CERTIFICATE 

The undersigned, appointed by the 

Department of 6WDWLVWLFV�

have examined a dissertation entitled 

$�7DOH�RI�7ZR�0XOWL�3KDVH�,QIHUHQFH�$SSOLFDWLRQV

presented by .DWKU\Q�0F.HRXJK�

candidate for the degree of Doctor of Philosophy and hereby 
certify that it is worthy of acceptance. 

Signature __________________________________________ 

Typed name: 'U.�0DUN�(��*OLFNPDQ 

Signature __________________________________________ 

Typed name: Prof. ;LDR�/L�0HQJ

Signature __________________________________________ 

Typed name: Prof.�3LHUUH�-DFRE

Date:��$SULO��������� 





A Tale of Two Multi-Phase Inference
Applications

A dissertation presented

by

Kathryn McKeough

to

The Department of Statistics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Statistics

Harvard University

Cambridge, Massachusetts

April 2020



© 2020 Kathryn McKeough

All rights reserved.



Dissertation Advisors: Mark Glickman & Xiao-Li Meng Kathryn McKeough

a

A Tale of Two Multi-Phase Inference Applications

Abstract

Multi-phase inference refers to any sequential procedure where the results, or some realization

of the output of one phase, is fed into another phase. Multi-phase models are becoming more

prevalent in applied statistical analyses as data gets bigger and more complicated. They offer a

solution for complex statistical problems where modeling all parameters jointly has its limitations.

We explore two applications, one in sports analytics and astronomy, where we choose multi-phase

models to explore our data.

Part 1 - Predicting Athlete Performance:

It is often the goal of sports analysts, coaches, and fans to predict athlete performance over time.

Methods such as Elo, Glicko, and Plackett-Luce based ratings measure athlete skill based on results

of competitions over time but have no predictive strength on their own. Growth curves are often

applied in the context of sports to predict future ability, but these curves are too simple to account

for complex career trajectories. We propose a non-linear, mixed-effects growth curve to model the

ratings as a function of time and other athlete-specific covariates. The mixture of growth curves

allows for flexibility in the estimated shape of career trajectories between athletes as well as between

sports. We use the fitted growth curves to make predictions of an athlete’s career trajectory in two

ways. The first is a model of how athlete performance progresses over time in a multi-competitor

scenario as an extension to the Plackett-Luce model. The second is a method that applies the
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Abstract

growth curve as a second step to existing rating systems of multi-competitor and head-to-head

sports. We show this method can be applied to different sports by using examples from men’s

slalom and women’s luge, respectively.

Part II - Defining Regions that Contain Complex Astronomical Structure:

Astronomers are interested in delineating boundaries of extended sources in noisy images. Examples

include finding outlines of a jet in a distant quasar or observing the morphology of a supernova

remnant over time. Analyzing the morphology of these objects is particularly challenging for X-ray

images of high redshift sources where there are a limited number of high-energy photon counts. Low-

counts Image Reconstruction and Analysis (LIRA), a Bayesian multi-scale image reconstruction,

has been tremendously successful in analyzing low count images and extracting noisy structure.

However, we do not always have supplementary information to predetermine ROI, and the size and

shape can significantly affect flux/luminosity. To group similar pixels, we impose a multi-phase

model using the output of LIRA to build a distribution for the shape of the ROI. We adopt the

Ising model as a prior on assigning the pixels to either the background or the ROI. This Bayesian

post-process step informs the final boundary. This method is applied to observed data as well as

simulations to show it is capable of picking out meaningful ROIs.
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Foreword

Multi-phase models are becoming increasingly necessary in a world where data is increasingly larger

and more complex. We define multi-phase to refer to any sequential procedure where the results,

or some realization of the output of one phase, is fed into another phase. This encompasses pre-

processing techniques including, but not limited to dimension reduction (e.g., Jacques and Preda,

2014), meta-analysis (e.g., Lunn et al., 2013), or recovering missing data (e.g., Xie and Meng, 2017).

When faced with the task of performing inference on a network of parameters, it is common for a

Statistician with a Bayesian mindset to immediately jump to a completely joint model, where all

parameters are estimated at the same time and influence the inference of one another. This mindset

is not unprecedented as it is the ideal in a perfectly specified model (Gelman et al., 2013). However,

in an applied setting, all models are misspecified to a varying degree. It is also sometimes physically

impossible due to computational or scientific constraints to construct or fit such a model. Multi-

phase inference is often necessary when analyzing data in real-world applications. We see multi-

phase models in many domains such as econometrics (Murphy and Topel, 1985), environmental

studies (Blangiardo et al., 2011), genetics (Li and Stephens, 2003), and physical-biological models

(Béal et al., 2010). In this dissertation, we explore two different applications in the domains of sports

analytics and astronomy. These two applications are connected by the choice to use multi-phase

inference

Part I consists of two chapters that focus on estimating and predicting athlete performance over

time. A common way of characterizing athlete performance is through the use of rating systems.
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Ratings quantify an athlete’s performance based on the results of a game, match, or competition.

They make it simple to compare athletes’ abilities to one another objectively and to determine the

odds of one athlete defeating another. However, rating systems cannot inherently make predictions

about future athlete performance. Knowledge of future ratings is useful to coaches or managers

for tasks such as recruitment, training, or resource allocation. For example, it might be useful to

know if two athletes with the same ability this season will perform similarly the following year. In

Chapter 1, we develop a modification to the classic Plackett-Luce model for rank ordered data that

incorporates a novel growth curve to characterize the time-varying nature of athlete performance. In

Chapter 2, we apply the growth curve model as a post-processing step to already existing, estimated

athlete ratings. Implementing a multi-phase model here allows us to generalize the application of

the growth curve to ratings in other types of sports. In both cases, incorporating the growth curve

as an assumption on how ratings change over time gives us not only the ability to predict future

ratings, but also make exploratory observations such as clustering career trajectories.

Part II discusses a boundary algorithm built to apply to sparse, diffuse, and irregularly shaped

astronomical objects. The technique uses a multi-phase model which first reconstructs details in

the image, builds a distribution of the boundary, and finally optimizes over the distribution to

get an estimate of the boundary. Image reconstruction is done using a Bayesian technique called

LIRA, which is known for eliciting previously unobserved detail in sparse images (Esch et al., 2004;

Connors and van Dyk, 2007). The second step is a novel method to model the boundary in the

form of pixel assignments, assigning pixels within the reconstructed image to the source and to the

background. The Ising distribution is imposed a priori in the second step to induce cohesiveness

between pixel assignments. Although the applications we discuss in Part II apply only to astronomy,

the technique can be applied to any low-count, low-resolution image. A multi-phase technique is

implemented to simplify the process of adding the new pixel assignment structure, while utilizing

the results from an already proven reconstruction method, LIRA.

Liu et al. (2009) presents several reasons why a researcher would choose to implement a multi-
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phase model. The first is when some assumptions in the model are unreliable. Breaking the models

into phases and addressing them in a step-wise manner rather than all at once leads to weaker

interactions between modules than a fully joint approach. Liu et al. highlights a pedagogical

example of a simple random effects model where a multi-phase modeling decision provides more

robust inference. Let’s say we are regressing Yij of individuals, j = 1, . . . , n within-groups, i =

1, . . . ,N , given the random intercept bi:

Yij = bi + εij

εij ∼ N(0,σ2
i )

bi ∼ N(0, τ2) ,

where τ2 and the set of σ2
i are unknown variance parameters. When modeled jointly, Liu et al.

shows that when we break the assumption that bi is normal, for example, if one of the bi is an

order of magnitude higher than all the others, then σ2
i is inflated rather than τ2. To mitigate

this unexpected outcome, we can infer the σ2
i before incorporating it as given to infer τ2 and bi.

A common application for multi-phase model is Pharmacokinetic / Pharmacodynamic (PKPD)

models (Bennett and Wakefield, 2001). PK models predict the concentration of a drug in the

bloodstream over time based on scientific knowledge and known parameters. Therefore, these

estimates are believed to be close to the truth and trustworthy. PD models rely on observations of

biological responses recorded over time as a product of the concentration of the drug, thus are more

subject to error. If we want to model both cases jointly to share information, we run the risk of

the estimation of the PD parameters negatively influencing the PK parameters. By first estimating

the PK model parameters and then using the results to estimate the PD model parameters, we

are cutting the model so the less reliable PD data do not influence the PK model parameters.

Jacob et al. (2017) formalizes the benefits of using a multi-phase model over a fully joint model in

different cases of misspecification. The authors show in cases of model misspecification, a two-step

model will lead to better predictive inference than a single model that incorporates all data sources
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jointly.

The second reason for multi-phase inference is the decision of domain experts for scientific

understanding or future scientific developments. An early example of multi-phase inference is

multiple imputation (Rubin, 1987). In multiple imputations, we employ different techniques to use

observed data to build a model to fill in missing values that we were unable to observe. Frequently

this is done by the statistician who is also doing further analysis (e.g., Tu et al., 1993). Even so,

this is often done as a pre-processing step, thus falling into the realm of multi-phase inference (Xie

and Meng, 2017). In some cases, as Rubin suggests, the scientist doing the imputation may not

even know who will use the results. As data grows in size and complexity, it becomes less common

that a single person has complete vertical control of the data from its collection to its final analysis.

More often than not, people of different expertise are in charge of pre-processing the data than

those doing the analysis. Therefore, we must be conscious of how we deal with the data and results

in each step. Blocker and Meng (2013) outlines two scientific examples of multi-phase inference

from the fields of genetics and astronomy. In both cases, we see scenarios where the raw, observed

data is processed before making inference on parameters of interest, but how the data is processed

can affect the final results. For example, when studying microarrays, the relationship between

the observed probe-level intensities and the true gene expressions is affected by an unknown noise

variable. Scientists are typically interested in parameters that are dependent on the true gene

expression but must use the pre-processed intensities to make inferences about them.

Other reasons for modularization or cuts might be purely computational. Sometimes it helps in

the speed of mixing or convergence of MCMC algorithms if the inference is made in multiple phases.

Multi-phase inference should also be considered if there is a lack of identifiability in the parameters

of the fully joint model (Liu et al., 2009; Plummer, 2014). In the random effects example from

Liu et al. (2009), the multi-phase solution has a much simpler sampling procedure than the fully

joint model. Li and Stephens (2003) introduces a “product of approximate conditional models”,

which simplifies the likelihood of haplotype groups by breaking them into products of conditional
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probability models. The authors suggest that a fully joint model is preferred, but infeasible due to

computational limitations. Murphy and Topel (1985) suggest an improved two-step approach for

econometrics, replacing unobserved components with estimated values, with asymptotically correct

uncertainty. Using this approach can be robust to situations where joint estimation methods are

computationally impossible. In a world where the amount and complexity of data are growing,

it is apparent that statisticians must understand multi-phase models to make inference in these

real-world scenarios.
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Part I

Predicting Athlete Performance
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Chapter 1

Plackett-Luce Model with a

Parametric Growth Curve

1.1 Introduction

The ability to predict an athlete’s performance is highly sought after by sports analysts, coaches, and

fans. For example, knowing when an athlete’s ability may peak could allow coaches to make more

intelligent recruiting and resourcing decisions. Predicting an athlete’s skill is not a particularly novel

idea in the field of sports analytics. However, most researchers place less emphasis on analyzing

multi-competitor sports and instead focus on head-to-head sports. The primary difference between

multi-competitor sports, such as races, or judge-based competitions, and head-to-head sports is that

the results are a rank ordering of all competitors rather than the identification of a binary winner

or loser (e.g., track events, diving or ice skating). Head-to-head sports can be conceptualized as a

specific case of rank-ordered sports in which only two athletes compete at a time. As a result, the

results from multi-competitor analyses can apply to both rank-ordered and head-to-head sports.

Relative player performance is often measured by player “strength”. Player strength is a quan-
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titative measure of player ability based on past performances. If an athlete has a greater strength

than another athlete, the higher-rated athlete will defeat the lower-rated athlete in direct compe-

tition with higher probability. One approach to measuring these strengths over time is to use a

growth-curve model. A growth curve is a parametric representation of how a numerical quantity

changes over time. Growth-curve-based methods of prediction are advantageous when compared

to nonparametric methods because they can more easily capitalize on built-in assumptions that

are made when modeling player strength over time. Conversely, unless cautiously addressed, non-

parametric methods can result in high prediction errors when extrapolating out of sample, limiting

their utility to description, rather than prediction.

Growth-curve models are well-proven and have been utilized for prediction in many fields,

including sports-analytics literature. However, the growth curves currently used to predict athlete

strengths are too simple. They do not account for complicated changes in performance over time,

such as multi-modal career trajectories due to injury. We present a novel model for player strengths

in multi-competitor sports that incorporates a flexible growth-curve model to estimate the evolution

of athlete performance over time. This growth curve has a more flexible shape than any that have

been used in sports literature. In Section 1.2 we introduce current, including growth-curve-based,

methods for estimating performance over time. In Section 1.3, we introduce the Plackett-Luce

model and discuss the construction of the growth curve to estimate performance over time. We

summarize the model fitting and selection techniques in Section 1.4. In Section 1.5, we discuss the

application of our methods to the results of professional women’s luge events.

1.2 Related Work

Every sport can be categorized as either a head-to-head or multi-competitor competition. Head-to-

head sports are defined as games or matches that determine a winner and a loser. Popular sports

that fall under this definition include basketball, tennis, and soccer. For head-to-head competitions,
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we focus on estimating athlete performance through paired-comparison models. The most com-

monly used model is the Bradley-Terry model (Bradley and Terry, 1952), which is the basis of the

widely used Elo ratings and more recently popularized for its use in chess leagues, Glicko ratings

(Elo, 1978; Glickman, 1999). Another approach for paired comparisons is the Thurstone-Mosteller

model (Mosteller, 1951), which differs from the Bradley-Terry model by setting the probability of

winning in the probit space rather than the logit space.

The majority of multi-competitor sports are races, where players compete for the fastest time,

or point-based systems, where judges award players points based on performance. Sports that

fall under this definition include marathons, Formula 1 racing, and diving. The modeling of the

performance of athletes in these sports is less studied than in their head-to-head counterparts. The

Plackett-Luce model, also known as the rank-order logit model, is a commonly used approach to

modeling rank-ordered results. This model was created as an extension to the multinomial logit

choice model (Luce, 1959) for rank orderings (Plackett, 1975). The Plackett-Luce is the primary fo-

cus of the model presented in this chapter. The Plackett-Luce model without modification provides

no way of accounting for changes in athlete strength over time.

1.2.1 Predicting Athlete Strength over Time

Using past performance to predict an athlete’s strength changes over time is often more helpful

than modeling performance in a single competition. For example, if two athletes have a similar

strength at a single time point, it would be essential to know whether one athlete is on the decline

of their career versus an upswing. This section looks at recent work in tracking strength over time

and predicting future performance based on these longitudinal models.

Several nonparametric approaches capture estimates of player performance over time using the

Plackett-Luce model for multi-competitor sports. Baker and McHale (2013) track golfer strength

over time by fitting splines through golfer ability via barycentric rational interpolants. Caron
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and Teh (2012) use a nonparametric method for ranked, multi-competitor events where strengths

progress over time using a gamma process. Although both methods offer a solution to modeling

the time varying nature of athlete strength, neither offer a means for extrapolating and predicting

future performance.

Bayesian approaches using stochastic updates can be used to estimate performance over time.

TrueSkill is a Bayesian skill rating system that ranks head-to-head competitions in online gaming.

The rating system is generalizable to team sports as it can model the performance of a team by

aggregating individual skill. The authors model skill throughout time using normally distributed

updates to the ability parameter (Herbrich et al., 2007). Glickman and Hennessy (2015), henseforth

denoted as GH, is another Bayesian technique that utilizes a Plackett-Luce model to estimate the

skill of athletes in multi-competitor sports over time. This model propagates performance through

time via a Gaussian random walk. None of these models accounts for player-specific covariates,

including how performance might change due to an athlete’s age or other time-varying traits.

A separate approach for estimating athlete skill are dynamic models such as Markov transition

models. Markov transition models use a hierarchical Bayesian model to evaluate the evolution of

performance over time. Jensen et al. (2009) and Glynn and Tokdar (2017) have used this technique

to predict the number of home runs a Major League Baseball player will hit based on their past

performance. Although these models have demonstrated predictive power, they are only applied to

a measured performance (home runs) and are not used to estimate skill from rank-ordered results.

What is missing is modification to the Plackett-Luce model that models the systematic changes

in athlete strength over time while providing a means for predicting future performance and ac-

counting for athlete specific observations. A solution is to use a parametric approach by modeling

athlete strength over time using a growth curve.
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1.2.2 Growth Curves

A growth curve is any parametric function that describes how a quantity changes over time. Shapes

can range widely and may take the form of linear, exponential, logistic, or S-shaped models. Growth

curves can also include more complicated relationships like mixed-effects or nonlinear regression

(Panik, 2014; Pinheiro and Bates, 2000). Growth curves are powerful tools in longitudinal analyses

across many different disciplines. Wishart (1938), was an early adopter of a growth curve, using the

technique to fit a different quadratic function to the weight of pigs eating three different diets over

16 weeks. The use of a growth curve allowed Wishart to utilize all recorded measurements across

the 16-week trial to determine whether weight gain was significantly different between the three

groups. Just looking at the difference between the beginning and end of the trial was insufficient in

delineating the diets. Growth curves can be used to measure rates of decay. This is demonstrated

in compartmental models that are used in pharmacology to determine the expected amount of a

drug or substance left in the bloodstream (Perrier and Gibaldi, 1973). Growth curves can also be

used for prediction as in Airoldi et al. (2009), where gene expressions are used to predict the growth

rate of cellular cultures.

Growth curves have many use cases in sports analytics. In particular, growth curves with mixed

effects or varying parameters per athlete are commonly used to describe performance over time.

One example is Brander et al. (2014), which looks at National Hockey League data to determine the

effect of aging on scoring for hockey players. They fit a quadratic or cubic function of age to predict

performance in terms of scoring to determine the age at which player performance peaks, using

a fixed intercept term to control for variation between players. Malcata et al. (2014) models the

expected times of a triathlete for swimming, cycling, and running events as a function of age. They

choose to model performance as a quadratic function of age and as a linear trend for the calendar

year with coefficients for random effects so that each athlete has a different set of parameters. This

model is similar to Brander et al., but the shape of the curve changes per athlete. Bell et al. (2016)

use multilevel modeling on Formula 1 race results to account for team and driver effects and identify
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the best racers over time.

Career trajectories do not always take a simple polynomial shape. Because of this, Moudud

et al. (2008) use the nonlinear logistic growth curve with a mixed-effects growth curve to predict

the speed of youth cross country skiers. While effective, this model is monotonically increasing

and therefore limited to youth athletes. Although not a sports-related example, a closely related

exercise by Bradlow and Fader (2001) uses the generalized gamma curve to model the ranking

of songs on Billboard charts. Both of these growth curves use an exponential decay term with

the expectation that, over time, performance converges to a specific value or decays altogether, a

characteristic we expect to be shared with a career trajectory. This model is also too limited to

use on athletes since the guarantee that a song has a single peak on Billboard charts is a safer

assumption than an athlete having solely one peak performance in their career.

We can improve the Plackett-Luce model by extending it to take advantage of the growth-

curve-based model assumptions on the time variation of athlete strength. We create a novel growth

curve that has a flexible enough shape to account for any type of career shape. No sport specific

assumptions were made in creating the growth curve so that it may be generalizeable to all sports.

Estimating parameters of the growth curve and the ability to project future athlete strength allows

one to easily compare and contrast career trajectories between athletes even if they are at different

stages of their career.

1.3 Model Definition

During T discrete time periods we observe n athletes that participate in observed competitions.

Each athlete i = 1, . . . , n has an ability parameter θit that indicates the competitor strength at

a given time period t = 1, . . . , T . Within each time period Kt competitions take place where in

competition k = 1, . . . ,Kt, mkt competitors participate.

8
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We use a Plackett-Luce model on the athletes’ latent performance at a particular moment

in time. The winner to a given game or match has the highest latent performance, the second-

place athlete would have the second-highest, and so on until the final-place athlete. However, this

performance is unobserved, so we must infer it based on the observed rank ordering. Let Yit be the

latent performance by competitor i at time t. We specify the distribution to be an extreme value

distribution:

Yit∣θit ∼ Gumbel(θit) . (1.1)

in which it follows that the likelihood conditional on θtθtθt = {θ1t, . . . , θnt}, for a given competition k

within time period t as

Lkt = P (Y(1)t > Y(2)t > ⋅ ⋅ ⋅ > Y(mkt)t∣θθθt) =
mkt−1
∏
i=1

exp(θ(i)t)

∑mkt

!=i exp(θ(!)t)
, (1.2)

where θ(i)t is the parameter that corresponds to the ordered, from largest to smallest, latent per-

formance Y(i)t of the mkt participating competitors.

Up to this point, we have established the set up for a Plackett-Luce moedel (Plackett, 1975).

To account for the competitor’s ability to change over time, we assume a novel parametric growth-

curve model on θit as a function of the current period t and the period in which the athlete first

competed t0i. The model we assume on θit is the growth-curve model

θit = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3 + ⋅ ⋅ ⋅ + βipt∗p]e−ω(t−t0i) , (1.3)

where the bracketed term is a p-th order polynomial. Intercepts and coefficients αi and βββi =

{βi0,βi1,βi2, . . . ,βip} vary per individual and the rate, ω > 0 is fixed across individuals. The βββi

and αi are fit via random effects. Sharing a common distribution allows for information may

be shared across athletes, assisting in the estimate of the parameters for the athletes with few

observations. The order of the polynomial is a free parameter p that needs to be chosen via model

selection as described in Section 1.4. To avoid correlation between polynomial orders of time, we

9
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instead use orthogonal polynomials of t − t0i = 0, . . . , T − t0i, denoted as t∗1 , t
∗
2 , . . . , t

∗
p . Orthogonal

polynomials are calculated across the entire data set by creating an orthogonal basis from a QR

decomposition done via the Gram-Schmidt process. Since orthogonal polynomials are calculated

using a time up to T , when used for projection, we apply the same Gram-Schmidt coefficients used

in the initial basis up to T , but on times T + 1, T + 2. See Appendix A for details on the creation

of the orthogonal polynomials in fitting and prediction. The raw time is used in the exponent

since orthogonal polynomials are not guaranteed to be non-negative. To ensure identifiability of

the strength parameters we center the θit at every time t by requiring:

n

∑
i=1

θit = 0 .

This growth curve form is useful because it is constructed in such a way that it offers flexibility

while relying on intuitive coefficients. The examples of growth curves used in sports that are men-

tioned throughout this chapter only fit the data up to a quadratic polynomial. While a quadratic

describes the typical athlete trajectory, increasing performance until reaching their peak and then

declining in performance, it does not allow for more complex trajectories. To encourage flexibility

in the model, the growth curve in Equation 1.3 allows for a polynomial of varying degrees. The in-

tercepts αi not only adjust for different starting strength, but they also represent the limit of decay

over a long career. The coefficients βi0,βi1, . . . ,βip and intercept αi parameters differ by athlete

since we do not expect each athlete to have the same career trajectory. However, the parameters

are assumed to come from a common normal distribution. For the αi this is a normal distribution

with a mean of 0 and a variance of σ2
α. The βib coefficients are drawn from independent normal

distributions with different means ηβb
and variances σ2

βb
corresponding to the different polynomial

orders b = 0,1, . . . , p.

The decay rate of ω shows the performance decaying over time. This concept is intuitive because

of the physical nature of sports, an athlete’s performance decays with age. The parameter ω remains
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fixed across athletes because we believe the overall decay of an athlete’s performance should be

consistent between athletes in the same sport.

The use of vague and flat priors while not imposing any sport specific knowledge are recom-

mended to generalize the model to all multi-competitor sports. Thus it is recommended to keep

priors non-informative or weakly informative. For the intercept and coefficient parameters, the

support of the prior must be a continuous distribution that spans all real numbers, e.g., a normal

distribution. The distribution of the prior on ω should span all non-negative or positive numbers,

and could take the form of an exponential or gamma distribution.

1.3.1 Adding Covariates

In some cases, (e.g. the case study in Section 1.5) we may be able to collect more player-specific

observations. Shown here are two examples of how such covariates may be incorporated into the

growth-curve model described in Equation 1.3.

If available, variables such as weight, height, and equipment specifications that change over

time could be useful in predicting performance. For example, youth athletes who grow taller more

quickly may increase in performance more quickly than expected compared to their slower-growing

counterparts. Time-varying, player-specific covariates Xit can be added to the growth curve linearly

in the form,

θit = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3 + ⋅ ⋅ ⋅ + βipt∗p]e−ω(t−t0i) + γXit , (1.4)

where γ is the coefficient on the covariate describing linear changes over time.

Another variable we might include is player age. The older an athlete is, the less time they

have in their career and the more quickly their performance decays. However, the impact varies

from sport to sport. For example, in target shooting, skill is usually a far superior predictor of

performance than age, which is why these sports boast the oldest Olympic athletes with the longest
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careers. Conversely, gymnastics is a sport that requires an enormous amount of flexibility and

dexterity that tends to be only attainable by young athletes. For simplicity we keep the coefficient

for age fixed within each sport. The final model form of θit includes the age zi of the athletes first

professional appearance:

θit = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3 + ⋅ ⋅ ⋅ + βipt∗p]e−(ω0+ω1zi)(t−t0i) , (1.5)

where ω1 ≥ 0,ω2 ≥ 0 are the linear coefficients describing the decay rate. This form of growth curve

is used to fit women’s luge data in Section 1.5. Another option may be to make our growth curve a

function of age rather than a function of time. Although directly incorporating age into the growth

curve would be simple, the length of an athlete’s career has a greater impact on performance and

age should be incorporated as a covariate in a different way. Also, indexing by length of career

instead of age makes it easier to compare career trajectories across athletes of different ages. Our

preferred alternative is to include age as a variable in the decay rate of the growth curve.

1.4 Model Fitting & Selection

We choose use a Markov Chain Monte Carlo (MCMC) sampling process for model fitting. At a

time point t, we sample from the posterior distribution of our estimate of θit and corresponding

growth curve parameters. Rather than a using a point estimate by maximizing the posterior, we

choose to use information about the entire posterior. Capturing this uncertainty is vital to making

predictions as it informs the user of the reliability of the estimates.

There are several ways to fit this model via MCMC. The most straightforward is through

Gibbs sampling where we iteratively sample each of the growth curve parameters, βββ0 = {β0i ; i =
1, . . . , n},βββ1, . . . ,βββp, ααα = {αi ; i = 1, . . . , n}, ω, and the intercept and coefficients respective means

and variances, conditional on the remaining, current values of the parameters and the observed
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outcomes (Geman and Geman, 1984).

1. p(ω∣βββ0, . . . ,βββp,ααα, Y )

2. p(σ2
α,ηβ1

,σ2
β1
, . . . ,ηβp ,σ

2
βp
∣βββ0, . . . ,βββp,ααα, Y )

3. p(ααα∣βββ0, . . . ,βββp,ω,σ
2
αY )

4. p(βββ0∣βββ1, . . . ,βββp,ααα,ω,ηβ1
,σ2

β1
, Y ), . . . , p(βββp∣βββ0, . . . ,βββp−1,ααα,ω,ηβp ,σ

2
βp
, Y )

Each conditional distribution is complicated to draw from directly given the Plackett-Luce likeli-

hood, but can be sampled using Metropolis-Hastings with a normal jump distribution (e.g., Gelman

et al., 2013). For our application in Section 1.5, the approach we use to obtain posterior draws is No

U Turns Sampling (NUTS; Hoffman and Gelman, 2011). NUTS is an extension to the Hamiltonian

Monte Carlo (HMC) sampler which is easily implemented using the RStan software (Neal, 2012).

We select the order of the polynomial via cross-validation (CV) procedures. We focus on CV

approaches to optimize our model’s ability to predict athlete strength. In this sense, CV is one

approach that focuses on model fitting in sample and lead to over-fitting and poor out-of-sample

predictive performance. One approach is leave-one-out cross-validation (LOO-CV) which has his-

torically been applied in the Bayesian context for model selection (e.g., Alqallaf and Gustafson,

2001). The LOO-CV method developed by Vehtari et al. (2016) maintains a Bayesian framework

by using the full posterior to select the best model for predictive accuracy. Bayesian LOO-CV has

shown in various numerical experiments to outperform other metrics such as the Watanabe-Akaike

Information Criterion (WAIC), likelihood ratio test (LRT) and information-based approaches (AIC,

BIC, and DIC) in some models. It can perform better when optimizing over prediction accuracy

in a Bayesian setting since it utilizes the full posterior (Luo et al., 2017; Piironen and Vehtari,

2017). Bayesian LOO-CV is a technique that proved to perform well in recovering the correct

degree polynomial, but other methods may be considered when performing model selection. For

example, an alternative to using LOO-CV is the Leave Future Out Cross Validation (LFO-CV).
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Instead of optimizing error between the model fit and the data the model is trained on, this method

optimizes error between new, future projections (Bürkner et al., 2019). This CV is particularly

useful for time-series data with the intent of extrapolating strength parameters into the future.

Starting at a linear model (p = 1) we use LOO-CV calculate the difference in expected log

pointwise predictive density (∆ELPD) between p and p + 1 and corresponding standard error. We

choose to accept the higher-order polynomial if the ELPD for p+1 is greater than 2 standard errors

away from that of the ELPD for p. Model selection is made separately per sport because we do not

expect every sport to have the same polynomial order in the growth curve. This forward stepwise

procedure ensures that we have the simplest model while still capturing the desired flexibility of

athlete career trajectories. The forward stepwise procedure remains the same no matter which CV

procedure is used.

1.5 Results

We apply the model detailed in Section 1.3 to women’s luge data. We observe the athletes’ birth

dates so that we can incorporate age as a covariate in our model. The model is fit using NUTS in

R Stan. We fit the model with 15,000 iterations with a burn-in of 13,000, for a total of 2,000 draws

used for inference. To ensure convergence of the NUTS, we fit the model using three independent

chains to calculate the split R̂. The split-R̂ is a modification to the traditional R̂ suggested by

Gelman and Rubin (1992) that compares variation between beginning and end of chain to ensure

stationary of the convergence (Gelman et al., 2013). As recommended by Gelman et al. (2013), if

any parameter is larger than 1.1 then we should not accept the posterior samples as valid. Figure

1.1 shows the split-R̂ values for the model fit to women’s luge data. Although some values are

moderately high (> 1.05) all fall under 1.1. To ensure stability of the NUTS chains in the long term

and ensure that there are no hidden modes we run five independent chains for 50,000 iterations.

The split-R̂ values for the longer chains remain ≈ 1 and retain the same posterior for the primary
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Figure 1.1: The R̂ for posterior draws of all parameters while fitting the model described in Section
1.5.

parameters in our analysis.

1.5.1 Case Study: Women’s Luge

We apply this method to women’s luge athletes. Women’s luge has been a participating sport in

the Winter Olympics since 1964. Luge can be raced as a duo, but for the sake of simplicity, we

only focus on individual athlete events. During a single women’s luge event, each athlete gets a

pre-determined number of chances to sled down the same designated track. The women are timed

from the time they cross the starting line at the top of the track to the time they cross the finish

line at the bottom. The final ranking is determined by the cumulative time of all runs. Since the

final result is a rank ordering of all participating athletes, luge is considered a multi-competitor

sport.

The data set we used was provided by the US Olympic Committee and consists of results

from 142 events from the 2004 to the 2017 winter seasons of 166 women. All recorded events are

professional-level, single sled women’s luge events. Along with complete ranking results from each

15



Chapter 1: Plackett-Luce Model with a Parametric Growth Curve

Figure 1.2: Erin Hamlin participating in the single women’s luge event in the 2014 Winter Olympics
at Sochi.

event, we have participating athletes’ birth dates. Figure 1.3 shows the distribution of the observed

length of the athlete’s careers and the age of their first appearance in the data set.

Figure 1.3: The distribution of women luge athlete’s age at the start of their career (top) and the
length of their career (bottom).

We separate the events by dividing them into periods. The dates are divided into four evenly

spaced periods per year starting on January 1, April 1, July 1, and October 1. The data set spans

50 periods total starting with October 1, 2004 and ending with March 31, 2017. It also features

roughly 5-6 events per period in the winter periods (October - March) and no events per period

in the off-seasons (April - September). We choose three month periods as they are long enough to

observe an athlete perform at least once within the competition but short enough that athletes’

ability does not change significantly within the period. This selection enables us to see details of
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changes in ability across a typical athlete’s career. We calculate this orthogonal bases t∗1 , . . . t
∗
p using

the poly function in R (Chambers and Hastie, 1992).

We include age as a covariate thus fitting the model in Equation 1.5. As mentioned in Section

1.3, each polynomial parameter varies per athlete, but is drawn from the same distribution as

the parameters of the same degree. The decay rate parameters ω0,ω1 priors are Exponential

distributions since they are non-negative.

αi∣σ2
α ∼ Normal(0,σ2

α)
βbi∣ηβb

σ2
βb
∼ Normal(ηβb

,σ2
βb
)

ω0,ω1 ∼ Exp(10)

The hyper-priors are kept vague and flat. The mean parameters ηβ can take on any value. However,

we suspect the variance parameters to be relatively small so we make their uniform parameters

sufficiently wide to encompass any feasible value:

σα ∼ Uniform(0,104)
ηβb

∼ Normal(0,100)
σβb

∼ Uniform(0,103) .

Model selection is conducted via LOO-CV. The results of the model selection are shown in

Table 1.1. The final model is determined to have p = 3:

θit = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3]e−(ω0+ω1zi)t .

Figure 1.4 shows the fitted player strength parameters of four of the top athletes in luge: Alex

Gough (CAN), Natalie Geisenberger (GER), Summer Britcher (USA) and Tatjana Hüfner (GER).
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Table 1.1: Results of LOO-CV on Women’s Luge Data

Model 1 Model 2 ∆ ELPD SE
p = 1 p = 2 18.8 7.1
p = 2 p = 3 29.6 8.2
p = 3 p = 4 -2.8 6.0

These four athletes have started competing at different dates so they are at different stages of their

career. Hüfner, the eldest, is beginning to decline in performance, whereas Britcher is the youngest

athlete and has a sharp increase in performance over the past three years. Geisenberger has had a

steady career and always performed at the top, whereas Gough took several years to reach a similar

strength.

Figure 1.4: Growth-curve model fit to observed time range for four of the top women’s luge athletes.
Plotting the growth curves against one another lets us compare the different levels of performance
between the athletes at a given time.

Figure 1.5 shows the same trajectories but aligned by years since the start of each athlete’s
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Figure 1.5: The same growth curve fits as in Figure 1.4 but aligned at the beginning of the career.

career t − t0i. This view allows us to compare trajectories between athletes while they are at the

same points in their career. As we can see, the top luge athletes share similarly shaped trajectories.

One point of interest for coaches or team managers would be comparing younger players’ career

trajectories to the trajectories of their more established counterparts. In Figure 1.6, we show

Britcher’s career projected out seven years compared to Geisenberger’s current career trajectory.

By plotting the trajectories side by side, aligned at the beginning of their careers, we can see that

they have similarly shaped trajectories, but that Britcher never reaches the level of performance of

Geisenberger.

We can also use our model fit to understand the general trajectory of athletes in a particular

sport. To do so, we take advantage of the hierarchical structure of the polynomial coefficients and
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Figure 1.6: Career trajectory of Natalie Geisenberger next to the projected career trajectory of
Summer Britcher aligned at the start of their careers. The grey vertical line shows the current
point whereas to the right is the predicted strength for Britcher.

construct a curve using the estimated means,

θ̄ = [η0 + η1t∗1 + ⋅ ⋅ ⋅ + ηpt∗p]e−ω(t−1) . (1.6)

In the women’s luge case we incorporate the average starting age across all players z̄,

θ̄ = [η0 + η1t∗1 + η2t∗2 + η3t∗3]e−(ω0+ω1z̄)(t−1) . (1.7)

Figure 1.7 compares the mean curve between women’s luge and a second example, men’s slalom

skiing. The curve tells us that the average luge athlete is expected to increase their performance

from the start of their career for about 5 years, at which time the athlete reaches a plateau. This

trajectory is different than that of men’s slalom athletes who are expected to begin declining in
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performance after 6-7 years. This difference may be because slalom skiing is a more-physical sport;

therefore, longer careers are less likely. This contrasts luge, which is a more-skilled sport where

age is a less of an important factor in performance. Although this curve cannot explain such

phenomena, it is still useful in comparing the common shape of the trajectory between the two

sports.

Figure 1.7: The mean curves for women’s luge (left) and men’s slalom (right). By looking at the
mean curves we can compare the typical trajectory of athletes between two sports.

1.5.2 Evaluation

To evaluate the predictive ability of our model, we use a weighted average of the Spearman rank

correlation (Spearman, 1904) between our projected latent performance and the true race results.

This method is also used to evaluate the GH model in Glickman and Hennessy (2015).

The weighted average of the Spearman rank correlation at predicted time T is:

ρW = ∑
KT

k=1(mkT − 1)ρ̂k
∑KT

k=1(mkT − 1)
,

where KT is the number of races at time T and mkT is the number of athletes competing in race
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Prediction Time Interval

Projection Interval 1 Year 2 Years
7-9 Months 0.651 0.599

10-12 Months 0.639 0.584
19-21 Months – 0.591
22-24 Months – 0.600

Table 1.2: Estimated weighted Spearman correlation for predictions removing the last one year
and last two years. Predictions are made in each of the two periods with observations per year to
calculate the estimated weighted Spearman correlation.

k = 1 . . .KT . We evaluate ρW at each iteration of the posterior draw. To estimate ρ̂k we first

evaluate θiT at desired time T , for each player that appears in race k using the posterior draws

of the growth curve parameters. We then draw the latent performance YiT from the Gumbel

distribution with location θiT . We can then calculate the Spearman rank correlation between the

true race results and the sampled latent variables to obtain ρ̂k

Table 1.2 shows the evaluation for the women’s luge example in several settings. First, we

remove only the final year of results and fit the growth-curve model. We use this model built with

missing data to predict the results for matches in the two out of sample observed periods of that

year1. We then remove the final two years of results to fit the data and predict the results for

matches in the four observed periods across both years. Figure 1.8 shows the estimated weighted

Spearman correlation and 95% credible interval across the four periods within the two years of

withheld information. Notice that the correlation does not drop, even evaluated out greater than

four periods, showing that our methods are not just valuable for current predictions, but can

extrapolate far beyond the end of the observed data. We compare the Spearman correlation to

that calculated for evaluating GH (the dotted line in Figure 1.8). Our model performs similarly

across all predictions, even up to 8 periods.

1Since luge is a winter sport, athletes only compete in the winter season which takes place in two out of the four
periods each year
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Figure 1.8: The estimate of the weighted Spearman correlation and 95% CI. The dotted line shows
the performance of the GH model.

1.6 Conclusion

The approach presented in this chapter successfully models an athlete’s strength in multi-competitor

sports, allowing the user to compare current and future athlete performance. The growth curve was

constructed to be as flexible as needed to fit even the most irregular career trajectories. Because

there are no sport-specific assumptions made in the creation of the Plackett-Luce likelihood or

growth curve, this method is generalizable to any individual sport.

We recognize that since we only observe athletes while they perform in professional tournaments,

our method is susceptible to some selection bias since we do not include those athletes who do not

qualify for every event or retire early. This likely causes bias in our predictions of the athlete

strength. It may also cause an underestimation of uncertainty over long-term predictions.

This method is intended to be applied to a single sport at a time, but by comparing the

distributions of the random effects (α,β) and the decay rate (ω) we can make comparisons between

sports. We also introduce the mean curve, which is an estimate of the approximate shape of a

career trajectory for an average athlete in the sport. The characteristic mean curves could also be
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used to compare the typical career trajectory across sports for insight about when we expect players

to reach their peak performance, on average. This estimate is particularly useful for athletes who

have few observed appearances in games or matches, providing little information about their career

trajectory.

We can extend this basic model into a discrete mixture model of different average career trajec-

tories. This exercise helps us find similarities between athletes and elicit potential clusters or groups

of career trajectories. Clustering these trajectories could give insight into what makes specific ath-

letes perform in a particular way throughout their careers. We visit clustering as an extension in

Chapter 2.
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Chapter 2

Two-Step Model for Predicting

Athlete Strength

Athlete rating systems are methods for quantifying the relative abilities of athletes within a

particular sport. Ratings are defined as an estimate of an athlete’s strength in a particular moment

in time. In general, athletes with higher ratings are more likely to defeat those with lower ratings

in direct competition. However, many of these rating systems do not inherently model athlete’s

strength over time. As a result, they are poor at forecasting future athlete ability. Chapter 1 applies

a probabilistic rating system to estimate ability over time in individual, multi-competitor sports.

As there are a wide variety of types of sports, including both multi-competitor and head-to-head

sports, devising a system to jointly model rating over time for every possible scenario would be

time consuming. In this chapter, we focus on fitting a model to pre-estimated ratings from any

type of sport so we can forecast athlete abilities, cluster career trajectories, or undertake a variety

of other procedures that are not inherent to existing rating systems.
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2.1 Introduction

Methods that both quantify athlete performance and model time variation of the performance,

such as the model we propose in Chapter 1, can be computationally complex and expensive. We

can simplify the process by approaching it in two steps. The first step is to build a static rating

system over a fixed period that quantifies relative athlete ability as measured by the outcomes of

games or matches. The second step is to fit a model to the estimates on athlete’s strength over

time. Rating systems have become popular among sports coaches, analysts, and fans, demonstrated

by the success and widespread use of the Elo rating system across many different sports and the

adaptation of the Glicko rating by chess leagues. Ratings are useful in comparing players against

one another. If we know the athletes’ ratings at a given time, we can compute the probability

of a particular outcome for a game or match. Rating systems update with current ratings over

time by relying on past competition results. However, neither can rating systems alone be used

to forecast future results, nor can they be used for post-processing techniques such as clustering

career trajectories.

In order to use these models for forecasting and post-processing, we need to build a model to

help understand how model-generated ratings vary over time. To do this, we build upon the same

concept of growth curves presented in Chapter 1 while applying it to estimated ratings to make

inferences about the functional relationship of ratings over time. A growth curve is a parametric

model of how a quantity changes over time. Assumptions put in place by using growth curves can

reduce error and over-fitting introduced by non-parametric models. Furthermore, growth curves

can be defined in such a way that their parameters can describe physical attributes, increasing their

interpretability. The assumption of a growth-curve model helps describe how individual skills or

abilities change over time. This allows us to forecast future ratings and compare career trajectories

through clustering.

In addition to comparing one athlete’s future performances against another, we compare trends
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across sports to gain a better idea of when we expect athletes to reach their peak performance and

how quickly we expect their abilities to decay. Using a functional form of ratings over time can

be helpful in a variety of post-processing analyses, including clustering athletes based on career

trajectories. Clustering methods are an excellent way to explore potential types of athletes’ careers

and learning what characteristics athletes share within these types of careers. This type of analysis

is not necessarily helpful for prediction or inference, but it can give us detailed insight into the

characteristics of the athletes.

Multi-phase inference is a common way to simplify complicated processes across a variety of

applications. Using a two-step procedure, we extract the benefits of imposing a growth-curve model

to describe the time-varying nature of player ratings, while gaining the ability to use it with rating

systems across head-to-head and multi-competitor sports. Multi-phase inference is useful in sports

analytics because those who create and utilize sports analytics models come from a wide variety

of backgrounds, from amateur fans to expert statisticians. Furthermore, not everyone has access

to all sources of data since professional teams own some data, and some data requires complicated

pre-processing. Using a multi-phase method can help alleviate these issues and lead to better

inferences on the parameters of interest. Bornn et al. (2017) discuss several multi-step procedures

that first pre-process raw player tracking data and use the results for more advanced inference,

such as clustering athlete movements. Frequently, forecasting techniques use a combination of raw

observations and pre-estimated statistics. In Baker and McHale (2013), the authors use the point-

spread and over-under from the betting line. In Silver (2019), the author uses defensive/offensive

ratings and other homegrown statistics in their forecasting. In this use case, we will use the same

growth curve model in Chapter 1 but extend its use by applying it to a variety of pre-existing rating

systems using a multi-phase process.

Section 2.2 describes how to fit the proposed growth curve method as a post-processing step to

rating data. The model inference and model selection process is discussed in Section 2.3. Section

2.4 applies this two-step method to men’s slalom data and discusses how fitting the growth-curve
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model is used for prediction and Section 2.5 discusses how these growth curves can be used for

clustering career trajectories.

2.2 Methods

We suggest a two-step process to build a model that estimates and predicts athlete performance

over time. The first step is to use an existing rating system to model athlete rating at equal

time intervals. The second step is to fit a nonlinear mixed-effects regression model to these rating

estimates and corresponding estimated uncertainty. In this section, we first describe the Elo, Glicko,

and GH rating systems and then show that we can model the time-varying nature of these estimated

ratings using a growth curve.

2.2.1 Ratings

During T discrete time periods we observe n athletes that participate in at least one observed

competition during this time period. Each athlete i = 1, . . . , n has an ability represented by the

parameter θit that indicates the competitor strength at a given time period t = 1, . . . , T . For each

period Kt competitions take place wherein competition k = 1, . . . ,Kt, mkt competitors participate.

In head-to-head sports, we are interested in the expected outcome of a particular game or

match, or the probability that one athlete defeats another athlete. Let Yij,tk be a binary variable

that indicates the outcome between athletes i and j for competition k at time t: Yij,tk = 1 if i

defeats j and 0 otherwise. Let θit be the relative latent ability or skill of athlete i in time t. At a

certain time t and competition k the likelihood of athlete i defeating athlete j is distributed as:

Yij,tk∣pij,tk ∼ Bernouli(pij,tk) , (2.1)
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where pij,tk = P (Yij,tk = 1). The Bradley-Terry model assumes a logistic function such that

logit(pij,tk) = θit − θjt. Thus it follows that,

P (Yij,tk = 1∣θit, θjt) = eθit

eθit + eθjt =
1

1 + eθjt−θit . (2.2)

(Bradley and Terry, 1952). The Bradley-Terry model is the basis of both the Elo and Glicko rating

systems.

Elo

Elo ratings are a Bradley-Terry based system that was originally used for ranking chess players

by skill based on their performance (Elo, 1978). The Elo rating system is designed to estimate

athlete ability, θit, through an estimated rating µit. Conventionally the Elo system uses a different

scale for player strengths in which the estimated probability of athlete i defeating athlete j is,

Eij = 1

1 + 10(µjk−µik)/400
. (2.3)

Elo accounts for change in estimated ratings by discrete updates after each competition 1. The

updating procedure is

µi,k+1 = µik + κ(Yij,k −Eij) (2.4)

where κ is a user-defined tuning parameter. It could be a factor that correlates with the difficulty

of the tournament. The ratings in the Elo system are balanced over time, that is if one player

rating increases by δ, then their opponent’s rating decreases by δ.

Glicko

Glicko was proposed by Glickman (1999) to incorporate variability in parameter estimates over

time to estimate the relative strength of athletes. The Glicko model assumes a Bradley-Terry

1Typically Elo ratings are updated after each performance k rather than over time t
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implementation but assumes the evolution of θit over time through a stochastic process. The model

assumes the future ratings are related to the past ratings by the following relationship:

θi,t+1∣θit, ν2i,t+1 ∼ Normal(θit, ν2i,t+1) . (2.5)

The Glicko system is an improvement on the Elo system because it accounts for “reliability”

(Glickman, 1999). That is, if a player competes more frequently, their rating is estimated with less

error: i.e. we are more confident in the estimate than in an estimate for a player who competes

infrequently. Similar to the Elo rating system, we estimate the athlete’s i ability parameter at time

t by the rating µit. Glicko also updates an estimated uncertainty on our rating estimates through

the colloquially named “ratings deviation” (RD). We can utilize this uncertainty in our projections

of skill to give a more reliable prediction interval. We denote the RD at time t for athlete i as νit.

The expected score of player i defeating player j is

Eij =
1

1 + 10g(
√

ν2it+ν
2
jt)(µjk−µik)/400

, (2.6)

where g(ν) = (1 + 3q2ν2/π2)−1/2 and q = ln 10/400. With Glicko, we update both the estimated

rating µit and the RD νit at each rating period t after recording results against mtk opponents

across different competitions: 2

µi,t+1 = µit + 1

ν−2it + d−2
m

∑
j=1

g(νj)(Yij,t −Eij) (2.7)

νi,t+1 = (ν−2it + d−2)−1/2 (2.8)

d2 = [q2
m

∑
j=1
(g(νj))2Eij(1 −Eij)]

2

, (2.9)

where d2 is an approximation to the likelihood-based variation when moving from period to period.

Unlike the Elo system, the Glicko system’s ratings are not balanced over time. An increase in one

2The length of time in a period is determined by the user. Glickman recommends to set periods where athletes
average about 5 to 10 performances per period (The Glicko System by Mark Glickman : http://www.glicko.net/
glicko/).
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player’s ratings does not indicate a mirrored decrease in their opponent’s ratings.

Glickman & Hennessey (GH)

A generalization of this method to more than two players is to estimate the skill parameter

for multi-competitor sports. The Placket-Luce model assumes an extreme value distribution on

the Luce (1959) logit model for rank orderings (Plackett, 1975). The fully Bayesian Plackett-Luce

model is discussed in more detail in Chapter 1. We use the Plackett-Luce-based rating system

presented by Glickman and Hennessy (2015), now referred to as the GH model. Here we assume

Yitk is the latent performance, distributed conditionally on athlete ability θit, by the maximum value

distribution, the Gumbel distribution. For a particular observed rank ordering of mkt athletes in

competition k during period t we formulate the likelihood as

Lkt = P (Y1tk > Y2tk > ⋅ ⋅ ⋅ > Ymtktk∣θθθt) =
mk−1
∏
i=1

exp(θit)
∑mk

!=i exp(θ!t)
. (2.10)

In Chapter 1, we perform inference using a fully Bayesian version of the GH model. However,

this can be too computationally expensive to do when updating ratings at every period. Instead,

Glickman and Hennessy describe a rating system similar to Glicko and Elo, that uses a Newton-

Raphson approach to update the estimated ratings µµµt = (µ1t, . . . , µnt) and estimated standard

deviation νννt = (ν1t, . . . , µnt). We assume that at a given time t, the prior distributions for the

ability of competitors θtθtθt = (θit, . . . , θnt) are independently distributed as,

θit ∼ Normal(µit, ν
2
it) (2.11)

with the likelihood on the contribution from competition k given Equation 2.10. Given the esti-

mated ratings and standard deviations, we can write the log posterior of θθθt as

log p(θθθt∣µt,ννν
2
t ) = c0 + log p(θtθtθt∣µµµt,ννν

2
t ) +

Kt

∑
k=1

logLkt , (2.12)
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where c0 is a normalizing constant. Implementing optimization through the Newton-Raphson

method 3, we obtain the mode which is the approximate normal posterior mean, µµµ∗t . We also find

the second derivative matrix evaluated at the mode, then take the negative of the matrix inverse

to approximate the posterior covariance matrix to obtain ννν2∗. Moving between periods t to t + 1
we assume,

θi,t+1∣θit, τ2 ∼ Normal(θit, τ2) (2.13)

⇒ θi,t+1∣µ∗it, ν2∗it , τ2 ∼ Normal(µ∗it, ν2∗it + τ2) (2.14)

∼ Normal(µi,t+1, ν
2
i,t+1) . (2.15)

Ties are accommodated using an approximation that incorporates the outcomes in the likelihood

as if all athletes of the same rank outperform each other (Breslow and Crowley, 1974). Instead of

estimating through a fully Bayesian process, its quicker to treat τ as fixed in advance and estimate

the parameter by optimizing a predictive fit criterion (e.g., Glickman and Hennessy, 2015).

Estimating the ratings at each time interval is the first step in the two step method. The

appropriate rating method to use depends on the context. The GH rating system should be used in

multi-competitor competitions and the Glicko or Elo rating system should be used in head-to-head

competitions. We recommend using Glicko over Elo in the second step since it also gives estimates

of the uncertainty on the strength estimates, whereas Elo does not. However, Elo is a more widely

used rating system thus may be the only system available or more interpretable depending on the

source of the ratings and the audience. The ratings procedure for Glicko and GH can be adapted to

smooth parameters based on earlier results using Rauch-Tung-Streibel (RTS), a Kalman smoother

(Rauch et al., 1965). These are shown to give the best estimate of measuring strength at a given

time point (Glickman and Hennessy, 2015). The same cannot be done for Elo ratings.

3Described in detail in Appendix A of Glickman and Hennessy (2015)
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2.2.2 Growth Curve

In each of the cases mentioned in Section 2.2.1, we end up with an estimate of athlete rating

measured at different time points, µit. The rating systems provide sequential estimates of relative

athlete performance over defined periods within a fixed time interval. We propose fitting a non-

linear mixed-effects regression model to the estimated ratings to predict future ratings. We treat

our estimated ratings as fixed and assume the distribution

µit = gi(t) + εit , (2.16)

where εit ∼ Normal(0,σ2
it). This application of the growth curve is similar to the autoregressive

process assumed in the Glicko and GH models shown in Equation 2.5. The Elo rating system does

not provide a way to estimate the uncertainty on the rating estimates over time. The variance does

not change by individual or over time:

σ2
it = σ

2
θ . (2.17)

With the GH and Glicko models, we estimate the uncertainty of our rating estimates over time by

updating the RDs. We incorporate this into the variance term as,

σ2
it = σ

2
θ + ν2it , (2.18)

where νit is the RD estimate and σ2
θ is the regression error, consistent across athletes and time.

The growth curve follows the same form as in Chapter 1 as it was built to be representative of

how ratings change over time:

gi(t) = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3 + ⋅ ⋅ ⋅ + βipt∗p]e−ω(t−ti0) , (2.19)

where αi and βββi = {βi0,βi1,βi2, . . . ,βip} vary per individual and ω > 0 is fixed across individuals.
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The polynomial component is meant to provide flexibility by modeling a variety of career shapes.

The decay parameter reflects the assumption that an athlete’s strength will decay over time. The

hierarchical parameters will give each individual their own trajectory shape. The parameters will

be related, which is useful for estimating the performance of athletes for whom we do not have many

observations, but they will not be identical. To prevent correlation between polynomial terms, we

instead use orthogonal polynomials t∗ of t−t0i where t0i is the period of first appearance for athlete

i. We use the raw t − t0i for the exponent since orthogonal transformations are not guaranteed to

be non-negative. Details on orthogonalization are in Appendix A.

The intercept and coefficient terms of the growth curve are drawn from independent normal

distributions:

αi∣σ2
α ∼ Normal(0,σ2

α) (2.20)

βib∣ηβb
,σ2

βb
∼ Normal(ηβb

,σ2
βb
) . (2.21)

The decay rate prior is set to have a mean of 10, a value much larger than we expect the

parameter to take thus keeping the prior relatively flat:

ω0,ω1 ∼ Exp(10) .

The priors on the mean and variances of the parameter are flat and vague. The bounds are chosen

to be large enough to contain any feasible value for the mean and variance terms:

σα ∼ Uniform(0,104) (2.22)

ηβb
∼ Normal(0,102) (2.23)

σβb
∼ Uniform(0,103) . (2.24)

The constraint we impose on σ2
θ incorporates the value of σ2

α to ensure the scales are roughly the
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same. This helps ensure the identifiability of the variance of the intercept in the growth curve and

the variance of the rating, as the terms are inversely proportional to one another:

σ2
θ

σ2
α

∼ Gamma(100,100) .

As mentioned in Chapter 1, we can also easily add covariates, such as the athlete age at the

start of their career zi, as part of the decay coefficient:

gi(t, zi) = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3 + ⋅ ⋅ ⋅ + βipt∗p]e−(ω0+ω2zi)(t−t0i) . (2.25)

We assume that the older the athlete, the more quickly their physical abilities will decay. If we

are able to record athlete specific, time-varying, covariates (e.g., weight, height ,etc.) we can

incorporate them into the model additively:

gi(t,Xit) = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3 + ⋅ ⋅ ⋅ + βipt∗p]e−ω(t−t0i) + γXit . (2.26)

2.3 Model Fitting

Although we are fitting a non-linear model we can use MCMC techniques similar to classic, linear

regression (e.g., Gelman et al., 2013). Using a Gibbs sampler we can iteratively sample from the

conditional distributions for the growth curve parameters βββ0 = {βi0; i = 1, . . . n}, . . . ,βββp, ααα = {αi; i =

1, . . . n}, ω, the growth curve variance σ2
θ and the estimated ratings µitµitµit = {µit; i = 1, . . . , n t = 1, . . . T}

(Geman and Geman, 1984).

1. p(ω∣βββ0, . . . ,βββp,ααα,µµµ,σ
2
θ)

2. p(ααα,βββ0, . . .βββp∣ω,µµµ,σ2
θ)

3. p(σ2
θ ∣βββ0, . . . ,βββp,ω,ααα,µµµ)
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The conditional distribution at steps 1 and 3 can can be sampled using Metropolis-Hastings using

a Normal jump distribution for step 3, and a Gamma distribution for step 1 (e.g., Gelman et al.,

2013). In step 2 all intercept and coefficient parameters can be combined into one step by drawing

them jointly using a multivariate normal distribution. This sampler could be implemented directly,

but as in Chapter 1, we found using No U Turns Sampling (NUTS) via the RStan software to be

an effective way to sample from the posterior (Hoffman and Gelman, 2011).

Model selection to determine the maximum order or polynomial for the growth curve should be

performed in the same way as in Chapter 1. We use forward stepwise model selection to encourage

simpler models to avoid overfitting. We found using Bayesian leave-one-out cross validation (LOO-

CV) for model selection to be sufficient in selecting the correct model in our case though other

methods are possible (Vehtari et al., 2016). Refer to Section 1.4 in Chapter 1 for more details on

these CV methods.

2.4 Results

The model is applied to men’s skiing data to compare athletes’ career trajectories based on observed

outcomes of races. We validate our methods by seeing how well we predict future, out-of-sample

ratings using the estimates of the parameters of our growth curves. Using the functional form of

the estimated career trajectories, we perform a clustering analysis as a post-processing step to fit

the model as a tool for describing the results.

2.4.1 Case Study: Men’s Slalom

Slalom skiing is a type of alpine skiing in which a skier navigates turns around a sequence of poles

or gates along a 600 to 700 foot-long slope. During a single event, each athlete has one chance

to ski the course, and the athletes are ranked according to how quickly they complete the course.

36



McKeough 2020

Thus, slalom skiing is a multi-competitor sport. Slalom skiing as been an alpine skiing event in

the Winter Olympics since 1936. We apply our model to 403 male skiers to estimate ratings from

2004 to 2017. We only include events at the professional level for individual men’s slalom skiing.

The average number of seasons in which a skier competes professionally is around 3. Figure 2.1

(right) shows the distribution of the length of the athletes’ careers. We use age as a covariate in

our growth curve in the same way we use age in the Luge example in Chapter 1. The distribution

of the athletes’ ages at the start of their career is in Figure 2.1 (left). The average age at the start

of a skier’s career is around 23. The United States Olympic Committee provided race results and

player birth dates.

Figure 2.1: The distribution of men slalom athlete’s age at the start of their career (left) and the
length of their career (right).

Before estimating the ratings, the data is divided into 50 periods t = 1, . . . ,50, each of length

3 months. The periods range from October 2004 to March 2017. An average of 5-6 events oc-

curs during each winter period (October-March) and no events occur during the summer periods

(April-September). We choose a period length of 3 months to be large enough to have multiple

competitions within each period and short enough where the athletes’ ratings should not change

significantly from competition to competition. We then observe the details of changes in the career

trajectory over time.

Ratings and RDs are estimated via the GH rating system. Along with estimated ratings we

also have the athletes’ birth dates so we include age at the start of their career ( zi) as a covariate.
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Figure 2.2: The R̂ for posterior draws of all parameters while fitting the model described in Section
2.4

After model selection, the final growth-curve model is,

µit ∼ Normal(gi(t, zi),σ2
θ + ν2it) (2.27)

gi(t, zi) = αi + [βi0 + βi1t∗1 + βi2t∗2 + βi3t∗3]e−(ω0+ω1zi)(t−t0i) . (2.28)

We fit the model as described in Section 2.2 in RStan using NUTS. We run the sampler for

5,000 iterations with a burn-in of 3,000, leaving us with 2,000 posterior draws to use for inference.

The model reached adequate convergence according to diagnostics on the R̂ diagnostics described

in Chapter 1. Figure 1.1 shows the split-R̂ values for the model fit to men’s slalom data. The

convergence for the posterior samples is ideal with the split-R̂ value under 1.05 for all parameters.

After running five chains for 50,000 iterations, we calculated R̂ values of approximately one and

observed no other modes were reached during the longer run. We perform model selection using the

technique described in Section 1.4 using LOO-CV to determine the number of polynomial terms

that optimize prediction performance to be p = 3.
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Figures 2.3 and 2.4 show the model fit for four top-performing men’s slalom athletes: André

Myhrer (Sweden), Marcel Hirscher (Austria), Patrick Thaler (Italy) and Alexis Pinturault (France).

The points represent the estimated rating calculated via the GH model, and the lines show the

predicted rating estimated by the draws from the posterior distributions of the growth-curve pa-

rameters. The shaded area shows the 95% credible interval indicating where we expect 95% of the

true ratings to lie.

Figure 2.3: Career trajectories for four of the top men’s slalom athletes. The dotted lines are the
ratings estimated by the GH ratings, and the lines with shading show the growth curve fit and 95%
credible intervals. Here the ratings are aligned with the date.

Figure 2.4 shows the same information as Figure 2.3 aligned at the beginning of their careers

(t0i) rather than by the date. This alignment can give us an idea of whether or not the athletes

have similar trajectories and can be particularly useful if we are comparing an early-career athlete

to a more developed athlete. These athletes are all in different stages of their careers. Myhrer and

Thaler both have more-developed careers and have plateaued in their performance after a gradual

increase. Although beginning at the same level of performance, Myhrer has had a more rapid

increase and is now outperforming Thaler. Hirscher and Pinturault are at earlier stages in their
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Figure 2.4: The same information is shown in 2.3 but aligned at the beginning of the athlete’s
career.

career but have drastically different trajectories. Hirscher’s career is defined by a large increase in

performance, whereas Pinturault has shown very little change.

Figure 2.5 shows the projected ratings of Pinturault against the in-sample fit of Thaler. We see

that although Pinturalt started with a greater rating than Thaler, their careers are likely to end in

roughly the same way. Although this is only an example, including four of the athletes, this type

of analysis can be done the same way with any combination of athletes.

Another result we can extract from this model fit is the “mean curve”, described in detail in

Chapter 1. The purpose of the mean curve is to extract the general shape across the entire sport

by fitting the growth curve using estimates for the polynomial means ηβb
and decay parameters

ω0,ω1. The trajectories shown in Figure 2.6 are evaluated by,

θ̄t = [η0 + η1t∗1 + η2t∗2 + η3t∗3]e−(ω0+ω1z̄)(t−t0i) ,
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Figure 2.5: Comparing Myherer and Thaler’s fitted, full career trajectories to Pinturault’s projected
career trajectory.

where z̄ is the average age at the start of the athletes’ careers. This result enables us to capture

the typical career trajectory of any athlete. The mean curve can give us an idea of what to expect

for athletes for whom we do not have many observed competition results. Figure 2.6 compares the

mean curve of men’s slalom skiing, women’s luge, and women’s judo. Women’s luge and men’s

slalom are multi-competitor sports, thus ratings are estimated using GH ratings. Women’s judo

is a head-to-head sport thus ratings are estimated using Glicko ratings. By looking at these mean

curves side by side, we can compare the typical career path of athletes in each sport. Both men’s

slalom and women’s luge have similar shapes, but women’s luge has more variation in ratings. This

difference could be attributed to women’s luge players having potentially longer careers because

luge is a less physically demanding and a more skillful sport. In women’s judo, a modern martial

art, we see a sharper drop in performance after 10 years, indicating it might be a more physically

41



Chapter 2: Two-Step Model for Predicting Athlete Strength

demanding sport than men’s slalom, thus favoring younger athletes.

Figure 2.6: The mean curve for three Olympic sports. Women’s luge and men’s slalom are fit using
GH ratings. Women’s judo are fit using Glicko ratings.

2.4.2 Coverage

We use the men’s slalom data to determine the estimated coverage of our predictions. Based on

the posterior samples, we determine the 95% credible interval (CI), the range for which we are 95%

confident contains the true athletic strength. An interval is a better descriptor of future ratings

than a point estimate because it accounts for the reliability in our prediction. A correct prediction

is an interval that contains the truth at any given time.

To validate the model, we estimate the coverage of our projections to a future time T . For

athlete i, we evaluate the growth curve at time T using parameters sampled at each iteration of

our MCMC sampler, giving us a distribution for θiT . The 95 % CI is the interval that contains

95%, and the 50% CI is the interval that contains 50% of the evaluated samples, centered on the

mean. The coverage is the percentage of times we correctly captured an athlete’s true rating within

our projected interval. Figure 2.7 shows the estimated coverage at 95% and 50% intervals for four

different time periods (1/4 year, 1 year, 2 years, and 4 years). If we have proper coverage, we would

expect our coverage estimates to lie roughly along the dotted lines. In the 50% case, we consistently

see high coverage; that is, we capture the true rating in our interval too often. In the 95% interval,

we see high coverage for a quarter year, correct coverage for 1 and 2 years, and low coverage

for 4 years. The shaded area shows the standard errors based on a binomial distribution of the
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percentage of correctly predicted athletes’ over the total number of athletes. Decreasing coverage

at higher years means that our model is not capturing enough uncertainty when projecting that

far out. One potential cause of this is the selection bias that occurs as athletes retire. Stronger

athletes tend to have longer careers, so we are not accounting for all career types when projecting

far into the future. We see evidence of this in Figure 2.1 (left), where the majority of athletes have

careers for less than 4 years. The drop in coverage shows that we are not capturing the proper

variation for projections up to 4 years.

Figure 2.7: Coverage of the predictions projected out a quarter, one, two and four years. The
dotted line shows the expected coverage for the 95% (top) and 50% (bottom) intervals. The shaded
region shows standard errors based on a binomial distribution.
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2.5 Clustering Career Trajectories

In Section 2.4, we compare sports by estimating the mean growth curve. Here, we perform an

exploratory analysis to understand how athletes compare to one another. A natural way to visualize

what creates a successful athlete is by comparing athletes against one another. For example, scouts

may predict the success of a young athlete based on the style or physique of a successful athlete

with the hope that they perform similarly in the future. An exploratory way of finding similarities

is to cluster career trajectories. Bartolucci and Murphy (2015) fits a finite mixture model on

runners in a 24-hour long endurance race with the intent of identifying strategies amongst clusters

of runners based on their performance. Such an analysis can be useful in finding athletes with a

potentially similar style or technique or help understand what makes athletes more successful during

a certain career stage. To enable the exploration of the answers to these questions, we cluster the

estimated career trajectories of the athletes. The goal of clustering is to create subgroups of the

data, whereby the trajectories in each group have similarities. Instead of clustering by the predicted

rating, we cluster the estimated growth curve parameters. This technique is more efficient than

directly comparing the ratings since we have a fixed number of parameters within the growth curve.

In contrast, the ratings can be of varying dimensions between athletes as some have had longer

careers than others. Also, clustering based on estimated growth curve parameters can describe the

athlete’s entire career rather than just the observed years.

Clustering raw measurements is problematic for several reasons, including high dimensionality

of the trajectories and trajectories of different observations covering different periods. A common

approach is to use methods that reduce dimensionality by using decomposition methods to break

the observations down into a simple basis. Conventional dimension reduction techniques include

techniques such as principal components analysis (PCA), singular value decomposition (SVD), or

dynamic factor analysis (DFA) (Jolliffe, 2002; Zuur et al., 2003). Dimension reduction or decom-

position techniques can produce better clustering results by smoothing away noise, but also suffer
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from a loss of information and interpretability. Many of these decomposition techniques, such as

PCA and SVD, are agnostic of time and do not perform well with missing data. Clustering raw data

also does not make sense in the context of entire career trajectories because we are also interested

in making out-of-sample predictions.

A better approach is to cluster functional representations of time-series data instead. Many

techniques can be used, including two-stage, nonparametric, and model-based methods (Jacques

and Preda, 2014). In particular, we focus on two-stage methods which first reduce the dimensional-

ity of the data by providing a functional basis, and then use a non-parametric clustering approach

to cluster the observations using this simplified basis. Abraham et al. (2003) first fits B-splines

to the longitudinal data set and uses k-means clustering to the corresponding parameters. In an

application to sports, Miller and Bornn (2017) cluster segments of the National Basketball Asso-

ciation athletes movement during possession by mapping them to a set of characteristic actions.

These “templates” are represented by Bezier curves, a functional basis that maps time to a two-

dimensional position on the court to determine the shape of the movement of the athlete. The

athlete’s movement is then clustered using the functional form of the templates using the model

parameters, thus constructing a vocabulary of types of possession.

Instead of clustering against point estimates of the parameters we want to utilize the entire

distribution of these parameters to retain uncertainty of the estimates. The following definition

of the Wasserstein distance is a good metric for measuring the distance between two empirical

distributions which in our case are samples from the posterior. For simplicity, we use the distance

between the marginal coefficients, although we recognize we ignore correlation. If we define Bib

as the empirical distribution of the posterior of βββib, for athlete i and Bjb to be the equally sized

empirical distribution of βββjb for athlete j then the distance between the two distributions is defined

as a function of the ordered posterior draws,

W2(Bib,Bjb) = (
n

∑
k=1
[β(k)ib − β(k)jb ]2)

1/2
, (2.29)
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Cluster Number Athletes
1 13
2 163
3 3
4 205
5 6
6 13

Table 2.1: The distribution of athlete’s across clusters for a cut in the hierarchical clustering to
create six clusters.

where β(k) indicates the k-th ordered draw. The total distance between two athletes is defined as

dij =
P

∑
p=1

W2(Bip,Bjp) , (2.30)

where P is the order selected through model selection. The βibβibβib are centered by ηp and standardized

by σβb
. The intercept terms β0,α are ignored since we are more interested in the shape of the

trajectories in this clustering exercise rather than the value of the rating.

We perform agglomerative hierarchical clustering using the distance matrix created via the

Wasserstein distance (Ward, 1963). Hierarchical clustering methods are advantageous because

they enable us to perform clustering before determining the number of partitions. Not having to

fix the number of clusters is beneficial when we have no prior information on how many partitions

exist. Hierarchical clustering also provides a network of the similarities between each of the athletes

via a dendrogram (Figure 2.9 shows a partial dendrogram for a single cluster) which can be helpful

when comparing two specific players to one another or to other groups of athletes (e.g., Ruta et al.,

2019). Ward’s method is used to determine which clusters to combine. This method uses both

distance and variance within a cluster to determine cluster merging; thus, it is shown to create more

compact clustering in noisy circumstances. We use the average silhouette method to determine the

number of clusters to be six (Rousseeuw, 1987). Table 2.1 records the number of athletes within

each cluster. Details about the clustering methods and finding the optimal number of clusters can

be found in Appendix B.
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Figure 2.8: Mean and IQR of the estimated career trajectory for athletes within each of the six
clusters.

Figure 2.8 shows the mean and interquartile range (IQR) of the estimates of the career trajec-

tories within each cluster at each period taken from the fitted growth curves from all men’s slalom

athletes. Immediately, we can see the separation between groups of athletes by simply clustering

on three parameters. The clustering method appears to divide the trajectories into athletes with

linearly increasing ratings (Cluster 1), athletes with decreasing ratings (Cluster 6), and athletes

whose rating is projected to remain the same (Clusters 2,4). Cluster 1 contains trajectories that

are first increasing, but then stop increasing and flatten out. Cluster 5 contains trajectories that

decrease at a quicker rate as time goes on.

Figure 2.9 shows the section of the dendrogram and corresponding projected career trajectories

for the athletes in Cluster 5. The trajectories feature a similar shape, with an accelerating decline in

performance toward the end of the athlete’s career. We can use the dendrogram to find athletes who

are more alike by following the branches from the top (larger distances) to the bottom (smaller

distances). For example, Herbert and Pragner are the last branch in the dendrogram and have

roughly the same trajectory shape with different intercept values. Kostelic was the final athlete to

be included in the cluster and has a more downward-curved trajectory than the remaining athletes
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Figure 2.9: The section of the dendrogram representing the path of the clustering and the distance
between each of athletes within Cluster 5 (right). The Estimated trajectories and 95 % CI for the
members of Cluster 5 (right).

in Cluster 5.

2.6 Conclusions

The technique developed in this chapter can be useful for a wide variety of applications in sports

analytics, including the comparison of performance across athletes and even across sports. This

Chapter only addresses applications of the growth curve post-processing step to Elo, Glicko, and GH

ratings, but the method can be used on any type of relevant rating. We used no rating-inherent

or sport-inherent assumptions when building the growth-curve model. Multi-phase inference is

advantageous because it can be applied as a post-processing step to any rating system. Multi-

phase inference gives tremendous flexibility in analyzing the sport and application of interest and

alleviating the need to create and fit complicated, time-varying rating systems.

We fit our model of ratings using an MCMC approach to obtain posterior samples. We validate

the method by estimating the coverage of predictions made by projecting out the growth curve to

times of varying lengths. Although the estimated coverage is the expected value for estimates up to

two years, the main downfall of this implementation is that the coverage drops at four years. This

drop is due to an underestimate of the variation in ratings at long-term projections. Calibrating
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the model to account for this variance would increase the quality of predictions.

We present two applications of this growth curve. The first is an exploratory extension by

clustering the trajectories across different athletes. Clustering athlete trajectories based on their

growth curves is easier than clustering on raw ratings and can give us information about an athlete’s

entire career trajectory rather than only from observed periods. We also use the mean curve as a

method to quickly compare trajectories across sports. Merely looking at plots of the mean curve can

reinforce qualitative comparisons based on what we know about the sport, such as the physicality

of the sport, the typical age of athletes, and other similar characteristics.
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Part II

Defining Regions that Contain

Complex Astronomical Structures
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Chapter 3

Defining Regions that Contain

Complex Astronomical Structures

3.1 Introduction

The universe contains an incredible variety and number of objects, some documented and some

yet to be discovered. Understanding the morphology of these objects is an important step for

astronomers to not only better explain the respective sources of emission, but also comprehend the

underlying physics of the universe. Frequently these astronomical objects are diffuse and irregularly

shaped, and images of these objects can be very noisy due to low photon counts. The morphology

of these irregular objects cannot easily be modeled, and defining the boundaries of these objects

becomes a difficult task. There are several sources of difficulty when drawing boundaries around

distant astronomical objects. One is deconvolving the image from the point spread function (PSF),

or measurable telescope error. Deconvolution is difficult in low-count, low-resolution images because

the PSF is on the same spatial scale as the features of interest. Therefore, it is challenging to resolve

detailed features. Another difficultly is that other, brighter objects in the image can overwhelm
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the object of interest and obscure features of the extended source. Furthermore, diffuse sources do

not have clearly visible edges where the emission ends, and typical image segmentation techniques

that rely on edge detection are insufficient.

The motivation behind the development of the technique in this chapter is a series of X-ray

images taken by the Chandra telescope. X-ray images are sparse compared to their counterparts

with longer wavelengths, making analyzing the images more challenging. In the sources of interest,

the structure we want to analyze has a small spatial resolution compared to the PSF. Two types

of sources are the focus of this chapter. In both cases, our goal is to define a region of interest

(ROI), where the sources are significantly different from the background. The first is a set of

extragalactic jets, high-velocity mass ejections from a black hole, at a high redshift (z > 2.1). It

is challenging to make morphological observations about the jets at large redshifts since few high

energy photons reach the detector; therefore, the features are drowned out by the stronger adjacent

galaxy. Understanding the morphology of jets is essential in understanding the underlying physics

that creates them. The second task is to find the boundary of the ROI in several images of the

supernova SN 1987 A taken over time. Being able to track the changes in the boundary of structure

in the supernova over time can help astronomers understand the development of the supernova at

high energy frequencies. They also can use the segmented image to more objectively compare the

morphology to other frequencies such as optical.

One approach to defining object morphology is for an expert astronomer to define boundaries by

hand. This task can be onerous if there are many sources and can contain errors caused by human

subjectivity. The definition of the boundaries can be influential in future analyses. For example, in

McKeough et al. (2016) the detection method used was occasionally sensitive to the boundary shape

and size. Another approach involves using scientific models to describe the morphology of these

objects. However, data sparsity makes evaluating these models tricky, and often it is these scientific

models we would like to understand. We prefer a data-based, automated method to alleviate these

downfalls.
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Data based approaches for source detection and boundary algorithms are widely used in astron-

omy. However, no method currently exists that can accommodate hurdles that come with sparse,

low-resolution, X-ray images. Wavelet-based approaches, including wavdetect, are useful in de-

tecting point sources in a noisy environment including X-ray images (Starck et al., 2002; Freeman

et al., 2002). Vikhlinin et al. (1998) uses a matched filter technique to detect sources in X-ray

images. BASCS is a Bayesian technique developed by Jones et al. (2015) that separates two over-

lapping point sources. These approaches have only proven useful for detecting and reconstructing

point sources, which does not help in cases with extended emission. Other attempts of modeling

more complicated structure have been developed in high signal to noise settings. However, these

approaches do not perform well with the sparse, low-signal, X-ray images. Extensive reconstruc-

tion and analysis have been done on maps from the Cosmic Microwave Background (CMB) (Bobin

et al., 2016). Scientists have used adaptive binning to smooth images of galaxy clusters to help map

physical parameters (Sanders and Fabian, 2001; Sanders, 2006). Picquenot et al. (2019) developed

a segmentation method for extended sources, but it requires high photon counts as well as spectral

homogeneity, an assumption not guaranteed in all observations. A method that works with complex

extended sources is adaptive kernel smoothing, which creates a smooth representation of the input

data. However, it remains how it can apply to scientific purposes (Ebeling et al., 2006). Spatial field

reconstruction using a Gaussian Markov random field to model extended sources has performed

well in the survey data of galaxies and could be extended to X-ray images (González-Gaitán et al.,

2019). The technique vtpdetect is widely implemented, but is limited by computation cost and the

need for global thresholding (Ebeling and Wiedenmann, 1993). Methods similar to seeded region

growing has been adapted to capture irregular shapes, but only in high signal images (Bertin and

Arnouts, 1996). Typical machine learning techniques, such as morphological snakes (Marquez-Neila

et al., 2014) or seeded region growing (Adams and Bischof, 1994), tend to have trouble segmenting

sparse images. Such techniques rely on large amounts of data and do not innately have the ability

to include uncertainty in the estimates. All of the above techniques have weaknesses in addressing

boundaries of low count, diffuse sources and therefore a specialized approach is needed.
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To address the implications of using X-ray images, we develop a Bayesian method to model the

ROI so we can utilize prior information to stabilize or fill in sparse regions of the image and account

for the high uncertainty in our observations due to the low number of observed photon counts. We

impose the Ising distribution a priori to help segment an image into the ROI and background

and to induce cohesiveness between pixel assignments. The Ising distribution and the generalized

version, the Potts model, were initially invented to model spin states in ferromagnetic materials

(Ising, 1925; Potts, 1952). Since then has been widely used in image segmentation in many fields,

including medical images and sonar images of Earth (Bentrem, 2010; Mignotte et al., 2000). We

expand upon these applications of the Ising distribution by implementing image segmentation in

the Bayesian setting on images with a low signal to noise ratio.

In Section 3.2, we formalize and describe a three-step image segmentation technique built to

outline the ROI of complex astronomical sources. Section 2.3 highlights the computational details

in fitting the model. Sections 3.4 and 3.5 contain validation of the method through several simulated

scenarios and details of the application of this method to the extragalactic jet, supernova.

3.2 Model & Inference

The procedure to obtain the optimal boundary for the ROI takes three steps. The first step uses

a Bayesian reconstruction algorithm to infer the multi-scale structure of the extended source of

interest to elicit details in the morphology at a higher resolution. The second step uses a novel

Gibbs sampler to draw from the distribution of pixel assignments, dividing the pixels into the ROI

and the background. The final step uses the distribution of the pixel assignments to determine an

optimal boundary around the ROI.
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3.2.1 Step 1: Image Reconstruction Using LIRA

The first step is to reconstruct the image so that we can resolve detailed morphological structure

within an extended source. Due to the nature of X-ray imaging, the number of photon counts

we observe is low, causing the information in the pixels in the images to be sparse, making it

challenging to study detailed structures within the source. Reconstruction methods allow us to

infer the true underlying distribution of the intensity of the source.

To accomplish this we use the tool Low-counts Image Reconstruction and Analysis (LIRA,

Esch et al., 2004; Connors and van Dyk, 2007) 1. LIRA is a fully Bayesian, Markov Chain Monte

Carlo (MCMC) algorithm designed to simultaneously model the structure of an observed image

at multiple scales. This multi-scale structure captures the residual emission in excess of a given

baseline model. LIRA is a useful tool in eliciting the details of extended sources within this multi-

scale component. LIRA can also be used in the presence of a PSF and is especially useful when the

structure of interest is on the same scale or smaller than that of the PSF. LIRA was previously used

in the detection of source components of extragalactic jets (McKeough et al., 2016; Stein et al.,

2015). LIRA was also used to recover the detailed structure of the supernova remnant SN 1987 A

across multiple dates (Kashyap et al., 2017).

Bayesian techniques are useful for dealing with X-ray images since the process of collecting

photons is inherently probabilistic. MCMC algorithms allow us to explore the full distribution of the

parameters as well as obtain uncertainty measurements on our estimates of interest. Furthermore,

a fully Bayesian reconstruction algorithm simplifies parameter inference by removing ambiguity

about stopping rules, as well as providing estimates for all parameters simultaneously. Here, we

are interested in inferring the true intensity Λ of our source, given an observed image containing

pixel-wise photon counts Y = {yi, i = 1, . . . , n}. Using Bayes rule, we can equate the distribution of

1LIRA is an open-source R package and is found on GitHub: https://github.com/astrostat/LIRA.
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the underlying intensity given the observed image to other known distributions:

p(Λ∣Y )∝ p(Y ∣Λ)p(Λ) . (3.1)

We denote the photon count across the entire image as Ny = ∑n
i yi. We can model the spatial

distribution of these counts in terms of two components: the multi-scale component in which we

are interested in performing inference on Λ = {λi, i = 1, . . . , n} and the known baseline component,

Λb = {λbi, i = 1, . . . , n}. We model the observed photon counts as a Poisson distribution with the

mean as a linear combination of the two photon count processes:

yi∣Λ ∼ Poisson(
n

∑
j=1

PijAj(λj + λbj)) . (3.2)

The PSF, Pij , is the probability of a photon originating in j is detected in pixel i. This quantity

needs to be estimated dependent on observational equipment but is included in this model as a

known parameter. The exposure map Aj is the value of the efficiency of photons detected at pixel

j. The total photon count across the image remains fixed by enforcing ∑n
j=1 λj + λbj = Ny. When

using LIRA, we must consider square images of N = 2d × 2d pixels. Ideally, we have images of

dimension 64 × 64 or 128 × 128 pixels (d = 6,7) because any fewer we may have trouble uncovering

interesting structure and any more we run into computational limits since the size of the image

increases exponentially. The prior distribution on Λ, as described in Esch et al. (2004), imposes

structure on the image by assigning prior distributions to partitions or groups of partitions within

the image. The goal of this prior distribution is to achieve flexible smoothing at multiple scales, as

well as to ensure stability in the fit.

The output of LIRA is a sequence of draws from the posterior distribution in which each draw

is a single image with pixel-wise values of the multi-scale counts, Λ̃ ∶ {λ̃i ∈ R, λ̃i ≥ 0}. An individual

draw of LIRA tends to be noisy given the low signal environment; therefore, it is not a good

representation of the entire distribution. The best way to view the results of LIRA is in aggregate
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rather than a single draw from the posterior. Figure 3.1 (b) shows an example of the average multi-

scale counts as a result of applying LIRA to an extragalactic jet. Using LIRA, we elicit details of

our source of interest at smaller resolutions than we would without it and in the absence of features

that would hinder our inference on the source’s boundary. In the next step, we use the individual

LIRA draws to assign regions of the image to the ROI and the background.

3.2.2 Step 2: Distribution of Pixel Assignments

This step uses the draws from LIRA to segment the image into the ROI and background. For

simplicity, we assume that the image contains a single source. Therefore, the image can be entirely

represented as a set of two-pixel assignments Z ∶ zi ∈ {−1,+1} where pixels are divided into the ROI

(zi = +1) and the background (zi = −1). We label pixel assignments independently on each draw

from LIRA to propagate uncertainty between the steps. We are interested in making inference

about the spin state of the image Z by drawing from the posterior distribution,

p(Z ∣Λ, τ0, τ1,σ
2
0,σ

2
1,β)∝ f(Λ∣Z, τ0, τ1,σ2

0,σ
2
1)p(Z ∣β)π(τ0, τ1,σ2

0,σ
2
1,β) . (3.3)

We define our likelihood to be distributed as a square-root-normal,

√
λ̃i∣zi, τ0, τ1,σ2

0,σ
2
1 ∼ Normal(τ0,σ2

0)Izi=−1 +Normal(τ1,σ2
1)Izi=+1 , (3.4)

where τ0 is the mean intensity of the background and τ1 is the mean intensity of the ROI. We

estimate variances (σ2
0,σ

2
1) separately since we expect background pixels to have less variability

and be clustered close to zero while pixels in the ROI to have more variability in intensity. We set

a distribution to the square root of λ̃i rather than the log due to a commonly occurring underflow

error in LIRA which produces zero values. The anomaly is described in Section 3.3.

We incorporate the Ising distribution as a prior on the pixel assignments to impose cohesion
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Figure 3.1: The Chandra observatory image of Obs ID 7873 (a). The average multi-scale counts
of the jet from LIRA, absent of the galaxy (b). The 2D probability map aggregating across the
distribution of pixel assignments based on the multi-scale counts (c). The optimal boundary overlaid
on the original X-ray image (d).
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between similarly labeled pixels. The Ising PDF is,

p(Z ∣β) = exp(β∑d(i,j)=1 zjzi)
Z̃(β) , (3.5)

where Z̃(β), the partition function, is the sum of all possible “energy” states. The distance met-

ric d(i, j) is the distance between pixels i and j such that d(i, j) = 1 means they are adjacent

pixels. The parameter β > 0 is proportional to the inverse temperature meaning high values of

β result in “freezing” conditions of our pixel assignments, and more cohesion between the pixel

assignments. Low values of β correspond to a more noisy pixel assignment array. The hyper-prior

on the temperature parame the Ising distribution β is,

β ∼ Gamma(aβ , bβ) .

Since λ̃i∣zi, τ0, τ1,σ2
0,σ

2
1 follows a square-root-normal, we will set the mean and variance param-

eters to the following conjugate priors,

τ0∣σ2
0 ∼ Normal(µ0,σ

2
0) (3.6)

τ1∣σ2
1 ∼ Normal(µ1,σ

2
1) (3.7)

σ2
0 ∼ Inv − χ2(ν0,ω2

0) (3.8)

σ2
1 ∼ Inv − χ2(ν1,ω2

1) . (3.9)

Sampling from the posterior defined in Equation 3.3 is not trivial. We build a novel Gibbs

sampler that can be used to obtain samples from the posterior (Geman and Geman, 1984). The

conditional distributions are iteratively drawn using the following steps:
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1. Draw the inverse temperature parameter from p(β∣Z):
Using Bayes rule, we know that:

p(β∣Z)∝ p(Z ∣β)π(β) ,

where we have already assumed Z ∣β follows an Ising distribution. The partition function, the

density of states for a periodic 2D Ising lattice, is exactly calculated using Mathematica code

by Beale (1996). Although our images are not periodic (edges do not wrap) in large scales

the 2D lattice is periodic asymptotically, so it is an acceptable approximation. In fact, no

new assumptions are made because LIRA already requires the periodicity of the image.

These draws are implemented via Metropolis Hastings (e.g., Gelman et al., 2013) with p(β∣z)
as a target distribution and J(β∗∣β) as a proposal distribution such that E[β∗∣β] = β and

Var[β∗∣β] = ρ:
β∗∣β ∼ Gamma(

β2

ρ2
,
β

ρ2
) .

We recommend placing a weakly informative prior on β for a small value so that the chain

does not get trapped within its critical temperature. Once at its critical temperature, the

image ‘freezes,’ and the β continues to increase to infinity, giving nonsensical results. We

recommend taking several iterations of the Metropolis-Hastings algorithm before updating

the value of β.

2. Draw the mean and variance parameters from p(τ0, τ1,σ
2
0,σ

2
1 ∣Λ̃, Z):

Using Bayes rule we define the distribution of the likelihood parameters,

p(τ0, τ1,σ
2
0,σ

2
1 ∣Λ̃, Z)∝

n

∏
i=1

f(λ̃i∣zi, τ0, τ1,σ
2
0,σ

2
1)π(τ0, τ1,σ

2
0,σ

2
1) .

Conditional on the pixel assignment Z, the distributions for τ0,σ
2
0 and τ1,σ

2
1 are independent

and therefore can be drawn directly by first drawing the σ2
1,σ

2
0, then using the values to draw

τ0, τ1. For simplicity let’s say µ0 = µ1 = µ, ν0 = ν1 = ν and ω0 = ω1 = ω. The process of drawing
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the parameters is,

τ1∣σ2
1 ∼ Normal(µn1

,σ2
1/(n1 + 1))

σ2
1 ∼ Inverse − χ2(νn1

,ω2
n1
)

τ0∣σ2
0 ∼ Normal(µn0

,σ2
0/(n0 + 1))

σ2
0 ∼ Inverse − χ2(νn0

,ω2
n0
) .

The definition for the parameters is,

µn1
= 1

1 + n1

µ + n1

1 + n1

λ̄n1

νn1
= ν + n1

νn1
ωn1

= νω2 + (n1 − 1)s2n1
+ n1

1 + n1

(λ̄n1
− µ)2

λ̄n1
= 1

n1

∑
i∈{zi=1}

λi

sn1
= 1

n1 − 1 ∑
i∈{zi=1}

(λi − λ̄n1
)2

n1 =
n

∑
i=1

Izi=1 ,

for when zi = +1 and similarly defined when zi = −1. The number of pixels assigned to the ROI

n1 = ∑i Izi=+1 and n1 + n0 = N . As a precaution to avoid label switching, after each iteration

if τ1 is less than τ0, then the τ0, τ1 and σ2
0,σ

2
1 values are swapped for the final update.

3. Draw from the posterior distribution on pixel assignments p(Z ∣Λ̃, τ0, τ1,σ
2
0,σ

2
1,β):

We draw the pixel assignments using a modified version of the Swendsen-Wang method, here

on referred to as the SW method (MacKay, 2003; Swendsen and Wang, 1987). The SW

method takes a pixel assignment array Z and induces a larger parameter space that contains

the original N pixel assignments and M additional bond variables. The set of additional bond
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variables are denoted by D ∶ di ∈ {0,1} of which di = 1 means ‘connected’ and di = 0 means

‘disconnected’. We can define a joint distribution g that couples pixel assignments to bonds,

p(Z,D∣Λ̃, τ0, τ1,σ
2
0,σ

2
1,β)∝

M

∏
m=1

gm(z(m), dm∣β)∏
i

f(λ̃i∣zi, τ0, τ1,σ2
0,σ

2
1) .

The notation z(m) refers to the set of all pixel values zi that are connected or disconnected

by the bond dm. The distribution g must meet the following conditions:

• The marginal distribution of Z, is equivalent to our original likelihood,

∑
d

p(Z,d∣Λ̃, τ0, τ1,σ
2
0,σ

2
1,β) = p(Z ∣Λ̃, τ0, τ1,σ

2
0,σ

2
1,β) .

• The conditional distributions of Z and D, p(Z ∣D,β,−) and p(D∣Z,β,−) are easy to

sample from.

The proposed model for gm(z(m), dm) is,

gm(z(m), dm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm = 0 dm = 1
zi = −1 zi = +1 zi = −1 zi = +1

zj = −1 e−β e−β eβ − e−β 0

zj = +1 e−β e−β 0 eβ − e−β

.

The distribution of Z,D is unchanged if we re-scale it by any constant factor. By defining

p = 1 − e−2β we can re-write the model as,

g̃m(z(m), dm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm = 0 dm = 1
zi = −1 zi = +1 zi = −1 zi = +1

zj = −1 1 − p 1 − p p 0

zj = +1 1 − p 1 − p 0 p

.
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Explicitly, the joint model for Z and D is defined as,

p(Z,D∣β) ∝
M

∏
m=1

gm(z(m), dm∣β)
N

∏
i=1

f(λ̃i∣zi, b, τ0, τ1,σ2
0,σ

2
1)

∝
M

∏
m=1

g̃m(z(m), dm∣β)
N

∏
i=1

f(λ̃i∣zi, b, τ0, τ1,σ2
0,σ

2
1) .

We iterate over the following steps to sample from D∣Z,β and sequentially Z ∣D,β:

(a) Sample bond assignments from p(D∣Z,β). If two pixel assignments surrounding a bond

are identical (zm1
= zm2

) set the bond dm equal to one with probability p and set it to

zero otherwise.

(b) Sample pixel assignments from p(Z ∣D,β). The bonds connect the pixel assignments into

a number of clusters. A cluster C is defined by a collection of pixel assignments that

are connected by tangential bonds equal to one. All pixel assignments in a cluster must

adopt the same state as each other. For each cluster, the pixel assignments are +1 with

a probability of p+ and −1 with a probability of p− = 1 − p+ where,

p+
p−
= ∏i∈C f(λ̃i∣, zi = +1, τ1,σ2

1)
∏i∈C f(λ̃i∣zi = −1, τ0,σ2

0
) .

In the event of a pixel being in a cluster on its own we assign it to +1 with a probability

of,

p+ = f(λ̃i∣zi = +1, τ1,σ2
1)

f(λ̃i∣zi = +1, τ1,σ2
1
) + f(λ̃i∣zi = −1, τ0,σ2

0
) .

We recommend a burn-in period before accepting a draw for the pixel assignment matrix Z.

Using the Gibbs sampler, we were able to draw from the distribution of pixel assignments Z.

Similar to the LIRA iterations, the information in aggregate across all draws of the pixel assignments

is more valuable since each draw individually contains noise. In the next step, we use the posterior

to find the most likely candidate for the boundary of the ROI.
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3.2.3 Step 3: Optimal Boundary

To obtain our final boundary estimate, we optimize over the distribution of pixel assignments given

the observation Y using a maximum a posteriror (MAP) estimation,

P (Z ∣Y ) = ∫ P (Z, θ⃗,Λ∣Y )dθ⃗dΛ (3.10)

= ∫ P (Z ∣θ⃗,Λ)P (θ⃗∣Λ, Y )P (Λ∣Y )dθ⃗dΛ (3.11)

= ∫ P (Z ∣θ⃗,Λ)P (θ⃗∣Λ)P (Λ∣Y )dθ⃗dΛ , (3.12)

where θ⃗ represents the nuisance parameters (β,σ2
0,σ

2
1, τ0, τ1). We assume θ⃗ is independent of Y

when given Λ.

Ideally, we would approximate this by,

P̂ (Z ∣Y ) = 1

Ω

Ω

∑
k=1

P (Z ∣θ⃗(k), Λ̃(k)) , (3.13)

where Ω is the total number of iterations from steps 1 and 2. Evaluating this estimate is difficult

since we cannot perform operations on the log probability since we are summing across the raw

probability terms. The evaluated probabilities are too small, given our computational limits due

to the overwhelming possible of pixel assignment arrangements. However, we are not necessarily

concerned with the value of P̂ (Z ∣Y ), but rather we would like to find which Z gives us the maximum.

That is, we just need to show that P̂ (Z1∣Y ) > P̂ (Z2∣Y ), or equivalently,

P̂ (Z1∣Y )
P̂ (Z2∣Y )

> 1 , (3.14)

to claim that Z1 brings us closer to the global maximum.

We can proceed with this technique by first writing the ratio in terms of values we can solve

66



Chapter 3: Defining Regions that Contain Complex Astronomical Structures

without computational issues,

P̂ (Z1∣Y )
P̂ (Z2∣Y )

= ∑Ω
k=1 exp(logPk(Z1∣θ⃗(k), λ̃(k)))
∑Ω

k=1 exp(logPk(Z2∣θ⃗(k), λ̃(k)))
= ∑Ω

k=1 exp(logPk(Z1∣θ⃗(k), λ̃(k)) − logPk(Z2∣θ⃗(k), λ̃(k))) exp(logPk(Z2∣θ⃗(k), λ̃(k)) − lmax)
∑Ω

k=1 exp(logPk(Z2∣θ⃗(k), λ̃(k)) − lmax)
=

Ω

∑
k=1

wk exp(log Pk(Z1∣θ⃗(k), λ̃(k))
Pk(Z2∣θ⃗(k), λ̃(k))

) . (3.15)

where wk = exp(logPk(Z2∣θ⃗(k), λ̃(k)) − lmax)/[∑Ω
k=1 exp(logPk(Z2∣θ⃗(k), λ̃(k)) − lmax)] is defined as

an additive weight and Pk(Z) = P (Z ∣λ̃(k), θ⃗(k)) and lmax = max[logPk(Z2)] is the maximum log-

likelihood of denominator term. Given a set of pixel assignments Z we can find the global maximum

by comparing the probability of each new P (Zk∣Y ) in a ratio with the current maximum. Using

this method we can find the global maximum using any set of pixel assignments even if we do not

expect the corresponding probabilities to be monotonically increasing.

To find the global maxima we need to calculate the ratio for all Z, but since our images can be up

to 128×128 pixels, the number of possible pixel assignments are too numerous (>> 1e300). To narrow
down our search, we find the pixel assignments that are most likely the optimal boundary. To build

this set of best possible candidates, we first construct a statistic, we will call the neighbourhood

statistic, that would be representative of pixel i belonging to a set of pixels within the ROI,

Φi = ∑j∈d(i,j)=1 ζiζj

∑j∈d(i,j)=1 1
, (3.16)

where ζi = {0,1} is a one to one mapping from zi = {−1,+1}. The neighbourhood statistic can be

thought of as the fraction of neighboring pixels that assigned to the ROI given the pixel itself is

assigned to the ROI (zi = +1). If the pixel value is zi = −1 then Φi = 0.

To create the set of candidates, we first take the average Φi across all draws from the posterior

denoted as Φ̄i = ∑Ω
i Φi. To determine the pixels within the ROI we rank the value at each pixel from

largest to smallest Φ̄(1), Φ̄(2), . . . , Φ̄(n) . We set the pixel with the highest neighbourhood statistic
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Φ̄(1) to zi = +1 and the remainder to zj≠i = −1. For the next image, we set the pixel assignments

for the highest and second highest neighborhood statistics to +1 and the remainder to −1. We

repeat the process, including the pixel with the next highest average neighbourhood statistic until

all pixels are +1. We also choose to include the posterior draws from the novel Gibbs sampler in

step 2 since the draws likely come from exploring a more dense space of our posterior, and thus are

suitable candidates for being the best-fit ROI. We then can optimize the posterior across this much

smaller and carefully designed set of pixel assignment arrays that are within our computational

limits.

3.3 MCMC Implementation

We suggest the following implementation for the Gibbs sampler described in Section 3.2. For step 1,

we keep 1000 iterations of LIRA for inference from each simulation after a burn-in of 2000 iterations

to ensure convergence. We apply step 2 to every posterior sample in step 1. To do so, we first run

the Gibbs sampler to convergence on a single LIRA draw, for 500 iterations. We then take the final

draw from this initial run and use it as a starting value for the Gibbs sampler independently run on

all the posterior draws from LIRA. After a burn-in of 50 iterations, we sample a pixel assignment

Z for each LIRA sample, ending up with 1000 pixel assignment draws from the posterior. We do

not use more than a single draw per LIRA sample because there is not much variation between

pixel assignments after convergence, and doing so lowers the computational cost. When drawing β

within the Gibbs sampler, we suggest a jump standard deviation of ρ = 0.01, and we take a draw

after a burn-in of 20 iterations. For drawing the intensity τ0, τ1, and intensity variances σ2
0,σ

2
1, we

can sample directly using the conjugate prior. For sampling the spin states, we iterate the SW

algorithm and take a single sample after a burn-in of 50 iterations. We use this same sampling

strategy for all simulations and applications in Sections 3.4 and 3.5. The process proved robust to

the current length of burn in times. To save computational resources we found these burn in times
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to be sufficiently long enough to have the same results of longer burn in periods. A more formal

analysis of these burn in times could be seen as future work.

We expect the distribution of λ̃i to be skewed and positive, but due to a non-correctable

underflow issue in the LIRA algorithm when applied to real data, many of the λ̃i are exactly 0. The

distribution we choose for the likelihood is knowingly mis-specified. A better-specified model would

be a piece-wise distribution that includes the point mass on zero. Such a distribution would be more

complicated to sample from, thus we did not try this but view this as a possible avenue of future

research. We conclude that the square-root-normal distribution matches the shape well enough and

use it to simplify our model. We are cautious in believing intensity and variance estimates from

the likelihood model in the presence of many zero-valued pixels in the LIRA output. Furthermore,

since some values are zero, we choose the square-root-normal instead of the log-normal.

3.4 Validation

Here we present two types of simulations to validate the multi-phase model. The first is a set of

two dimensional Gaussians with varying widths on backgrounds of different noise levels. These

simulations are to emulate a real but well-defined and simple source to observe how the multi-

phase model performs. The second set of simulations is geometric shapes with hard edges in

varying intensities, noise levels, and arrangements. The purpose of these simulations is testing

the classification error of the multi-phase method in the presence of a “true” boundary. Although

this is unrealistic in the case of extended sources, it is still essential to understand how the model

performs in these ideal scenarios.
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3.4.1 2D Gaussian Simulation

We create realizations of a 2D Gaussian with a varying amount of background noise and of varying

size within a 64×64 pixel image. We simulate the sources as Gaussians with three different variances

(4, 8, 16 pixels). For each set of images with the same size Gaussian, we vary the background

intensity (0.01, 0.1, 1 photons). The set of simulations use a peak intensity of 5 photons regardless

of the background intensity and size. Poisson realizations are made from each of the 2D Gaussian

and noise templates. The same realization of noise is used across the same noise intensity for

consistency. The realizations are convolved with a 2-pixel standard deviation, 2D Gaussian PSF,

to simulate telescope blurring in typical observations. The final images for the simulations are in

Figure 3.2. Row (2) most closely resembles real astronomy scenarios.

We then proceed with the multi-phase method to obtain a boundary estimate around the 2D

Gaussian in each image. First, we run LIRA independently on each of the nine simulations. In

all cases, the same PSF used to convolve the images is used as input in LIRA for deconvolution.

We use a flat baseline array of zero photons in each pixel as there are no extraneous sources we

wish to remove from the images. Figure 3.3 shows the average multi-scale counts output from the

LIRA iterations for each of the nine simulations. The aggregate of the average multi-scale counts

emphasizes the features of the source in the absence of the noise in individual draws. However, in

some cases, we are also picking up structure in the background.

The next step is to obtain posterior draws from the Gibbs sampler described in step 2 in Section

3.2.2. One result is a probability map that is created by averaging the ζi for each pixel across the

iterations to obtain the probability of pixel i is contained within the ROI. An astronomer can use

these probabilities as a distribution describing the ROI across the entire image. Quantities such

as expected values of luminosity or flux can easily be calculated from these probability maps. The

probability map resulting from this step for the size varying simulations is shown in Figure 3.4.

Finally, we optimize over the posterior distribution of pixel assignments to get our final boundary
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Figure 3.2: 2D Gaussian simulated images. Rows 1,2, and 3 contain noise intensity 0.01,0.1,1
photons respectively. Columns a,b, and c contain a 2D Gaussian with a peak intensity of 5 photons,
with a variance of 4,8,16 pixels respectively.
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Figure 3.3: The average multi-scale counts calculated using the square root of the posterior draws
from LIRA. Row and column arrangements are identical to that of Figure 3.2.
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Figure 3.4: Probability map as an aggregation of draws from the posterior distribution of pixel
assignments. Each pixel value is the probability of that pixel being within the ROI. Row and
column arrangements are identical to that of Figure 3.2.
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shown in Figure 3.4 (blue) with two and three standard deviations from the center of the Gaussian

for comparison (green).

In rows (1) and (2), the boundary corresponds to being slightly bigger than the three σ contour

in the 2D Gaussian. In the case with the most noise, row (3) , the boundary corresponds more

with the two σ contour. We note that the value of β tends to increase with the width of the 2D

Guassian. The posterior mode and 95% credible interval (CI) for the β is shown in Figure 3.6. The

higher the β, the more cohesive we expect the pixel assignments to be. We expect cohesiveness

to be favored when the source is larger, but this has a hidden consequence of also increasing the

boundary around noisy regions. In Figure 3.5 as we move from columns (a) to (c) we see the

ROI grow with the source. We also see the boundary around the noise grow from the first to the

second column, before decreasing again once the signal is stronger. This effect correlates with the

increasing estimate of β.

Simulations with Edges

We perform a validation procedure by estimating the boundary for two types of simulated images

with edges. The simulated images come from a “truth” that contains edges so that we know which

pixels belong to the ROI. This type of image is not what we expect to see in complex astronomical

structures. However, it gives us an idea of relative intensity to the background the source needs to

be to see good performance of the boundary in “ideal” circumstances.

The first set of simulations we create is a sequence of four rectangular steps within a 64 × 64
pixel image. In each case, the background intensity level is an average of 0.1 photon counts. We

create images with four different maximum average intensities of 1, 3, 5, and 10 photon counts;

therefore, the region of the highest strength comes from an expected strength of 10, 30, 50, and 100

times that of the background. The remaining levels take the form of stairs have intensity levels in

sequence, linearly from the background to the maximum. The second set of simulations mirror the
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Figure 3.5: The optimal boundary (blue), compared to the one and two sigma levels of the 2D
Gaussian (green), overlaid on the observed image. Row and column arrangements are identical to
that of Figure 3.2.
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Figure 3.6: Beta scaling with respect to source size (pixels) and intensity (average photon counts).
The 95% credible interval around β. The β increases with the size of the source, which is intuitive
since the higher the β, the more cohesive our pixel assignments.

same intensity levels as the steps, but the levels are in a concentric square pattern with the highest

strength in the center and lowest on the outside.

We take a Poisson realization of the truth image to simulate noise. For each pixel given strength

λi we draw from the distribution Poisson(λi). The Poisson realizations are in column (a) of Figure

3.7 and 3.8 for the stairs and concentric squares shapes respectively. The rows of the figures indicate

the increasing strengths (1) corresponding to a maximum 10 times the background and (4) corre-

sponding to a maximum 100 times the background. Next, we apply LIRA to the observed image

using a flat baseline image of 0 counts and a PSF of a single pixel. The average multiscale counts

are shown in column (b) in Figures 3.7 and 3.8. We then sample draws from the posterior of the

pixel assignments. Column (c) in Figures 3.7 and 3.8 show the probability map, the percentage of

times each pixel is assigned to the ROI. Finally, we use the posterior draws of the pixel assignments

to determine the optimal boundary around the ROI by maximizing the posterior. The maximum

boundary is shown overlaid on the average multi-scale counts in column (d) of Figure 3.7 and 3.8.
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Figure 3.7: The observed image (a), average multi-scale counts (b), probability of a pixel being in
the ROI (c), and the final boundary estimate (d) for the simulation in the shape of stairs. The
maximum intensity for the simulations is 10, 30, 50, and 100 times that of the background in rows
(1), (2), (3), and (4) respectively.
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Figure 3.8: The same layout of images as with Figure 3.7, but with the concentric squares pattern.
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It is visually apparent that we get a more accurate definition of the boundary as the magnitude

of the source increases relative to the background. We quantify this by calculating the error of our

boundary estimate in three ways: classification, type I, and type II error. Classification error is

determined by the percentage of pixels we incorrectly labeled ROI or background. Type I error

is the percentage of pixels incorrectly labeled as the ROI, and type II is the percentage of pixels

incorrectly labeled as the background. Figure 3.9 shows the error for each of the four strengths

and styles of simulation (steps:bottom, concentric squares:top). Overall the concentric squares had

smaller errors than the stairs case, even approaching error rates of less than 1% when the maximum

strength is 100 times that of the background, which is roughly representative of the SN 1987 A

supernova. We do not expect our performance on SN 1987 A to have the same classification error

because it is a diffuse source and has a more complicated PSF, but we expect a source of similar

intensity relative to the background to have great performance in ideal circumstances.

Figure 3.9: The classification, type I, and type II errors for the concentric squares (top) and stairs
(bottom) across the four different maximum intensities.
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3.5 Results

We revisit our motivating examples: the extragalactic jet Obs ID 7873 and supernova SN 87 A. The

goal in both cases is to define the optimal boundary around the ROI to help us better understand

the morphology of the astronomical source of interest.

3.5.1 Extragalactic Jets

Extragalactic jets are highly energetic ejections from supermassive black holes. The matter from

jets can span enormous distances (> 100 kpc), far beyond the galaxies’ borders. Less than 100 jets

have observations at X-ray wavelengths in which we can study their morphology (Massaro et al.,

2011). Even fewer observations exist at high redshifts (z > 2). In this section, we walk through the

multi-phase process of the source 1418−064 (Obs ID 7873), which resides at a redshift of z = 3.689,
taken on July 27, 2007. The jet was first observed in the radio wavelength, where the detail of

the morphology is much clearer (Beasley et al., 2002; Ellison et al., 2001). Once targeted, X-ray

observation was made with the Chandra X-ray observatory (AO8 program [PI: Cheung] from 2007

Jan - June). In McKeough et al. (2016) the authors apply the statistical method described in Stein

et al. (2015) to detect the presence of high redshift jets in pre-defined regions. One complication

with this method is that in some cases, the power of the detection was not robust to the size and

shape of the boundary. We take a different approach by assuming that a single source in the image

exists and using our multi-phase method to define a boundary around the ROI. We focus on this

particular source because in McKeough et al. (2016), the astronomer originally defined a single

boundary rather than multiple nodes as with some other jets, thus simplifying the procedure.

Figure 3.1 (a) shows the original X-ray image taken by Chandra. It is difficult to determine the

morphology of the jet because only a handful of high energy photons were collected by the telescope,

particularly compared to the galaxy in the center of the view. Figure 3.1 (b) shows the average
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multi-scale output from LIRA. We implement the same LIRA procedure as described in McKeough

et al. (2016). LIRA removes the implicating galaxy source and deconvolves the image from the PSF

so that the details within the jet are much easier to make out. For each LIRA sample, we conduct

the Gibbs sampler in step 2 to draw samples from the posterior on pixel assignments. The aggregate

of the samples is shown in Figure 3.1 (c) in the form of a 2D probability map indicating the pixel-

wise estimated probability that the pixel is contained in the ROI. We optimize the posterior to

obtain the final boundary estimate. Figure 3.1 (d) shows this final boundary (blue) overlaid on

the original X-ray image. We also display the astronomer-defined boundary from McKeough et al.

(2016) (green). Our boundary roughly resembles that of the boundary in McKeough et al. (2016),

but with a more form-fitting shape. In Obs ID 7873, both the astronomer and our multi-phase

method define a single boundary around the object. However, it is typical in other sources to

have multiple nodes and varying structure within a single jet, each potentially requiring a different

boundary and an expansion of our method to account for multiple sources in an image.

3.5.2 Source 87A

SN 1987 A is the nearest observed supernova remnant discovered by astronomers and has become

one of the most studied type II supernovas in history. A supernova is an explosion caused by the

death of a star as it collapses, with the resulting wave of ejected material and interstellar medium

forming a luminous shock called a supernova remnant (SNR). SN 1987 A, from here on referred

to as 87A, is of particular interest to X-ray astronomers. Therefore, it has been observed several

times throughout the lifetime of the Chandra telescope, starting in 2000 (Burrows et al., 2000).

There have been several morphological changes since the first time it was observed with Chandra.

Kashyap et al. (2017) reanalyzes archival data by reconstructing high-resolution images using LIRA.

They reconstruct previously unresolved structures across four different dates 2000-Dec, 2007-Jul,

2011-Mar, and 2015-Sep. Figure 3.10 (a) shows the X-ray observation in 2000-Dec. Using the

reconstructed images, we can compare morphological details that have changed across time for 87A
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at scales of approx 1/4 arcsec. We revisit this analysis by estimating the boundary on a sequence

of images over time to better understand the changing morphology of the supernova.

We estimate the boundary for each observation of 87A to see how the morphology of the SNR

changes across time. For step 1, we use the same baseline and empirical PSF as described in

Kashyap et al. (2017). Figure 3.10 shows the average multi-scale counts taken across the samples

from LIRA. In step 2, we obtain draws from the posterior distribution of pixel assignments. Figure

3.10 (c) contains the pixel-wise probabilities of each pixel being labeled as the ROI. Finally, we

optimize the posterior distribution to estimate the boundary around the ROI of the supernova

remnant. The boundary estimate for the 2000-Dec observation is shown in Figure 3.10 (d).

We can get an idea of the uncertainty of our estimate by replicating the same procedure on

the same image ten times. Figure 3.11 shows two different aggregations of these ten replicated

boundaries overlaid on the original X-ray image. The image on the left shows all 10 overlapping

ROI. Lighter tiles show where there is little overlap among the ROI, and darker tiles show where

more ROI overlap. The figure on the right simplifies this image by drawing contours at the boundary

of where at least 5 ROI overlap and all 10 ROI overlap. At the level of only 5 boundaries overlapping,

we lose the separated regions that we see in an overlap of all 10 boundaries.

We run this method on the four observations presented in Kashyap et al. (2017). Unfortunately,

the changes in the type of observation and PSF between the first two observations and the second

two make the series of images challenging to compare 2. After the first image, the bright spots in

the center are no longer differential from the background. Ideally, we would be able to see the same

ROI in each observation and be able to track its morphology over time; however, the significant

amount of background structure in the multi-scale counts prohibits meaningful comparisons. An

improved PSF will allow us to perform improved inference on the multi-scale counts, thus reducing

uncertainty on the boundary, and giving more consistency across time.

2The first two are ACIS-S observations, and the second two are ACIS-S + HETGS observations
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Figure 3.10: The broadband image of 87A from December 2000 (a). The average multi-scale counts
from LIRA (b). The 2D probability map aggregated across the distribution of pixel assignments
(c). The optimal boundary overlaid on the original X-ray image (d).
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Figure 3.11: Aggregation of 10 repetitions of the estimated boundary overlaid on the original X-ray
image. On the left we plot all ROI on top of one another with darker colors where most boundaries
overlap, lighter colors are where fewer boundaries overlapped. On the Right we draw a boundary
where 5 ROI and all 10 ROI overlap with the lighter and darker blue respectively.

Figure 3.12: Chandra broad band images are shown in the bottom row overlaid with the optimal
boundary determined by our method. On the top row we have the LIRA realizations of each of
these images. From left to right we have 87A observations from 2000-Dec, 2007-Jul, 2011-Mar, and
2015-Sep.
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3.6 Conclusion

Extensions to improve the boundary algorithm are generalizing the model to allow for more than

one ROI and a method for estimating the uncertainty. The application to X-ray sources present a

clear motivation for extending this model to allow for more than two ROI in a single image with

varying intensities. In the jet example, the jets can be divided into different segments representing

different nodes or other features. In the 87A example, particularly in the later observations, it

seems that there are two sources of radiation, the bright spots, and a more extended fainter source.

By separating these two from one another, we would get a better idea of the shape of the bright

spots we wish to map over time. The MAP method we present here only produces a point estimate

of the boundary. We try to alleviate this by running the algorithm many times and aggregating the

results. Defining a model-based uncertainty on a boundary is difficult due to the computational

restrictions of evaluating exact posterior probabilities. We suggest a more rigorous way of estimating

uncertainty as a future extension to this work.

In our modeling decision, we could have chosen to update LIRA jointly model the pixel assign-

ments and multi-scale counts, but instead, we choose to use a multi-phase model. This decision

was for the simplicity of extending existing work as LIRA is already a frequently used algorithm.

In Appendix C we explore the conditions in which our multi-phase model must meet in order to

have equivalent inference with a fully joint model.

In summary, we construct a novel multi-phase method that defines a boundary around the

ROI in images of complex, irregularly shaped, and diffuse astronomical sources. Estimating this

boundary can be useful in understanding the morphology of these images in an objective approach.

We demonstrated that this boundary algorithm was useful in delineating extragalactic jets as well

as depicting how a SNR changes over time.
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Afterword

In this dissertation, we apply a variety of statistical modeling techniques to the domains of sports

analytics and astronomy. In Part I, we create two methods to model changes in athlete ability

over time. First, we extend the Plackett-Luce model to incorporate a growth curve to model

athlete ability over time for multi-competitor sports. The growth curve model is flexible enough

to accommodate any career type, regardless of the sport. This new model proves to be successful

in predicting the performance of athletes. We evaluate the model by estimating the correlation of

our predictions and the actual competition results and find that even projecting out a couple of

seasons, we still maintain a relatively high correlation. Second, we use the same growth curve and

apply it as a non-linear mixed-effects regression model to estimated athlete rating over time across

both head-to-head and multi-competitor sports. The growth curve model is useful for describing

the time-varying nature of Elo, Glicko, and GH rating systems. We validate the model by creating

predictive intervals and estimating the coverage of our predictions to show that coverage is as

expected in the 95% CI for up to four years. We use the growth curve for not only prediction but

also an exploratory analysis of the fitted career trajectories through clustering.

In Part II, we establish a method to define boundaries around complex astronomical objects in

X-ray images. Typical boundary algorithms do no perform well due to the inherent sparsity in X-

ray images. The first step is to use LIRA to reconstruct the X-ray image to elicit detailed structure

within the ROI. The next step is to assign each pixel to the ROI or the background. We build a

distribution for these pixel assignments through a novel model that imposes an Ising distribution
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a priori on the pixel assignments. Finally, we optimize the posterior on the pixel assignments to

estimate the boundary of the ROI. We apply this method on two different sources: a high-redshift,

extragalactic jet, and a series of images over time of a supernova.

Final Comments

• Modeling Decisions

The models presented in this dissertation are the product of an immense amount of explo-

ration and decision making. Deciding the functional form of the growth curve was crucial in

the success of the predictive models presented in Chapters 1 and 2. Through combing the lit-

erature, we discovered that the growth curves already being used were simple (e.g., quadratic

or cubic) or were designed for specific purposes and not generalizable (e.g., Moudud et al.,

2008). The first step was creating a more flexible, functional form for the growth curve.

Candidate models consisted of a mixture of generalized gamma and logistic components to

capture any possible career trajectory shape. However, a combination of these models suf-

fered from identifiability issues, which made inference on the parameters difficult. We settled

on a product of a polynomial with orthogonal components and exponential decay. Making

the polynomial coefficients and the intercept vary per athlete gives the model flexibility in

the shape between athletes while implementing this as random-effects allows for sharing in-

formation across the sport. Finally, this model is appealing because the decay rate can easily

be compared across sports revealing trends such as how quickly an athlete’s performance

declines. The shape of the athletes’ career trajectories can be compared against one another

using the polynomial coefficients as done in the clustering exercise at the end of Chapter 2.

The major modeling decision in Chapter 3 was the decision to impose the Ising distribution as

a prior on the pixel assignments. The spatial characteristics translate well to image segmen-

tation because if a pixel is within the ROI, then it is much more likely the adjacent pixel is

also within the ROI. Furthermore, since it is a widely known and commonly used distribution,
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there exist simple and well-tested ways for sampling from the distribution, which we can take

advantage of in our MCMC. Lastly, it can be extended to more than a single source through

its generalized form, the Potts model. Although there exist examples of the Ising distribution

used in image segmentation, it traditionally sued for modeling 2D magnetic fields. Applying

the Ising distribution often gets initially disregarded as a misuse of the Ising distribution by

physics experts. It is important to realize that the Ising distribution was made to model

scientific phenomena, and that itself does not have hard science encoded into its form. As

mentioned in Chapter 3, many examples exist of successfully using it in image segmentation.

• Importance of Estimating & Propagating Uncertainty

Being able to quantify the uncertainty in estimates is crucial when making claims based on

statistical models. Therefore, it is essential to propagate uncertainty through the model,

particularly in cases of multi-phase inference. When making predictions, estimating the un-

certainty of the projection gives the reader a better understanding of future results than a

point estimate. For example, stating that we predict the New England Patriots will win the

season is less informative than saying they have a 60% of winning the season. In Part I,

we incorporate uncertainty into all predictions using a 95% CI and use these probabilistic

predictions when comparing athletes to one another. In Chapter 2, we encourage using the

Glicko and GH rating methods as they update the estimate of the uncertainty (RD) along

with updating the estimate of rating. Athletes who appear in more competitions have less

uncertainty on their rating estimates. Quantifying uncertainty in boundary estimation is a

more difficult task due to the model’s spatial nature. We solve this problem through a boot-

strap approach, replicating the process to flesh out many probable boundary arrangements.

Approaching this problem formally through using the probability distribution of the pixel

assignments is limited computationally by the enormous number of possible arrangements.

Overall, defining an uncertainty around a boundary is an unsolved task and one that would

be impactful in astronomy and other fields.
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• Multi-Phase Inference

We compare the applications of the models in Chapter 1 (one-step approach) and in Chapter

2 (two-step approach) to multi-competitor sports. The two models are similar because they

both use the Plackett-Luce model to infer the ratings and the growth curve model to infer the

time-varying nature of the ratings. In both cases we are interested in finding the distribution

of the growth curve parameters (β,α,ω) and the ability parameter (θ). In the one-step

approach, we use time-varying parameters and event data to estimate both the rating and

the growth curve parameters at the same time using the Plackett-Luce likelihood in Equation

1.2. In this case, we constrain the ratings under the assumptions of our growth curve, shown

by the equality in Equation 1.3. In the two-step scenario, we first use event data to estimate

player rating using the GH rating system described in Section 2.2.1. GH is not identical to

the full Bayesian case described in the one-step approach, but rather provides an estimate of

athlete rating over time and an estimate on the uncertainty by updating the rating after each

period. In the second step, we impose the growth curve on the rating estimates as non-linear,

mixed-effects, regression model through the relationship defined in Equation 2.16. In this

case, the original estimate of the rating is unaffected by the growth curve relationship in the

second step to describe the athletes’ career trajectories. The main reason for using the two-

step model is that the second step in the two-step model can be applied to a variety of rating

schemes, thus increasing the generalizability of the application. The one-step model is limited

to the multi-competitor use case since the growth curve is ingrained into the Plackett-Luce

Likelihood.

In Chapter 3, we discuss a method that uses the output of the pre-existing LIRA algorithm

Λ̃ to build a distribution of pixel assignments Z for a particular observation Y . Rather

than model both the parameters, multi-scale counts Λ and the pixel assignments Z, jointly,

we choose to use a multi-phase method. One reason for using a multi-phase method is

simplicity. LIRA was published 10 years ago, and since then, it has been used in a variety

of settings (McKeough et al., 2016; Kashyap et al., 2017). Rather than modifying the entire
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LIRA algorithm to estimate the pixel assignments and multi-scale counts jointly, it is much

simpler to create an additional algorithm that uses LIRA output as a pre-processing step.

Furthermore, LIRA is well-tested and well-formulated, whereas we know the model on pixel

assignments is misspecified. We assign pixels of a diffuse source with no hard edges to a

binary state, thus creating hard edges where there are none. Using LIRA as a pre-processing

step for estimating the pixel assignments alleviate the effects that the misspecified model for

pixel assignments that could bias our estimates on multi-scale counts.

Applying a model to observed data simplifies “real-life” mechanics. As statisticians, we strive

to make this model as accurate and as assumption-free as possible to minimize error due

to this simplification. However, if our data is pre-processed, then how we build our model

reflects not the raw data, but the analyses put into creating the data we are given. As Meng

(2014) remarks, these types of analyses are becoming more prevalent in a variety of applied

settings since there is often a degree of separation between the experts in data collection and

the experts in data analysis. We have a better understand and can collect more detailed

data about the underlying system that analyses are complicated enough that modeling all

components jointly is computationally difficult. Meng cites multi-phase inference as one of

the open problems in the field of Statistics “that could win a Nobel Prize”. We barely scratch

the surface of the depth and breadth of the impact this field of inference has on the science

and social science communities.
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Appendix A

Orthogonal Polynomials

Understanding the creation of the orthogonal polynomials is important because the process must

be replicated to project new time points into the orthogonal space. We start with a sequence of dis-

cretized time points ttt = {0,1, . . . , T}. We want to create a orthogonal basis of ttt, ttt2, . . . , tttp.We will de-

note the orthonormal basis as ttt∗−1, ttt
∗
0 , ttt1∗, . . . , ttt∗p and corresponding orthogonal basis as uuu−1,uuu0,uuu1, . . . ,uuup

where ttt∗i = uuui/∣∣uuu1∣∣. This can be done by the following steps:

1. Center all elements of ttt by the mean t̄:

{t′t′t′ = ttt − t̄ ; t̄ = 1

T + 1
T

∑
i=0

i}

2. Set basis vectors uuu−1 = 000,uuu0 = 111,uuu1 = ttt′ which are trivially orthogonal.

3. Define 2i =< uuui,uuui >, αi = <uuuittt
′,ttt′>
!i

. Note that the L2-norm is ∣∣uuui∣∣ =√2i.

4. For i = 2, . . . , p we can now solve for the orthogonal polynomial components using the Gram
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Schmidt process on increasing orders of time, rewritten using a recursion relation.

√
2ittt
∗
i = uuui = ttt′uuui−1 −

i−1
∑
j=0

< ttt′uuui−1,uuuj >
2j

uuuj

= (ttt′ − αi−1)uuui−1 − 2i−1
2i−2

uuui−2

Ignoring ttt∗−1 and ttt∗0 , we now have a set of orthogonal polynomials ttt∗1 . . . ttt
∗
p up to time T . The model

is fit using these orthogonal polynomials. In practice the orthogonal polynomial basis was created

using the poly function in R, which also returns all 2i and αi coefficients.

In order to make projections to include future time periods sss = {0,1, . . . , T, T + 1, T + 2, . . .}
we must project these values into the same orthogonal space we use to fit the parameters in our

model. To do so we keep the same coefficients, 2i and αi, and use them to project the time points

sss into the same space using the equation in step 4s. Explicitly, if we created our orthogonal basis

using ttt
∗(0,1,...,T )
i ; i = 1, . . . , p, but we want to extend it to ttt∗i = ui = {ttt∗(0,1,...,T )i , ttt

∗(T+1,T+2,... )
i } then

we modify step 4 to be: √
2′ittt
∗
i = ((sss − t̄) − α′i−1)uuui−1 − 2′i−1

2′i−2
uuui−2 ,

where 2′i, α
′
i, and t̄ are calculated only using ttt

∗(0,1,...,T )
i . Note that the new polynomial vectors are

not themselves orthonormal, but are projected into the same space we fit the coefficients.
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Hierarchical Clustering

Agglomerative hierarchical clustering begins with all observations as separate clusters, and itera-

tively combines observations and clusters in the order of smallest to largest distance. We choose

a type of linkage or method to merge clusters one at a time, in this case we choose the Ward’s

method. Hierarchical clustering will always merge the observations or clusters with the smallest

distance as determined by Ward’s method at each step. A way of visualizing this process is looking

at the partial dendrogram in Figure 2.9, where the branches represent at what distance (y-axis)

each cluster or observation was merged. Ward’s method provides a decision metric based on the

distance between two clusters and the noise within each cluster. This method tends to make com-

pact clusters and perform well when clusters are noisy. The Ward’s metric is between two clusters

Ca and Cb is

∆(Ca, Cb) = ∑
i∈Ca

∑
j∈Cb

dij , (B.1)

where dij is the distance between athletes i and j. The main downside to this type of clustering is

that it is greedy: once a cluster is merged together it will never be separated.

Using the silhouette statistic is a good way to evaluate cluster fit. The silhouette statistic

is calculated for each observation and measures how well the observation fits within it is labeled
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Figure B.1: Average silhouette values for number of clusters 2 through 15. The maximum average
silhouette occurs with 6 well defined clusters, denoted by the red dotted line.

cluster, and how far away it is from the next closest cluster. Mathematically this concept is written

as:

si = bi − ai
max(ai, bi) , (B.2)

where ai is the average distance between an observation and other observations in its assigned

cluster and bi is the average distance between an observation and other observations in the next

closest cluster. If si is close to 1, then the observation is thought to be well assigned and if it is

negative it is likely incorrectly assigned. The silhouette statistic can also be used in selecting the

optimal number of clusters. If we define

s̄k = 1

n

n

∑
i

si

then the optimal number of clusters would be maxk s̄k. Figure B.1 shows the si for 2 through

15 clusters. The optimal number of clusters is 6 which is wear the maximum average silhouette

statistic occurs.
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Model Compatibility for the LIRA +

Ising Model

We formulate the joint probabilities for Λ and Z in the joint setting and in the multi-phase setting

to set conditions where the two methods may be equal. We can build a joint probability model

that estimates the pixel assignments Z and multi-scale counts Λ simultaneously. We will indicate

the joint model as J :
PJ (Λ, Z ∣Y )∝ f(Y ∣Λ, Z)πJ (Λ, Z)

Instead, we approach this in two steps. The two steps of our LIRA-Ising model are explicitly

written out here. For simplicity we ignore the extraneous parameters and only focus on Λ,Z and

the observed image Y . We can write the probability model for the first step, denote as S1:

PS1
(Λ∣Y )∝ f(Y ∣Λ)πS1

(Λ)

Taking a single draw of the multi-scale counts Λ̃ from S1, we can write our probability model for
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S2

PS2
(Z ∣Λ̃)∝ PS2

(Λ̃∣Z)πS2
(Z)

The combination of the two gives us the complete multi-phase process outlined in Chapter 3 (S):

PS(Λ̃, Z ∣Y ) = PS1
(Λ∣Y )PS2

(Z ∣Λ̃)

PS(Λ̃, Z ∣Y )∝ f(Y ∣Λ̃)πS1
(Λ̃)PS2

(Λ̃∣Z)πS2
(Z)

PS2
(Λ̃)

Model S is equivalent to model J under the following two conditions.

1. Y and Z are independent given Λ,

f(Y ∣Λ) = f(Y ∣Λ, Z) .

2. The prior for the LIRA step is equivalent to the marginal prior of Λ in the joint model. That

is, PS2
(Λ∣Z)πS2

(Z) = πJ (Λ, Z) which implies

πS1
= ∫ πJ (Λ, Z)dZ = ∫ PS2

(Λ∣Z)πS2
(Z)dZ

It is safe to assume that the first condition is trivially satisfied. The second condition is not

guaranteed to be true.
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