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Bayesian Estimation of Luminosity Distributions and Model
Based Classification of Astrophysical Sources

Abstract

The distribution of the flux (observed luminosity) of astrophysical objects is of great

interest as a measure of the evolution of various types of astronomical source popula-

tions and for testing theoretical assumptions about the Universe. This distribution

is examined using the cumulative distribution of the number of sources (N) detected

at a given flux (S), known as the log(N)− log(S) curve to astronomers. Estimating

the log(N)− log(S) curve from observational data can be quite challenging though,

since statistical fluctuations in the measurements and detector biases often lead to

measurement uncertainties. Moreover, the location of the source with respect to the

centre of observation and the background contamination can lead to non-detection

of sources (missing data). This phenomenon becomes more apparent for low flux

objects, thus indicating that the missing data mechanism is non-ignorable. In order

to avoid inferential biases, it is vital that the different sources of uncertainties, po-

tential bias and missing data mechanism be properly accounted for. However, the

majority of the methods in the relevant literature for estimating the log(N)− log(S)

curve are based on the assumption of complete surveys with non missing data.

In this thesis, we present a Bayesian hierarchical model that properly accounts for

the missing data mechanism and the other sources of uncertainty. More specifically,

we model the joint distribution of the complete data and model parameters and

then derive the posterior distribution of the model parameters marginalised across

all missing data information. We utilise a Blocked Gibbs sampler in order to extract

samples from the joint posterior distribution of the parameters of interest. By using

a Bayesian approach, we produce a posterior distribution for the log(N) − log(S)

curve instead of a best-fit estimate. We apply this method to the Chandra Deep

Field South (CDFS) dataset.

Furthermore, approaching this complicated problem from a fully Bayesian angle en-

ables us to appropriately model the uncertainty about the conversion factor between
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observed source photon counts and observed luminosity. Using relevant spectral data

for the observed sources, the uncertainty about the flux-to-count conversion factor

γ for each observed source is expressed through MCMC draws from the posterior

distribution of γ for each source. In order to account for this uncertainty in the non-

detected sources, we develop a novel statistical approach for fitting a hierarchical

prior on the flux-to-count conversion factor based on the MCMC samples from the

observed sources (a statistical approach that can be used in many modelling prob-

lems of similar nature). We derive in a similar manner the posterior distribution

of the model parameters, marginalised across the missing data, and we explore the

impact in our posterior estimates of the parameters of interest in the CDFS dataset.

Studying the log(N)− log(S) relationship for different source populations can give

us further insight into the differences between the various types of astronomical pop-

ulations. Hence, we propose a new soft-clustering scheme for classifying galaxies in

different activity classes (Star Forming Galaxies, LINERs, Seyferts and Composites)

using simultaneously 4 optical emission-line ratios ([NII]/Hα, [SII]/Hα, [OI]/Hα and

[OIII]/Hβ). The most widely used classification approach is based on 3 diagnostic

diagrams, which are 2-dimensional projections of those emission line ratios. Those

diagnostics assume fixed classification boundaries, which are developed through the-

oretical models. However, the use of multiple diagnostic diagrams independently of

one another often gives contradicting classifications for the same galaxy, and the fact

that those diagrams are 2-dimensional projections of a complex multi-dimensional

space is limiting the power of those diagnostics. In contrast, we present a data-

driven soft clustering scheme that estimates the posterior probability of each galaxy

belonging to each activity class. More specifically, we fit a large number of multi-

variate Gaussian distributions to the Sloan Digital Sky Survey (SDSS) dataset in

order to capture local structures and subsequently group the multivariate Gaussian

distributions to represent the complex multi-dimensional structure of the joint dis-

tribution of the 4 galaxy activity classes. Finally, we discuss how this soft-clustering

can lead to estimates of population-specific log(N)− log(S) relationships.
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1
Introduction

1.1 Astrostatistics

In recent years, there has been a constantly increasing use of advanced statistical

techniques in solving challenging problems in different fields of science. The easy

access to a vast amount of data has given rise to a series of questions such as how

we can interpret the observations, what dependencies exist between variables as well

as how can we update theoretical models in the presence of a great number of new

observations.

One of the scientific fields that finds itself with serious challenges in statistical treat-

ments of data is undoubtedly Astrophysics. The sheer amount of data that is avail-

able for analysis to astronomers has increased dramatically over the last decades as

a result of the increased number and capabilities of both earth-based and space tele-

scopes. On the one hand, the astronomical community has ready access to exciting

new data, but on the other hand it is inevitably faced with the challenging task

of enabling efficient and objective scientific exploitation of those enormous multi-

faceted datasets. Consequently, statistics has become an essential part of the process

leading to the correct interpretation of the physical phenomena.

The challenges that astronomers face in analysing the astronomical data come both

as a result of the nature of the data and of the type of questions the scientific
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community puts forward. The astronomical data are typically multidimensional,

subject to heteroscedastic errors in measurement and have very complex structures.

Moreover, the astronomical observations cannot be repeated since the universe is

constantly evolving, thus the replication of experiments is not possible. At the same

time astronomers are interested in drawing conclusions for the physical mechanisms

and laws that govern the universe represented through complex models. The highly

complicated nature of the astronomical data and the subsequent scientific questions

lead to many subtle inference problems that require sophisticated statistical tools.

As a result, the establishment of whole new statistical frameworks, modelling tech-

niques and innovative computational methods is required in order to answer the

questions posed by the astrophysical problems.

This interweaving of statistics and astrophysics, known as Astrostatistics, should

not be viewed as only devoted to the development of new methods for dealing with

astrophysical problems, but also as an opportunity to establish new general statis-

tical techniques and expand the boundaries of statistical thinking.

1.2 The Scientific Problem

The inspiration for this research has its origins in the long-standing astrophysical

problem of estimating the distribution of the flux. The flux∗ is the power per unit

area radiated from an astronomical source, whether this source could be a galaxy or

a star or any other type of source. This density is estimated traditionally by using

a log(N) − log(S) relationship, where S is the source flux and N is the number of

sources observed to that flux sensitivity. This relationship has traditionally been

assumed to be either linear, or piece-wise linear.

The distribution of the flux of astrophysical objects is of great interest as a measure

of the evolution of various types of astronomical source populations and for testing

theoretical assumptions about the Universe. The log(N)− log(S) relationship pro-

vides an overall picture of source populations and facilitates the comparison with

models for populations and their evolution. The applications extend to analysing

populations of black-holes and neutron stars in galaxies, populations of stars in star-

∗The related term luminosity is used for the total energy radiated from an astronomical source.
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clusters or distribution of dark matter in the universe.

More specifically, astronomical objects that are at small redshifts (where the geom-

etry of the Universe is well approximated by the Euclidean geometry) which do not

evolve with cosmic time and are uniformly distributed in the Universe, are charac-

terised by a log(N)− log(S) curve with slope equal to 1.5 (Maccacaro et al. 1987).

Under these hypotheses, any class of objects has the same log(N)− log(S) relation-

ship regardless of its luminosity function. However, when we look at astronomical

objects at high redshifts, we expect that the log(N)− log(S) curve will be less steep.

This flattening of the curve provides us with information regarding the geometry

of the Universe and on the luminosity function of the sources. Furthermore, if the

astronomical objects exhibit some form of evolution with cosmic time, then this can

affect the aforementioned slope of 1.5. In other words, any departure from the slope

of 1.5 is indicative of some effect.

There are many factors and complications that make the estimation of the log(N)−
log(S) relationship quite challenging. In astronomical observations, the flux is not

directly measured. The collected data represent the cumulated flux received from

the source which is stored as photon counts. The recorded photon counts are subject

to Poisson like variability. Those statistical fluctuations in measurements introduce

a bias, namely the Eddington bias (Teerikorpi 2004). More specifically, a set of

sources with a single luminosity will, upon observation, be spread out due to mea-

surement error. If the statistical scatter is close to some kind of detection threshold,

then the inferred luminosity based on only the detected sources will end up being a

biased estimate. Furthermore, astronomical objects that are either at smaller dis-

tances relative to the measurement instrument, or are brighter, are more likely to

be detected. This phenomenon leads to a strong selection bias known as Malmquist

bias (Malmquist 1920). The statistical issues associated with the detection of as-

tronomical sources also include issues such as estimating the probability that the

observed source is just a background fluctuation or the uncertainty in estimating

the flux given the background and the instrumental inefficiencies.
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1.2.1 Existing Approaches and their Inefficiencies

Early work on the estimation of the log(N)−log(S) relationship focused on assuming

a power law distribution for the flux, which corresponds to a linear log(N)− log(S)

relationship. Murdoch et al. (1973) use maximum likelihood (ML) estimation in

order to estimate the parameters of the distribution of the flux. They model the

existence of experimental errors by employing normal approximations, arguing that

the measurement errors have a significant effect on the number counts. A linear rela-

tionship, but with Poisson errors, is utilised in Maccacaro et al. (1982) and Schmitt

& Maccacaro (1986). Georgakakis et al. (2008) present a ML method with Poisson

errors for estimating a piece-wise linear log(N)− log(S) relationship that takes into

account the non-negligible spatial variations in sensitivity across the astronomical

survey. A recent approach that attempts to estimate both the number of different

linear pieces and their location is proposed by Wong et al. (2014). The authors

present a statically interesting refinement to the more standard ML methods by us-

ing an interwoven Expectation-Maximisation algorithm. Zezas et al. (2007) explore

the idea of incorporating the uncertainty of the flux-to-count conversion parameter

in the ML framework; they discuss how the uncertainty of the flux-to-count conver-

sion parameter for each source can be included in a log-likelihood estimation of a

log(N) − log(S) curve by assuming that the distribution of the flux-to-count con-

version parameter can be approximated by a multivariate normal distribution with

variance taken from the covariance matrix of the spectral fit.

A very important issue with the majority of the existing literature regarding the

estimation of the log(N)− log(S) relationship is the inherent assumption in the pro-

posed methods of having a complete dataset with no missing sources. However, as

we described previously, incompleteness in astronomical surveys is an unavoidable

phenomenon, which -if not properly accounted for- can lead to inferential biases.

Thus, since the data we observe is a biased subset of the complete population, it is

of outmost importance to take into consideration this issue in order to draw proper

inferential conclusions.

1.2.2 Research Direction

Our work is based on the Bayesian approach introduced by Udaltsova (2014) for

estimating the log(N) − log(S) relationship. The author proposes a hierarchical
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Bayesian model in order to account for the measurement and detector biases as well

as the missing data mechanism. More specifically, the suggested approach models

the joint distribution of the complete data and model parameters, and then derives

the posterior distribution of the model parameters marginalised across all missing

data information.

There are many examples in the astro-statistical literature that a Bayesian approach

has been used in order to account for problems with missing data (non-detection)

and selection effects. Kelly (2007) derives a multi-level Gibbs sampler for estimating

the parameters of linear regression when measurement errors and intrinsic scatter

(variations in the physical properties of astronomical sources that are not completely

captured by the variables included in the model) exist. The method is generalised

for cases with multiple independent variables, non-detections, and selection effects,

exhibiting excellent performance. Buchner et al. (2015) develop a non-parametric

method to incorporate uncertainties from measurements, incompleteness of the data,

and limited sample size. They employ a Hamiltonian Markov chain Monte Carlo to

obtain estimates of the parameters.

Our research extends the work of Udaltsova (2014) in two directions. Initially, we

propose a series of extensions to the model regarding the estimation and the sam-

pling from the joint distribution of the background noise B, the off axis angle L and

the exposure map E, as well as the selection of the incompleteness function. More

specifically, we incorporate a more detailed incompleteness function which depends

on the background, distance from the centre and total time of exposure. The proper

selection of the incompleteness function is of paramount importance since it plays

a crucial role in the posterior inference. We also utilise survey specific background

and exposure time distributions when sampling for the missing data and, finally,

we re-derive the conditional posterior distributions for the parameters of interest

while correcting errors in the mathematical derivations of the conditional posterior

distributions.

Furthermore, in our endeavour to fully address any sources of uncertainty that might

affect considerably and in systematic manner the posterior inference, a new frame-

work was developed. Within its remit, we were able to appropriately model the

uncertainty about the conversion factor between observed source photon counts and

observed flux. In the vast majority of the relevant literature that tries to estimate
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the log(N) − log(S) relationship, this conversion factor, γ, is assumed to be con-

stant for all the sources. However, the actual value of this parameter depends on

the spectrum of each astronomical source. Using relevant spectral data for the ob-

served sources, the uncertainty about the flux-to-count conversion factor γ for each

observed source is expressed through Markov Chain Monte Carlo (MCMC) draws

from the posterior distribution of γ for each source. In order to account for this

uncertainty in the non-detected sources, we develop a novel statistical approach

for fitting a hierarchical prior on the flux-to-count conversion factor based on the

MCMC samples from the observed sources (a statistical approach that can be used

in many modelling problems of similar nature). In order to draw posterior inference

for the log(N) − log(S) relationship, we derive in a similar manner the posterior

distribution of the model parameters, marginalised across the missing data, and we

explore the impact on our posterior estimates of the parameters of interest in the

Chandra Deep Field South dataset.

Studying the log(N)− log(S) relationship for different source populations can give

us further insight into the differences between the various types of astronomical

populations. Based on that, we delved into a long and heavily researched classi-

fication problem in Astronomy, which is the classification of galaxies to different

activity classes (Star Forming Galaxies, LINERs, Seyferts and Composites). De-

spite the extensive literature on this problem though, the existing classification

schemes are mostly purely theoretical in nature and do not offer a robust clas-

sification methodology. Therefore, we propose a new soft-clustering data driven

classification scheme (SoDDA), for classifying galaxies in different activity classes

using 4 optical emission-line ratios ([NII]/Hα, [SII]/Hα, [OI]/Hα and [OIII]/Hβ).

The most widely used classification approach is based on 3 diagnostic diagrams,

which are 2-dimensional projections of those emission line ratios. Those diagnos-

tics assume fixed classification boundaries, which are developed through theoretical

models. However, the use of multiple diagnostic diagrams independently of one

another often gives contradicting classifications for the same galaxy, and the fact

that those diagrams are 2-dimensional projections of a complex multi-dimensional

space is limiting the power of those diagnostics. To tackle this issue, we present a

data-driven soft clustering scheme that estimates the posterior probability of each

galaxy belonging to each activity class. More specifically, we fit a large number of

multivariate Gaussian distributions to the Sloan Digital Sky Survey (SDSS) dataset

in order to capture local structures and subsequently group the multivariate Gaus-

sian distributions to represent the complex multi-dimensional structure of the joint
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distribution of the 4 galaxy activity classes. Moreover, since the use of linear hard

boundaries for this classification problem is widespread in the astronomical commu-

nity, we extract 4-dimensional linear boundaries for our classification scheme using

Support Vector Machines (SVM). The classification accuracy of those hard bound-

aries is very close to that of SoDDA, even after removing one of the dimensions

([OI]/Hα which is difficult to measure for many objects). This indicates the power

of our classification and the importance of considering all the dimensions of the

problem jointly. Finally, we discuss how this soft-clustering can lead to estimates of

population-specific log(N)− log(S) relationships.

1.3 Statistical Background

Bayesian analysis is an extremely versatile statistical tool that allows us to make

parameter estimation through the posterior distribution, which is a combination

of the observed data and our prior knowledge about the unknown parameters. As

general notation, let θ denote the parameters of interest and y denote the observed

data. The joint probability distribution of θ and y can be written as the product of

the prior distribution p(θ) and the sampling distribution p(y|θ), i.e.

p(θ, y) = p(θ) · p(y|θ)

Using Bayes’ theorem, we get the posterior distribution as:

p(θ|y) =
p(θ, y)

p(y)
=
p(θ) · p(y|θ)

p(y)
,

where p(y) is the marginal distribution of the data y.

1.3.1 Missing data

In the Bayesian way of thinking, there is no distinction between missing data and

parameters since both of them are uncertain and are characterised by a joint poste-

rior distribution (Rubin 1996). In the missing data literature, two notions are used

in the context of unintentional missing data, the missing at random (MAR) notion

and the missing completely at random (MCAR) notion (see Gelman et al. 2014).
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If we define as y = (yobs, ymis) the complete data and I an indicator variable which

is 1 if the component of y is observed, then the joint distribution of (y, I) given

parameters (θ, φ) is:

p(y, I|θ, φ) = p(y|θ) · p(I|y, φ)

The conditional distribution of I given the complete data and the unknown pa-

rameter φ, i.e. p(I|y, φ), describes the missing data mechanism and represents the

incompleteness function, while the distribution of the observed data can be written:

p(yobs, I|θ, φ) =

∫
p(y|θ) · p(I|y, φ) dymis (1.1)

Under the MAR hypothesis, the distribution of incompleteness function doesn’t de-

pend on the missing values, i.e. p(I|y, φ) = p(I|yobs, φ) and thus 1.1 simplifies to

p(yobs, I|θ, φ) = p(yobs|θ) · p(I|yobs, φ).

If we also add the assumption that the distribution of the missing data mechanism is

independent of y, i.e. p(I|y, φ) = p(I|φ), then we speak of data that are observed at

random and we have the notion of MCAR in which the missing data mechanism can

be ignored. Through Bayesian analysis, we can deal with the non-ignorable missing

data mechanism we have in the log(N)− log(S) problem.

1.3.2 Markov Chain Monte Carlo Methods

In order to draw posterior inference about the parameters of interest, we draw sam-

ples from the posterior distribution in order to summarise it by estimating posterior

statistics such as the mean, variance and percentiles. In simple Bayesian models,

it is often easy to draw samples directly from the posterior distribution of the pa-

rameters p(θ|y) where θ denotes the parameters vector and y the observed data.

Nevertheless, in more complicated contexts where we have multiple parameters and

the posterior distribution is not a standard distribution (as in the Bayesian model

we develop in the next Chapters for log(N) − log(S) ), the perhaps most common

approach is to dive into the realm of Markov Chain Monte Carlo (MCMC) simula-

tion methods.
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The rise of MCMC methods in the late 1980s has opened new horizons in the field of

Bayesian Statistics, allowing statisticians to explore complex models and don’t limit

their modelling in problems that are analytically tractable. MCMC simulation is

basically a general method for simulation based on drawing values of the parameters

θ from approximate distributions and then correct the draws to better approximate

the posterior distribution. Those values are drawn sequentially from a transition

probability distribution based only on the value of the last draw, thus forming a

Markov Chain †. The key part of the MCMC methods is to construct the transition

probability distributions so that the Markov chain converges to a unique stationary

distribution ‡ - the posterior distribution p(θ|y).

A very important notion regarding the proof of the convergence of the MCMC is the

reversibility of a Markov chain. A transition probability distribution is said to be

reversible with respect to an initial distribution if for the Markov chain they define,

the distribution of θ1, θ2, ..., θn has the same distribution as θk−1, θk−2, ..., θk−n for

all n, k. This definition has an immediate consequence -reversibility implies that the

Markov chain has a unique stationary distribution, but not vice-versa. Thus, in the

MCMC framework, we are interested in updates that are reversible. For the scope

of this research, we are interested into two algorithms, the Metropolis-Hastings Al-

gorithm and the Gibbs Sampler.

The Metropolis-Hastings Algorithm. The Metropolis-Hastings Algorithm is

an adaptation of a random walk which takes advantage of an acceptance/rejection

rule in order to converge to the posterior distribution. Metropolis & Ulam (1949)

and Metropolis et al. (1953) were the first to present Markov chain simulation of

probability distributions, effectively putting forward what is known today as the

Metropolis algorithm. Hastings (1970) extended the Metropolis algorithm by using

non symmetric transition probability distributions. Green (1995) summarises and

†A sequence θ1, θ2, .... of random elements of some set is a Markov chain, if the conditional
distribution of θn+1 given θ1, ..., θn depends only on θn. We call state space the set in which θi

takes values. The marginal distribution of θ1 is called the initial distribution. If there exists a set
of numbers Pij such as when the chain is in state i, the probability that the next state is j is Pij ,
then we say that the collection {θn, n > 0} is a Markov chain with transition probabilities Pij .
‡A Markov chain is said to be stationary or invariant or equilibrium if for every positive integer

k, the conditional distribution of (θn+2, ..., θn+k) given θn+1 does not depend on n. In other words,
a stationary distribution of a Markov chain is a probability distribution that remains unchanged
in the Markov chain as time progresses. An initial distribution is said to be stationary for some
transition probability distribution if the Markov chain specified by this initial distribution and the
transition probability distribution is stationary.
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generalises the algorithm.

The Metropolis-Hastings is an adaptation of a random walk that uses an accep-

tance/rejection update to converge to the stationary distribution. More specifically,

suppose that the posterior distribution we want to sample from has unnormalised

density h - this is the stationary distribution of the MCMC sampler we want to

construct. The Metropolis-Hastings Algorithm iterates between the following steps:

Step 1: If the current state is θt−1, propose a move to state θ∗, having as conditional

probability given θt−1 the q(θ∗|θt−1).

Step 2: Compute the Hastings ratio r(θt−1, θ∗) = h(θ∗)·q(θt−1|θ∗)
h(θt−1)·q(θ∗|θt−1)

.

Step 3 (known as Metropolis rejection): Accept the proposed move θ∗ with proba-

bility a(θt−1, θ∗) = min(1, r(θt−1, θ∗)).

In order to prove that the stationary distribution of the Markov chain generated by

the Metropolis-Hastings algorithm is the target posterior distribution, we assume

that the chain is started at step t − 1 with a draw θt−1 from the target posterior

distribution h(θ). Following Brooks et al. (2011), if we assume two points θa and

θb such as h(θb)q(θa | θb) > h(θa)q(θb | θa), then the unconditional probability of

moving from θa to θb is

P (θ∗ = θb, θ
t−1 = θa) = h(θa) · q(θb | θa) ·min

(h(θb) · q(θa|θb)
h(θa) · q(θb|θa)

, 1
)

= h(θa) · q(θb | θa)

since, because of our assumption, the probability of acceptance is 1. The uncondi-

tional probability of moving from θb to θa is
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P (θ∗ = θa, θ
t−1 = θb) = h(θb) · q(θa | θb) ·

h(θa) · q(θb|θa)
h(θb) · q(θa|θb)

= h(θa) · q(θb | θa)

which is the same as the probability of transition from θa to θb. Thus, the joint den-

sity of (θ∗, θt−1) is symmetric and h(θ) is the stationary distribution of the Markov

Chain produced using the Metropolis-Hastings update.

The candidate probability density q can be either symmetric, in which case we have

the special case of Metropolis Algorithm, or asymmetric in the more general case

when the choice of a symmetric density is not optimal. The power of the Metropolis-

Hastings Algorithm lies on its ability to draw samples from any distribution, both

one-dimensional and high-dimensional. An interesting discussion about the rates of

convergence of MCMC can be found in Rosenthal (1995).

The Gibbs Sampler. The Gibbs Sampler is a MCMC method for drawing sam-

ples from multi-dimensional posterior distributions. Besag (1974) proves that under

mild regularity conditions, the joint posterior distribution p(θ|y) is completely de-

termined by the conditional distributions p(θj|θj 6=i, y). It was first used by Geman

& Geman (1984) in an application to image processing.

In essence, the Gibbs sampler updates the posterior conditional distribution of one

component of the state vector given the rest of the components, i.e. given the cur-

rent state (θt−11 , ..., θt−1p ), the algorithm performs the following steps:

Step 1: Draw θt1 from p(θ1|θt−12 , ..., θt−1p , y).

Step 2: Draw θt2 from p(θ2|θt1, θt−13 ..., θt−1p , y).

Step 3: ...

Step p: Draw θtp from p(θp|θt1, ..., θtp−1, y).
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In a Gibbs update, the proposal is from a conditional distribution of the desired

equilibrium distribution and it is always accepted. It is easy to prove that Gibbs

is a special case of Metropolis-Hastings. More specifically, following Brooks et al.

(2011), we split the state vector θ = (u, v) and allow the proposal to alter only u,

but not v. We rewrite the unnormalised density h(u, v) = g(v)q(v, u), where g(v) is

an unnormalised marginal of v and q(v, u) is the normalised conditional distribution

of u given v. If we assume a Metropolis-Hastings update with q as the proposal

distribution and the update is θ∗ = (u∗, v), then the Hastings ratio is

r(θt−1, θ∗) =
h(u∗, v) · q(u, v)

h(u, v) · q(v, u∗)

=
g(v)q(v, u∗)q(u, v)

g(v)q(v, u)q(v, u∗)

= 1,

hence the proposal is always accepted.

Convergence of MCMC. In order to draw posterior inference from MCMC sim-

ulation, we use the collection of the simulated draws from our iterative simulation

scheme. However, in order to have correct inference from the MCMC method, it is

required that the iterative simulation scheme has converged to the target posterior

distribution. If the iterations have not proceeded long enough, the simulations may

have not converged to the stationary distribution. Monitoring convergence is a no-

toriously difficult problem in the MCMC practise and there is no single remedy.

A very important concern with MCMC is the within-sequence serial correlation,

i.e. the samples we draw are correlated. Although in the long run the iterative

simulation draws converge to the target posterior distribution, nearby samples are

correlated between them. If this correlation is high, then the convergence to the

equilibrium could be slow.

Moreover, when a Markov chain appears to have converged to the equilibrium
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distribution when it has not, we are faced with the phenomenon called pseudo-

convergence. This can happen when the state space is poorly connected by the

Markov chain dynamics and it takes a lot of time to move from one part of the state

space to the others.

In order to handle those issues, it is often considered good practise in the MCMC

literature (Gelman et al. 2014) to run multiple different chains with starting values

dispersed in the state space (after disregarding an initial sample known as burn-

in). The convergence is examined by comparing the variation between and within

simulated sequences. This is achieved by estimating the R̂ statistic, suggested in

Gelman & Rubin (1992), for monitoring the convergence of scalar estimands. More

specifically, if we assume that we have m parallel chains, each of length n, and B

is the between sequence variance and W the within sequence variance, then this

statistic is defined as:

R̂ =

√
v̂ar+(ψ|y)

W
, where v̂ar+(ψ|y) =

n− 1

n
W +

1

n
B

with v̂ar+(ψ|y) representing the marginal posterior variance of the estimand. If the

value of R̂ is close to 1, this is an indication that the chains have converged to the

target posterior distribution.

Furthermore, if the efficiency of the our MCMC simulation scheme is too low -in

other words we need a lot of time to obtain convergence to the equilibrium-, we

should consider using a more efficient approach. Many extensions have been pro-

posed in the literature with the aim to increase the efficiency (see Brooks et al.

2011). The paper by van Dyk & Meng (2001) contains an extended discussion on

techniques and extensions for improving the convergence and reducing the auto-

correlation in complex MCMC problems. The Blocked Gibbs Sampler (Roberts &

Sahu 1997) groups some of the parameters together and samples them from their

joint distribution given the state of the other parameters. This is particularly useful

in cases which some parameters could be physically grouped together or in the case

of latent variables. In the case where the posterior conditional distribution cannot

be sampled directly, we can employ the Metropolis- Hastings algorithm giving rise

to the Metropolis-within-Gibbs sampling scheme (using the terminology by Gilks

et al. 1995). A rather interesting approach that we explore in our research is the

Partially Collapsed Gibbs (PCG) sampler.
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Partially Collapsed Gibbs (PCG): The PCG, as described by van Dyk & Park

(2008) and Park & van Dyk (2009), is based on the notion that by reducing con-

ditioning, we increase the variance of the complete conditional distributions of a

Gibbs sampler. In practise, this translates to replacing a subset of the complete

conditional distributions by distributions that condition on fewer of the unknown

quantities.

In the Gibbs sampler terminology, collapsing refers to the process of integrating a

joint posterior distribution over a subset of unknown quantities. This process results

to a ”collapsed” posterior distribution which offer an improved rate of convergence

(Liu et al. 1994). The collapsing though can be challenging to implement under

some scenarios, such as when the complete conditional distributions of the collapsed

posterior distributions might be harder to work with than the conditional distribu-

tions of the original posterior distribution.

The partially collapsed Gibbs sampler aims to combine conditional distributions

from the original posterior distribution with conditional distributions from one or

more collapsed posterior distributions. In other words, in PCG sampling, we col-

lapse only those conditional distributions that offer computational advantage with-

out complicating the parameters updating. This strategy should be used carefully,

since the resulting conditional distributions may not be functionally compatible and

changing the order of the draws in the Gibbs scheme might alter the equilibrium

distribution (see van Dyk & Jiao 2015).

1.3.3 Hierarchical Models

The term hierarchical (or multi-level) models is used to describe statistical models

that involve parameters that can be regarded as connected in some manner by the

structure of the problem. This dependence should be reflected in the joint probabil-

ity model. Hierarchical models are appropriate for many statistical applications in

which the parameters have a hierarchical structure. For instance, in astronomy the

measurement of the population of a type of astronomical sources can be regarded as

a hierarchical model since the population is described by some population param-

eters and the properties of the individual objects are described by the object-level
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parameters.

Hierarchical models are especially useful, since for many statistical applications, we

are mostly interested in a subset of the parameters that are considered to refer to

the entire population. Thus, we are interested in the marginalised posterior of those

parameters. Furthermore, another motivation about the hierarchical formulation

is that the data are directly linked only to the object- level parameters. For in-

stance, in astronomy a population itself cannot be measured explicitly but rather

only through individual astronomical objects.

In order to formulate the structure of hierarchical models, we explore a simple two-

level model in which we split the parameter space θ into two parts, i.e. θ = (φ, ψ),

where φ are the population parameters and ψ the object-level parameters. Suppose

we observe n objects from a population, where the data for object i can be modelled

as p(ψi|yi) and the object level parameter as p(ψi|φ). Then, the joint prior distri-

bution of all the parameters can be written as:

p(θ) = p(φ, ψ) = p(ψ | φ) · p(φ)

Thus, the joint posterior distribution of the population and object-level parameters

is:

p(φ, ψ | y) ∝ p(φ) · p(ψ | φ) · p(y | ψ, φ)

It is often the case that we are not interested on the properties of individual ob-

jects, but rather on the population parameters. The power of hierarchical models

lies on the fact that we can integrate over the object-level parameters and obtain a

marginal posterior distribution of the population parameters, i.e.
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p(φ | y) = p(φ)

∫
p(ψ|φ)p(y|ψ)dψ

Furthermore, if we are interested in the properties of a specific object i, the posterior

can be marginalised as

p(ψi|yi) ∝
∫
p(φ)

N∏
j=1,j 6=i

[ ∫
p(ψj|φ)p(yj|ψj)dψj

]
dφ,

which is the Bayesian equivalent of shrinkage§ estimation (see Efron & Morris 1973,

1975). In other words, the posterior knowledge of the properties of an object is

increased not just by the measurement associated with that object, but also by the

constraints on the population from which it has come through.

The structure of the hierarchical models is such that Gibbs sampling could easily be

applied in order to draw samples from the posterior distribution. More specifically,

the posterior distribution of object i conditioned on all other parameters can be

written as:

p(ψi|φ, y, ψ−i) = p(ψi|φ)p(yi|ψi),

and the conditional probability of the population level parameters can be written as

p(φ|ψ, y) = p(φ)
N∏
i=1

p(ψi|φ).

§The term shrinkage refers to the idea that an estimator is improved by combining it with other
information.
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Thus, drawing samples from the posterior distribution can be achieved through

Gibbs sampling, although the exact sampling strategy for each individual condi-

tional distribution depends on the form of that distribution (might have to utilise

Metropolis within Gibbs).

1.3.4 Choice of Priors

The choice of priors distributions in a Bayesian context is a key part of Bayesian

inference. The combination of the prior distribution with the probability of the

data results to the posterior distribution. There are two main issues with choosing

a prior distribution; (a) what information about the unknown parameter does the

prior distribution contains, and (b) what are the properties of the resulting posterior

distribution.

For the first issue, in a statistical application with well-identified parameters and

large sample sizes, reasonable choices of prior distributions will have minor effects on

posterior inferences. The dependence of the posterior inference on the choice of the

prior distribution should be checked by a sensitivity analysis: comparing posterior

inferences under different reasonable choices of prior distribution. However, if the

sample size is small, or if the available data provide only indirect information about

the parameters of interest, the choice of the prior distribution has a bigger impact

on the posterior inference. In case of hierarchical models, the priors can be set up

hierarchically, so that clusters of parameters have shared prior distributions, which

can themselves be estimated from data.

The properties of the resulting posterior distribution should be also taken into con-

sideration in the choice of a prior distribution. For instance, if the posterior dis-

tribution is in the same family as the prior distribution, then the prior is called a

conjugate prior for the likelihood distribution. This offers many computational ad-

vantages in the posterior inference. A very important issue with the choice of prior is

to ensure that the resulting posterior distribution is proper probability distribution.

Kass & Wasserman (1996) provide a more in-depth discussion about the theoretical

principles regarding the selection of priors.
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1.4 Outline

In Chapter 2, we describe the interesting approach of Udaltsova (2014), which models

the estimation of log(N)− log(S) as a hierarchical Bayesian problem. Subsequently,

we present our proposed extensions of this model and we perform an extended model

validation in 2 different ways. The application of our method on the Chandra Deep

Filed South dataset is presented in the last part of the Chapter.

In Chapter 3 we develop a methodology for incorporating the uncertainty of the flux-

to-count rate conversion factor γ to the Bayesian hierarchical model we developed

for estimating the log(N) − log(S) relationship. We discuss how we can construct

a prior distribution for γ for the sources of a specific astronomic survey, both for

the observed and the unobserved sources. Afterwards, we extend the Bayesian hi-

erarchical model by including the uncertainty of γ and extract the joint posterior

distribution of all the parameters of interest. The sampling algorithm for drawing

samples from this posterior distribution is thoroughly analysed, and we also present

model validation results. Finally, we apply our methodology to the Chandra Deep

Field South survey, and we compare the results with those from the model that

assumes constant γ for all the sources.

Chapter 4 revolves around the problem of classifying galaxies to different activity

classes based on emission line ratios. Initially, the scientific problem is presented, in-

cluding the existing approaches. Our innovative, data-driven approach is described

in detail along with the actual implementation. The performance of our multidi-

mensional data driven classification scheme is compared with the most commonly

used scheme. We also introduce multidimensional linear decision boundaries that

we compare in terms of their prediction accuracy with both our new method and

the most commonly used scheme. Finally, we discuss how this classification scheme

can be combined with the hierarchical Bayesian method we developed in the first

two Chapters in order to produce population specific log(N)− log(S) curves.

Finally, Chapter 5 contains a discussion of this research and propose further avenues

of research.
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2
Bayesian Analysis of the log(N)− log(S)

Problem

The study of the population properties of the flux is of high importance as we saw

in the previous chapter. Modelling the distribution of the fluxes for populations of

astronomical sources provides information about the stellar evolution and the ge-

ometry of the universe.

The first section of this chapter describes the interesting approach of Udaltsova

(2014), which models the estimation of log(N) − log(S) as a hierarchical Bayesian

problem. This section summarises the main points provided from Udaltsova (2014),

although some formulas have beer re-derived in the current work to properly correct

mathematical errors found in Udaltsova (2014).

The following sections of the chapter include the original work developed in our re-

search. More specifically, Section 2 describes our proposed extension of this model,

while Section 3 contains the validation of our algorithm performed with 2 different

ways and Section 4 discusses posterior inference and model validation. Section 5

presents the application of our method on the Chandra Deep Filed South dataset,

followed by a small discussion in Section 6.
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2.1 Probability Modelling of the log(N)− log(S) Relationship

As we discussed in the previous chapter, the early work of cosmologists was assuming

a linear log(N) − log(S) relationship, which means that the flux density distribu-

tion follows a power law distribution. Following the notation from Udaltsova (2014)

and assuming that we have an ideal, complete survey with no missing data, if we

define as Si (ergs−1cm−2) the flux of each astronomical source i , with i = 0, . . . , N ,

and N(> S) the number of sources with flux greater than S, then the power law

assumption gives rise to a relationship of the form:

N(> S) =
N∑
i=1

ISi>S ∝ aS−θ, S > τ > 0 (2.1)

where τ is a positive constant indicating the minimum flux. The log transforma-

tion of this relationship leads to a linear relationship between log(N) and log(S), i.e.

log10N(> S) = log10 a− θ log10 S (2.2)

However, it is common for many astronomical datasets for the log(N)− log(S) rela-

tionship to appear piece-wise linear or curved. In this case, the distribution of the

flux is represented by multiple power laws, connected at the knots. This model is

known as broken power law in the astronomical literature (Zezas & Fabbiano 2002,

Jóhannesson et al. 2006, Wong et al. 2014). For example, the piece wise linear rela-

tionship of log(N)− log(S) with 1 break is of the form:

log10N(> S) =

a1 − θ1 log10(S), τ1 ≤ S < τ2

a2 − θ2 log10(S), S ≥ τ2
(2.3)

where τ1 is the minimum population threshold and τ2 is the breakpoint.

Section 2.1.1 describes the probabilistic modelling of the single power law model

(linear log(N) − log(S) relationship), while section 2.1.3 extends the modelling to

the broken power law case.
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2.1.1 Single Power Law Model

The single power law model for the distribution of the flux corresponds to a linear

log(N) − log(S) relationship. In the introductory chapter we discussed about the

incompleteness of astronomical surveys, which as a result provide us only with a

subset of the ’complete source population’, the ’observed source population’. The

log(N)−log(S) relationship we are interested in is about the complete source popula-

tion and not the observed source population which is a biased subset of the complete.

As it was noted in the previous Chapter, incompleteness is an inherent challenge in

astronomical surveys. Missing data arise as a result of many reasons; fainter sources

are less likely to be observed due to detector sensitivity or Poisson like noise in

observed photon counts. The statistical question that arises is whether the subset

of the data that is observed is a biased subset of the population.

In the log(N) − log(S) problem, the probability of observing a source depends on

the source flux. Thus, the missing data mechanism is non-ignorable since the ob-

served data is a biased subset of the complete population. In order to accurately

model the missing data mechanism, we should use all the external knowledge. In

the log(N)− log(S) framework, this knowledge is available and we will describe in

detail the incompleteness function in the following subsections.

Udaltsova (2014) proposes a hierarchical Bayesian model which consists of a model

about the distribution of the flux in the complete source population, an incomplete-

ness function representing the missing data mechanism that describes the selection

mechanism of the observed source population as well as a model for all the ob-

servable quantities and detector uncertainties. More specifically, Udaltsova (2014)

proves that the linear relationship between log(N) and log(S) is equivalent to the

statement that the flux follows a Pareto distribution, Si ∼ Pareto (θ, τ), for which

the probability density function is:

f(Si|θ, τ) = θτ θS
−(θ+1)
i , Si > τ, τ, θ > 0 (2.4)
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where θ denotes the power-law slope and τ is the flux population minimum thresh-

old. It is important to note that τ does not represent the lowest detection threshold

of the detector, rather the theoretical limit that we could observe a source. We

assume for convenience conjugate prior distributions for θ and τ , namely Gamma

distributions; θ ∼ Γ(aθ, bθ) and τ ∼ Γ(am, bm). As a reminder, if a random variable

x follows a Gamma distribution with shape parameter a and rate parameter b, then

the density is:

f(x|a, b) =
ba

Γ(a)
xa−1 × 10−bx, a > 0, b > 0. (2.5)

Due to the missing data mechanism we only observe a subset of the complete source

population. If we define as n the number of observed sources, N the unknown

total number of sources and Nmis the number of missing sources we have that

N = n + Nmis. We assume a Negative-Binomial prior for the total number of

sources, i.e. N ∼ Neg-Bin (aN , bN), with probability density function given by:

f(N | aN , bN) =

(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
. (2.6)

Another important aspect that should be taken into consideration is the fact that

we do not directly observe the flux. The data collection consists of photon counts for

the observed source population. The photon counts that we measure on the detector

for each source i include both the counts from the actual astronomical source, Y src
i ,

and the background contamination, Y bkg
i , i.e. Y tot

i = Y src
i + Y bkg

i . Moreover, the

number of detected counts is affected by:

• The off-axis angle L, the distance from the centre of the field of view. The

detector sensitivity decreases as we move away from the centre.

• The per-pixel photon background rate for the source B (counts/pixel).

• The exposure map E. The exposure map for a given observation combines the

effective area of the telescope and detector with a map of the dwell time versus
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sky position, accumulated by following the telescope pointing motion during

the observation. The effective area varies with position on the detector and

is also energy dependent. At a given energy, the effective area as a function

of position on the detector is called the instrument map. The map of dwell

time versus pointing direction, built up by the telescope pointing motion, is

called the aspect histogram. Combining the instrument map with the aspect

histogram, the exposure map is a map of the total exposure as a function of

position on the sky.

• There is also a dependence on the flux to count rate conversion factor γ, which

depends on the spectral model that is assumed and the energy band of the

source. In the majority of the relevant literature so far, the factor γ is assumed

to be constant for all the sources. For this chapter we will assume that it is

constant for all the sources as in the relevant literature. In the next chapter

we will develop a methodology for incorporating the uncertainty of this factor

to the model.

Taken all the above into consideration, we define for each source i:

Y tot
i = Y src

i + Y bkg
i , (2.7)

Y src
i |Si, Ei, γi

ind∼ Poisson ( λ(Si, Ei, γi) ), (2.8)

Y bkg
i |Bi, Ai

ind∼ Poisson ( k(Bi, Ai) ), (2.9)

where Ai denotes the background area of the source, λ(Si, Ei, γi) = SiEi/γi and

k(Bi, Ai) = BiAi. The quantities (Ei, Bi, Li, Ai) are known for all the observed

sources. Udaltsova (2014) assumes that the distributions of those parameters for

the unobserved sources are the same as those of the observed sources. We will sug-

gest a different assumption for that joined distribution in the next section, which

will be more survey specific.

In the previous subsections, we elaborated that the probability of an astronomical

source being detected depends on parameters such as the background, the off-axis an-

gle etc. Udaltsova (2014) proposes a detection probability curve g = g(S,B, L,E, γ),
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which gives us the probability of observing an astronomical source for give flux, back-

ground, off-axis angle and exposure value. We will also refer to the function g as the

incompleteness function. We define an indicator variable Ii which indicates whether

a source is detected (Ii = 1 for detection or Ii = 0 otherwise). As expected, Ii = 1

with probability g(Si, Ei, Bi, Li, γ).

2.1.2 Computational Details of the Single Power Law Model

In the previous section we define the probability modelling for the flux distributions.

In order to obtain the posterior distribution, we combine all the model assumptions

with the prior distributions. Define as Scom = (Sobs, Smis) the flux vector of observed

and missing sources. Similarly Y tot
obs = (Y tot

i=1, ..., Y
tot
i=n), Y tot

mis = (Y tot
i=n+1, ..., Y

tot
i=N) where

i = 1, .., n corresponds to the observed sources. The complete data posterior distri-

bution can be summarised as:

p(N, θ, τ, Scom, Icom, Y
src
obs , Y

src
mis, Y

tot
mis , Bmis, Lmis, Emis|n, Y tot

obs , Bobs, Lobs, Eobs, Aobs)

(2.10)

The missing data in this posterior distribution gives rise to significant computa-

tional difficulties. The total number of sources N in the population is unknown,

so the dimension of the complete data posterior distribution will change through

every iteration of the MCMC. So, instead of sampling a great number of missing

parameters in each iteration we implement another sampling strategy. More specifi-

cally, we marginalise the full joint posterior distribution over the missing sources, i.e.

we integrate out the missing data parameters (Smis, Imis, Y
src
mis, Y

tot
mis , Bmis, Lmis, Emis).

This leaves the main parameters of interest (N, θ, τ) and the missing parameters

flux and photon counts (Sobs, Y
src
obs) of the observed sources in the marginalised joint

posterior. By using this sampling scheme, the dimension of the sampled quantities

is kept constant.

If we define as λi = λ(Si, Ei, Bi, Li) and κi = κ(Bi, Ai), then the marginalised

joint-posterior is (see Udaltsova (2014) for details of the derivation):
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p(N, θ, τ, Sobs, Y
src
obs |n, Y tot

obs , Bobs, Lobs, Eobs, Aobs)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs)

·
(
N

n

)
· (1− π(θ, τ))N−n

· p(N) · p(θ) · p(τ) · p(Bobs, Lobs, Eobs|N, θ, τ)

· p(Sobs|θ, τ) · p(Iobs | γobs, Sobs, Bobs, Lobs, Eobs)

· p(Y tot
obs | Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

· p(Y src
obs | Y tot

obs , Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

∝
(
N

n

)
I{n≤N}(1− π(θ, τ))N−n

·
(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
I{N∈Z+}

· ba

Γ(a)
θa−1e−bθI{θ>0}

· bamm
Γ(am)

τam−1e−bmτI{τ>0}

·
n∏
i=1

p(Bi, Li, Ei) · θτ θS−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei)

· (λi + κi)
Y toti

Y tot
i !

e(λi+κi)I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( λi
λi + κi

)Y srci
(

1− λi
λi + κi

)Y toti −Y srci

I{Y srci ∈{0,1,...,Y toti }}

where the π(θ, τ) denotes the marginal probability of observing a source as a function

of θ and τ , i.e.

π(θ, τ) =

∫
g(I|S,B, L,E) · p(S,B, L,E|θ, τ) dS dB dE dL (2.11)

=

∫
g(I|S,B, L,E) · p(S|θ, τ) · p(B,L,E) dS dB dE dL

The sampling of such a complicated posterior distribution is not trivial. Udaltsova

(2014) suggests utilising a Blocked Gibbs sampler in which each conditional poste-

rior distribution requires a different sampling strategy. The details can be found at

Udaltsova (2014). The Gibbs sampler algorithm can be described as follows:

25



Blocked Gibbs sampler: For number of iterations i = 1, ..., T :

• Sample Y src
obs component-wise for the observed sources i = 1, ..., n as:

p(Y src
i |·) ∼ Binomial

(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
.

• Sample Sobs component-wise for i = 1, ..., n as:

p(Si|·) ∼ Pareto(Si|N, θ, τ)I{τ<Si} · g(Si, Bi, Li, Ei) · Poisson(Y tot
i ;λi + κi)

·Binomial
(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
.

where λ(Si, Ei, Bi, Li) = SiEi/γ and κ(Bi, Ai) = BiAi.

• Sample θ as:

p(θ|·) ∝ (1− π(θ, τ))N−n ·Gamma
(
θ; a+ n, b+

n∑
i=1

log(
Si
τ

)
)

• Sample N as:

p(N |·) ∝ Γ(N + aN)

Γ(N − n+ 1)
· ( 1

1 + bN

)N
· (1− π(θ, τ))N−nI{n≤N}

• Sample τ as:

p(τ |·) ∝ τnθ+am−1 · e−bmτ · (1− π(θ, τ))N−n · I{τ<cm}

where cm = min(S1, ..., Sn).

2.1.3 Broken Power-Law Models

We discussed that using a piece-wise linear log(N) − log(S) approach is common

in the relevant literature and more appropriate for some astrophysical populations.
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The Chandra Deep Field South dataset, that we examine at the last section of this

Chapter, shows strong evidence of a broken power law model.

For the cases where the log(N) − log(S) curve appears to be curved or piece-wise

linear, the single power law model fails to capture this non-linearity. Assuming a

known number m of pieces in the log(N) − log(S) relationship, Udaltsova (2014)

proves that a mixture of m− 1 truncated Pareto distributions and an untruncated

Pareto distribution corresponds to a piece-wise linear log(N) − log(S) relationship

with m linear sections. This m-component broken power-law distribution for the

flux S has density:

f(S) = p(S|θ1, ..., θm, τ1, ..., τm) =
m∑
j=1

[ j−1∏
i=1

(τi+1

τi

)−θi](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1},

(2.12)

where θ = (θ1, ..., θm) are the m power-law slopes, τ1 is the flux population minimum

threshold, (τ2, ..., τm) are the consequent breakpoints and
∏0

i=1

(
τi+1

τi

)−θi
= 1.

The construction of the posterior distribution for the multiple power-law model

follows the same structure to that of the single power law model. The only differ-

ences are the density for the flux complete source population, which is no longer a

Pareto distribution, and the additional prior distributions for the parameters of the

m-component broken power-law distribution. More specifically, conditional on the

total unknown number of sources, the source fluxes for the complete source popu-

lation follow a m-component broken power-law distribution. The priors are chosen

as in Udaltsova (2014). i.e. Gamma prior distributions for the m power slopes

(θ1, ..., θm) and τ1, i.e. θj ∼ Gamma(aj, bj), j = 1, ...,m and τ1 ∼ Gamma(aτ , bτ ).

In order to preserve the non-negativity and increasing order of τ2, ..., τm, the trans-

formation ηj = hj(τj | τj−1) = log(τj − τj−1), j = 2, ...,m is introduced. Thus,

τ2, ..., τm can be expressed as
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(τ2, ..., τm)T =


τ1 + eη2

τ1 + eη2 + eη3

...

τ1 +
∑m

j=2 e
ηj

 (2.13)

which keeps the non-negativity and increasing order of the consecutive breakpoints.

For the transformed variables η = (η2, ..., ηm)T we assume a Multivariate Gaussian

distributions as prior, i.e. η ∼ Multivariate Gaussian(µ,C) with µ = (µ2, ..., µm)

and C = diag{c−12 , ..., c−1m ).

In order to compute the joint prior distribution p(τ1, τ2, ..., τm), we will use the

change of variable formula and the Jacobian matrix. More specifically,

• For the case with 1 break, i.e. m=2, we have that

p(η2) ∝ e−
c22·(η2−µ2)

2

2

Define p(τ1) ∝ τa−11 e−bτ1

Thus p(τ1, η2) ∝ e−
c22·(η2−µ2)

2

2 · τa−11 e−bτ1

If we define

τ2(τ1, η2) = τ1 + eη2

T (τ1, η2) = τ1

}
=⇒

τ1(T, τ2) = T

η2(T, τ2) = log(τ2 − T )

}

So, the Jacobian is

∣∣∣∣∣ ∂τ1(T,τ2)∂τ2

∂τ1(T,τ2)
∂T

∂η2(T,τ2)
∂τ2

∂η2(T,τ2)
∂T

∣∣∣∣∣ =

∣∣∣∣∣ 0 1
1

τ2−T
−1
τ2−T

∣∣∣∣∣ =
−1

τ2 − T

Thus, we conclude that the joint prior distribution p(τ1, τ2) is
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p(τ1, τ2) ∝ ‖J‖ · e−
c22·[log(τ2−τ1)−µ2]

2

2 · τa−11 e−bτ1 (2.14)

∝ e−
c22·[log(τ2−τ1)−µ2]

2

2 · τa−11 e−bτ1 · 1

τ2 − τ1

• For the case with 2 breaks, i.e. m=3, we can conclude following the same logic

that the joint prior distribution p(τ1, τ2, τ3) is

p(τ1, τ2, τ3) ∝ e−
c22·[log(τ2−τ1)−µ2]

2

2 · e−
c23·[log(τ3−τ2)−µ3]

2

2 · τa−11 e−bτ1 · 1

τ2 − τ1
· 1

τ3 − τ2
(2.15)

If we define as θ = (θ1, ..., θm) and τ = (τ1, ..., τm), then the posterior distribution

is simply the following:
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p(N, θ, τ, Sobs, Y
src
obs |n, Y tot

obs , Bobs, Lobs, Eobs, Aobs)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs)

·
(
N

n

)
· (1− π(θ, τ))N−n

· p(N) · p(θ) · p(τ) · p(Bobs, Lobs, Eobs|N, θ, τ)

· p(Sobs|θ, τ) · p(Iobs | γobs, Sobs, Bobs, Lobs, Eobs)

· p(Y tot
obs | Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

· p(Y src
obs | Y tot

obs , Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

∝
(
N

n

)
I{n≤N}(1− π(θ, τ))N−n

·
(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
I{N∈Z+}

·
m∏
j=1

b
aj
j

Γ(aj)
θ
aj−1
j e−bjθI{θj>0}

· p(τ1, τ2, ..., τm)I{0<τ1<τ2<...<τm}

·
[ n∏
i=1

p(Bi, Li, Ei) · g(Si, Bi, Li, Ei)

·
m∑
j=1

[ j−1∏
i=1

(τi+1

τi

)−θi](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1}

· (λi + κi)
Y toti

Y tot
i !

e(λi+κi)I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( λi
λi + κi

)Y srci
(

1− λi
λi + κi

)Y toti −Y srci

I{Y srci ∈{0,1,...,Y toti }}

]
This posterior distribution is not massively different from the single Pareto model

posterior distribution. The conditional distributions for N and Y src
obs are the same

as in the single Pareto model, except for the different computation of π(θ, τ) in

which we replace the Pareto distribution for the flux S with the broken Pareto pdf.

The main computational differences in the Gibbs sampler lie in sampling from the

conditional posterior distributions of p(τ1|·), p(τ2, ..., τm|·) and p(θ1, ..., θm|·). More

specifically, we have that:
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• Sample θ = (θ1, ..., θm) as:

p(θ |) ∝ [1− π(θ, τ)]N−n·
m∏
j=1

Gamma
(
θj; aj + n(j)− 1, (2.16)

bj + I{j 6=m} log(
τj+1

τj
)

m∑
i=1

[n(i)I{i≥j+1}] +
∑
i∈I(j)

log(
Si
τj

)

where I(j) = {i : τj ≤ Si ≤ τj+1} and n(j) is the cardinality of I(j).

• Sample τ1 as:

p(τ1|·) ∝ [1− π(θ, τ)]N−n · p(τ1, τ2, ..., τm)I{0<τ1<τ2<...<τm}· (2.17)[ n∏
i=1

p(Bi, Li, Ei) · g(Si, Bi, Li, Ei)

·
m∑
j=1

[ j−1∏
i=1

(τi+1

τi

)−θi](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1}

]
∝ τnθ1+am−1 · e−bmτ · (1− π(θ, τ))N−n ·

m∏
j=2

e−
c2m·[log(τm−τ(m−1))−µm]2

2 ·

1

τm − τ(m−1)
· I{τ<cm}

• Sample (τ2, ...τm) via the transformed variables η2, ..., ηm as:

p(η2, ...ηm|·) ∝ e
∑m
j=2 ηj · [1− π(θ, τ)]N−n ·Multivariate Gaussian(µ,C)

(2.18)
n∏
i=1

p(Si|θ1, ..., θm, τ1, ..., τm) · I{0<τ1<τ2<...<τm}
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2.2 Extending the model

2.2.1 Proposed extensions

In the previous section we discussed the probability modelling for both the sin-

gle power law and broken power law model. We propose a series of extensions to

the model proposed by Udaltsova (2014) regarding the estimation and the sam-

pling from the joint distribution of the background noise B, the off axis angle L

and the exposure map E, p(B,L,E), the selection of the incompleteness function

g = g(S,B, L,E) and the computation of the integral π(θ, τ).

Distribution of p(B,L,E): The distribution of the background noise B, the off

axis angle L and the exposure map E, p(B,L,E), is not straightforward to define.

We do have the values of those parameters for the observed sources, however we

should remember that the observed sources are a biased subset of the population,

so defining the distribution of p(B,L,E) based on the observed values will not be

accurate.

In this research, we assume a more generic approach for the probability distribution

p(B,L,E) that reflects the individuals characteristics of each survey. More specifi-

cally, we make the assumption that the astronomical sources are uniformly scattered

in the universe. Each survey contains an exposure map and a background map. As

a result, in order to draw samples from the joint distribution p(B,L,E) we do the

following:

• For E, we sample uniformly data points on the exposure map under the re-

striction that the value of the effective area at this datapoint is at least 10%

of the maximum value in the exposure map.

• For L, the radius of this datapoint r from the centre of the image is used in

calculating the off-axis angle, i.e. L = 0.49r
60

.

• For B, the value of the background map at this datapoint is utilised as the B

for that source.
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Figure 2.1: The exposure map from the Chandra Deep Field South survey. We see that the values
of the exposure map are bigger closer to the centre of the detector as expected. The circles corre-
spond to various off-axis angles. It is straightforward to notice that essentially when L > 10, the
value of the exposure map is very small. In our methodology, we sample uniformly data points on the
exposure map under the restriction that the value of the effective area at this datapoint is at least
10% of the maximum value in the exposure map.

Figure 2.1 depicts the exposure map for the Chandra Deep Field survey. We see

that the values of the exposure map are bigger closer to the centre of the detector

as expected. The circles correspond to various off-axis angles. It is straightforward

to notice that essentially when L > 10, the value of the exposure map is very small.

Figure 2.2 depicts the background map from the Chandra Deep Field South survey.

The background is relatively constant for off-axis angle L < 10.

Choice of g: The detection probability curve, or incompleteness function, is

also a very important aspect of the model. Different specifications of this function

will massively influence the posterior inference. In the previous subsections, we

elaborated that the probability of an astronomical source being detected depends

on parameters such as the background, the off-axis angle etc.. In this research, the

astronomical surveys that we analyse come from NASA’s flagship X-ray telescope

Chandra. Thus, we use the detection probability curves proposed by Wright et al.

(2015). More specifically, they propose a detection probability function of the form:

g(C,E,B, L) = 1− e−
Cλ1

10λ2 , (2.19)
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Figure 2.2: The background map from the Chandra Deep Field South survey. The background is
relatively constant for off-axis angle L < 10.

in which the choice of λ1 and λ2 depends on the background and off-axis angle. In

the g function the variable C corresponds to the source counts. We usually have the

flux S of each source and use the expected source counts as:

C =
S · E
γ

(2.20)

in the g function, thus we write it as g = g(S,B, L,E, γ). We will also refer to

the function g as the incompleteness function. Figure 2.3 shows source detection

probability curves as a function of the number of source counts based on Wright

et al. (2015). The curves are plotted for different combinations of background B

and off-axis angle L.

Computing π(θ, τ ): One of the most subtle parts of the posterior distribution

defined in the precious section is the computation of the π(θ, τ), which denotes the

marginal probability of observing a source as a function of the slope (or slopes) θ

and τ , i.e.

π(θ, τ) =

∫
g(I|S,B, L,E) · p(S,B, L,E|θ, τ) dS dB dE dL (2.21)

=

∫
g(I|S,B, L,E) · p(S|θ, τ) · p(B,L,E) dS dB dE dL
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Figure 2.3: Source detection probability curves as a function of the number of source counts based
on Wright et al. (2015). The curves are plotted for different combinations of background B and off-
axis angle L.

In order to estimate the marginal probability of observing a source, we have to evalu-

ate the multi-dimensional integral. We can use various numerical techniques in order

to evaluate this integral such as Riemann Sums or Monte Carlo integration. After

numerical experiments, the Monte Carlo integration yields the best performance in

terms of computational time and accuracy. More specifically, we draw samples from

the empirical distribution of B,L,E as we discussed above as well as samples of the

flux S from a Pareto distribution conditional on the values of (θ, τ) if we assume a

single power law model (or the m-component broken power law distribution of we

assume a broken power law model). The empirical average of g is the approximation

of π(θ, τ).

In order to speed up the MCMC, we pre-compute the π(θ, τ) on a grid of values of θ

and τ and then use bilinear interpolation. This strategy reduces the running time of

the MCMC considerably since the pre-computed surface can be re-used in different

MCMC runs. However, creating a dense enough grid is only possible for the single

power law model case, in which the grid is 2-dimensional. For the broken power law

model, the grid has many dimensions and creating a dense grid requires an enormous

amount of time. Thus, we evaluate the integral on the fly while running the Gibbs

sampler.
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2.2.2 Alternative Sampling Methodology

It should be noted that the lower population flux limit τ is heavily correlated with

cm, the smallest Sobs. In order to break that correlation we develope a Partially Col-

lapsed Gibbs sampler as well, i.e. we integrate the Sobs from the marginal posterior

distribution p(τ, Sobs|·) in order to sample τ without conditioning on the state of cm.

More specifically, for the single power law model, the marginal posterior distribution

p(τ, Sobs|·) is:

p(τ, Sobs|N, θ, n, Y tot
obs , Y

src
obs , Bobs, Lobs, Eobs, Aobs) ∝

∝ (1− π(θ, τ))N−n · bamm
Γ(am)

τam−1e−bmτI{τ>0}

·
n∏
i=1

p(Bi, Li, Ei) · θτ θS−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei)

· (λi + κi)
Y toti

Y tot
i !

e(λi+κi)I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( λi
λi + κi

)Y srci
(

1− λi
λi + κi

)Y toti −Y srci

I{Y srci ∈{0,1,...,Y toti }}

∝ (1− π(θ, τ))N−n · τnθ+am−1 · e−bmτ ·
n∏
i=1

S
−(θ+1)+Y srci
i · e−

SiEi
γ · g(Si, Bi, Li, Ei)I{τ<Si}

So, the marginal posterior distribution p(τ |N, θ, n, Y tot
obs , Y

src
obs , Bobs, Lobs, Eobs, Aobs) is

computed by integrating over Sobs, i.e.

p(τ |N, θ, n, Y tot
obs , Y

src
obs , Bobs, Lobs, Eobs, Aobs)

∝ (1− π(θ, τ))N−n · τnθ+am−1 · e−bmτ ·
∫ ( n∏

i=1

S
−(θ+1)+Y srci
i · e−

SiEi
γ

· g(Si, Bi, Li, Ei)I{τ<Si}

)
dS
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The sampling is performed using the Metropolis- Hastings Algorithm. We take a

logarithmic transformation of τ in order to preserve the positivity and to avoid

numerical instability since τ is a very small number (∼ 10−17). So, the marginal

posterior distribution is:

η = log(τ) (2.22)

p(η|N, θ, n, Y tot
obs , Y

src
obs , Bobs, Lobs, Eobs, Aobs) = (2.23)

∝ (1− π(θ, eη))N−n · e(nθ+am−1)η · e−bmeη

·
∫ ( n∏

i=1

S
−(θ+1)+Y srci
i · e−

SiEi
γ

· g(Si, Bi, Li, Ei)I{η<log(Si)}

)
dS (2.24)

We choose a normal distribution as a proposal distribution. The integral with re-

spect to flux is computed using numerical integration. More specifically, we create a

grid of values for the flux S over which we evaluate the expression. After numerical

simulations, a grid of length 50,000 suffices for the estimation of that integral.

As described in van Dyk & Jiao (2015), extra care must be taken in the order in

which the parameters are sampled when we use a Partially Collapsed Gibbs with

Metropolis Hastings updates so as to sample from the proper stationary distribu-

tion. In our case, we should first sample from p(Y src
i |·), then p(τ |·) and afterwards

p(Sobs|tau, ·). The rest of the parameters can be sampled afterwards in any order.

The only concern is while sampling p(Sobs,i|τ, ·), we must ensure that Sobs,i > τ . So,

in case Sobs,i < τ , we set Sobs,i = 1.5τ and then sample 10 times the Sobs,i.

In order to compare the Partially Collapsed Gibbs algorithm with the Blocked Gibbs

algorithm presented in the previous section, we consider simulated data from our

model with θ = 0.4, N = 40 and τ = 3.5 × 10−17. The source-specific parameters

(B,L,E) are sampled as described previously using the exposure map and back-

ground map of the Chandra Deep Field South survey. The energy conversion factor

is held constant at γ = 2.679 × 10−9. The posterior estimates of the 3 parameters

can be found at Tables 2.1 and 2.2.
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Table 2.1: The posterior estimates of θ, τ,N of simulated dataset using the Blocked Gibbs sampler
introduced in Section 2.1.1.

Mean SD 2.5% 97.5%
θ 0.335 0.072 0.206 0.483
N 47.7 11.02 30 73
τ 2.69×10−17 1.22×10−17 8.47×10−18 5.5×10−17

Table 2.2: The posterior estimates of θ, τ,N of simulated dataset using the Partially Collapsed
Gibbs sampler.

Mean SD 2.5% 97.5%
θ 0.334 0.071 0.204 0.486
N 51.45 12.5 31 80
τ 2.06×10−17 1.08×10−17 5.12×10−18 4.61×10−17

After a series of numerical simulations, we concluded that the Partially Collapsed

Gibbs sampler offers faster convergence to the target posterior distribution than the

Blocked Gibbs sampler. However, this comes at a heavy computational cost. Per-

forming numerical integration twice during each Gibbs iteration adds a lot of extra

computation time, which is not compensated by the faster convergence. Thus, we

suggest using the Blocked Gibbs sampler introduced in Section 2.1.1 which is 2 to

3 times faster than the Partially Collapsed Gibbs sampler.

2.3 Model Validation

The two samplers described in the previous sections, the Blocked Gibbs sampler

and the Partially Collapsed Gibbs sampler, are implemented in Python and we

have taken advantage of parallel processing in order to speed up the computations.

However, since the above model contains many different levels, validating the com-

puter software becomes a necessity. We restrain the validation analysis only for the

Blocked Gibbs sampler since we will not be using the Partially Collapsed Gibbs

sampler due to its high computational cost. The validation is done by generating

data according to the model and check the model-fitting software for consistent pos-

terior estimates. We also compute the marginal posterior distribution and compare

it with the histograms of the marginal posterior distributions of the parameters of

interest, produced from the Gibbs draws, for consistency.
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2.3.1 Validation using posterior interval plots

A significant advantage of bayesian models is that they we can perform validation

and self-consistency checks using simulated data (Cook et al. 2012, Gelman et al.

2014). This is extremely important in models such as the one presented in this

chapter due its complex hierarchy, structure and the many different levels.

The validation is based on generating simulated datasets from the model generat-

ing software given some fixed values of the parameters, and then fit the simulated

dataset to the model-fitting software to obtain posterior draws of the parameters.

More specifically, the validation algorithm can be described as:

Validation Algorithm:

• Step 1: Simulate data from the model yobs ∼ p(yobs | θ, τ,N), where the true

values of (θ, τ,N) are given.

• Step 2: Run the Blocked Gibbs sampler to obtain posterior draws for the

parameters of interest (θ, τ,N)(t) ∼ p(θ, τ,N | yobs), t = 1, ..., T . Compute

posterior quantiles using the posterior draws, i.e. for a parameter x, compute

the x̂q = min{xt : P̂ r(x < xq) = 1
T

∑T
t=1 I{xt<xq} ≥ q}, for 0 < q < 1.

• Step 3: For each parameter, evaluate posterior credible sets C of level α:∫
C

p(x | yobs)dx = 1− α.

The estimate based on the samples from the Blocked Gibbs sampler is (x̂L, x̂U)

such that q(x̂L) = α/2 and q(x̂U) = 1−α/2. For each parameter, record if the

posterior credible set C of level α contains the ”true” value of the parameter

used for generating the simulated dataset.

The steps 1,2 and 3 are repeated 20 times. We expect for each parameter that the

posterior credible set C of level α contains the ”true” value of the parameter most of

the times, especially if the above steps were to be repeated for a very large number
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of times.

Single Pareto Model: For the single Pareto model, we simulated 20 datasets us-

ing the parameters θ = 0.8, N = 800 and τ = 2 × 10−17. The flux to count rate

conversion factor is set constant to γ = 2.679× 10−9. More specifically, we draw N

samples from a Pareto distribution for the flux of the complete source population,

i.e. Stot
i ∼ Pareto(θ, τ), i = 1, ..., N and then draw Bi, Li, Ei from the joint distribu-

tion p(B,L,E) as described in the previous section using the background map and

exposure map from the Chandra Deep Field South survey. Then, we apply the in-

completeness function to extract the Sobs by computing the function g(Si, Bi, Li, Ei)

and comparing it with ui ∼ Uniform(0,1); we assume that the source i is observed

if ui < g(Si, Bi, Li, Ei).

Figures 2.4, 2.5 and 2.6 show the posterior 95% interval for each of the 20 simu-

lated datasets for the parameters θ, N and τ respectively. We can see that the 95%

posterior intervals in the 19 out of the 20 datasets contain the ”true” values of the

3 parameters.

Figure 2.4: Posterior credible intervals of θ from 20 dataset simulations using validation process for
the single Pareto model. The ”true” value is θ = 0.8.
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Figure 2.5: Posterior credible intervals of N from 20 dataset simulations using validation process for
the single Pareto model. The ”true” value is N = 800.

Figure 2.6: Posterior credible intervals of τ from 20 dataset simulations using validation process for
the single Pareto model. The ”true” value is τ = 2 × 10−17. Note that the symbol ”e” on the axis
values denotes the scientific notation for 10 to the respective power.
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Broken Pareto Model with 1 breakpoint: For the broken Pareto model with

1 break, we simulated 20 datasets using parameters θ1 = 0.8, θ2 = 1.2, N = 1000,

τ1 = 1.5× 10−17 and τ = 2× 10−15. The flux to count rate conversion factor is set

constant to γ = 2.679×10−9. More specifically, we draw N samples from the Broken

Power law distribution for the flux of the complete source population (using the in-

verse CDF method), and then draw Bi, Li, Ei from the joint distribution p(B,L,E)

as described in the previous section. Then, we applied the incompleteness function

to extract the Sobs by computing the function g(Si, Bi, Li, Ei) and comparing it with

ui ∼ Uniform(0,1); we assume that the source i is observed if ui < g(Si, Bi, Li, Ei).

Figures 2.7, 2.8, 2.9,2.10 and 2.11 show the posterior 95% interval for each of the

20 simulated datasets for the parameters θ1, θ2, N , τ1 and τ2 respectively.

Figure 2.7: Posterior credible intervals of θ1 from 20 dataset simulations using validation process for
the broken Pareto model with 1 break. The ”true” value is θ1 = 0.8.
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Figure 2.8: Posterior credible intervals of θ2 from 20 dataset simulations using validation process for
the broken Pareto model with 1 break. The ”true” value is θ2 = 1.2.

Figure 2.9: Posterior credible intervals of N from 20 dataset simulations using validation process for
the broken Pareto model with 1 break. The ”true” value is N = 1000.
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Figure 2.10: Posterior credible intervals of τ1 from 20 dataset simulations using validation process
for the broken Pareto model with 1 break. The ”true” value is τ1 = 1.5 × 10−17. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.

Figure 2.11: Posterior credible intervals of τ2 from 20 dataset simulations using validation process
for the broken Pareto model with 1 break. The ”true” value is τ2 = 2× 10−15. Note that the symbol
”e” on the axis values denotes the scientific notation for 10 to the respective power.

Although the ”true” values of the parameters are contained in the 95% posterior

credible intervals for all the parameters for at least 19 out of the 20 simulated

datasets, we can observe that the model exhibits biases on the estimation of τ2.
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More specifically, we can observe that the posterior intervals of the breakpoint τ2

are rather wide. For high values of the flux S, the number of observed sources

becomes small. Thus, the estimation of the breakpoint is difficult. The wide poste-

rior interval indicates that the model doesn’t not have enough data to converge to

a specific breakpoint and explores many different regions for the breakpoint. Fig-

ure 2.12 depicts the 20 histograms of the marginal posterior distributions of τ2 for

the simulated datasets. We can see that most of them exhibit a right fat tail and

multimodality, indicating that they are exploring many different areas for τ2. If we

are considering a point inference for posterior distributions that exhibit those char-

acteristics, the posterior median or posterior mode might be a more appropriate

choice than the posterior mean (Park et al. 2008 have an interesting discussion in

summarising distributions with multiple modes). A more informative prior distribu-

tion would be very useful in that particular case as well as the existence of a bigger

dataset.

The multimodality and the skewness are evident and in the marginal posterior dis-

tribution of τ2 that we extract from applying the same methodology to he Chandra

Deep Field South survey in Section 2.5.

Figure 2.12: Posterior marginal histograms of τ2 from 20 dataset simulations using validation pro-
cess for the broken Pareto model with 1 break. The ”true” value is τ2 = 2× 10−15 depicted with the
vertical red line in each histogram. Note that the symbol ”e” on the axis values denotes the scientific
notation for 10 to the respective power.

45



Broken Pareto Model with 2 breakpoint: For the broken Pareto model with

2 breaks, we simulated 20 datasets using parameters θ1 = 0.5, θ2 = 0.7, θ3 = 1.3,

N = 1000, τ1 = 1.5× 10−17, τ = 1.3× 10−15 and τ3 = 6× 10−15. The flux to count

rate conversion factor is set constant to γ = 2.679 × 10−9. More specifically, we

draw N samples from the Broken Power law distribution for the flux of the com-

plete source population (using the inverse CDF method), and then draw Bi, Li, Ei

from the joint distribution p(B,L,E) as described in the previous section. Then, we

applied the incompleteness function to extract the Sobs by computing the function

g(Si, Bi, Li, Ei) and comparing it with ui ∼ Uniform(0,1); we assume that the source

i is observed if ui < g(Si, Bi, Li, Ei).

Figures 2.13, 2.14, 2.15, 2.16,2.17, 2.18 and 2.19 show the posterior 95% interval

for each of the 20 simulated datasets for the parameters θ1, θ2, θ3, N , τ1, τ2 and

τ3 respectively. As in the case of the broken Pareto Model with 1 break, we can

observe a bias in the estimation of τ3. More specifically, we can observe that the

posterior intervals of the breakpoint τ3 are rather wide. We believe that the wide

posterior interval indicates that the model doesn’t not have enough data to converge

to a specific breakpoint and explores many different regions for the breakpoint.

Figure 2.13: Posterior credible intervals of θ1 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is θ1 = 0.5.
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Figure 2.14: Posterior credible intervals of θ2 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is θ2 = 0.7.

Figure 2.15: Posterior credible intervals of θ3 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is θ3 = 1.3.
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Figure 2.16: Posterior credible intervals of N from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is N = 1000.

Figure 2.17: Posterior credible intervals of τ1 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is τ1 = 1.5 × 10−17. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.
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Figure 2.18: Posterior credible intervals of τ2 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is τ2 = 1.3 × 10−15. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.

Figure 2.19: Posterior credible intervals of τ3 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is τ3 = 6 × 10−15. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.
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2.3.2 Evaluate the Marginal Posterior Distribution

Another way to check whether the Blocked Gibbs sampler draws samples from the

correct posterior distribution is to numerically evaluate the marginal posterior dis-

tribution p(θ, τ,N |·) on a grid and then integrate in order to compute the marginal

posteriors p(θ|·), p(τ |·), p(N |·) and compare them with the marginal posteriors we

get from the Gibbs algorithm. More specifically, the marginal posterior distribution

of N, θ, τ (for the single Pareto model) is:

p(N, θ, τ |n, Y tot
obs , ·) ∝

(
N

n

)
(1− π(θ, τ))N−n

·
(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
· ba

Γ(a)
θa−1e−bθ · bamm

Γ(am)
τam−1e−bmτ

·
∏∫

θτ θS
−(θ+1)
i · g(Si, Bi, Li, Ei) ·

(λi + κi)
Y toti

Y tot
i !

e(λi+κi)

·
(
Y tot
i

Y src
i

)( λi
λi + κi

)Y srci
(

1− λi
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)Y toti −Y srci

dS dY src
i

Inside the integral, we have

I =

∫
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(
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This integral is estimated using Monte Carlo integration, i.e. drawing samples from

a Pareto(S; θ, τ) distribution and evaluating the function g(Si, ) · (λi+κi)
Y toti

Y toti !
e(λi+κi)

50



at those samples of S. After numerical experiments, in order to achieve sufficient

accuracy we err on the side of using 5, 000, 000 samples. In other words, each eval-

uation is very demanding on computational time, thus using this method in a big

dataset with many sources, i.e. large number N , will require weeks of computing

time, even with massive parallelisation.

As a validation example, consider data simulated from the model with θ = 0.9,

τ = 0.7 × 10−17 and N = 80. After applying the incompleteness function on the

data we are left with n = 9 observed sources. The following figure depicts the

histograms we get from the Blocked Gibbs sampler after 50, 000 iterations and by

removing the necessary burn-in samples for the 3 parameters of interest θ, τ and

N . The red lines correspond to the marginal posterior distributions we evaluated

numerically on a grid as described above. It becomes apparent that the Blocked

Gibbs algorithm samples from the correct stationary distribution.

Figure 2.20: Posterior histograms of the three parameters θ, τ and N using the samples from the
Gibbs sampler. The red lines correspond to the marginal posterior distributions of θ, τ and N evalu-
ated numerically as described above. Note that the symbol ”e” on the axis values denotes the scien-
tific notation for 10 to the respective power.

2.4 Posterior Inference and Model Selection

2.4.1 Parameter Inference

The posterior inference for the model parameters is based on the posterior MCMC

draws. Given the posterior samples, we can summarise and visualise the marginal
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posterior distributions of the parameters of interest. More specifically, the posterior

samples are used to compute a number of different statistics for the model parame-

ters such as the posterior mean, median and mode in order to represent the posterior

point estimates. The posterior credible intervals are estimated so as to represent

the uncertainty. A visual inspection of the distributions allows us to check for mul-

timodality as well.

We estimate those posterior values after running multiple MCMC chains for a large

number of iterations and using different starting values. We disregard the first half

part of the chains as burn-in. The convergence of the chains is examined by looking

at the trace plots. When in doubt regarding a convergence of a scalar estimate, we

opt to use the R̂ statistic, defined in Chapter 11 of Gelman et al. (2014), to monitor

the convergence.

The Bayesian model which we developed allow us to look at the flux distribution

in two different ways. The first characterisation of the log(N)− log(S) relationship

is through the marginal posterior distribution of the slope θ for the single power

law model. Moreover, we can explore the posterior log(N)− log(S) curve, that we

plot using the different posterior samples of the observed and missing sources (given

the observed sources, we can easily sample the missing sources). Examining this

posterior log(N) − log(S) curve will provide intuition about the uncertainty of the

posterior estimates and the linearity of the curve. The minimum threshold τ and

the total number of sources N can provide us with additional information; the total

number of sources N is big with respect to the number of observed sources when the

detection probability is low. This indicates that the posterior estimates are mostly

influenced by the model assumptions and not the observed data.

Similarly, for the broken power law model, are main focus is on the broken power

law slopes θ1, ..., θm and the flux breakpoints τ2, ..., τm, which indicate the fluxes at

which we observe a significant change in the underlying flux distribution. We also

construct a posterior log(N) − log(S) plot using the MCMC draws and sampling

the fluxes for the missing sources, Smis, for each iteration.
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2.4.2 Sensitivity to the Choice of Priors

The choice of priors for the various parameters of interest directly affects the poste-

rior inference. In the context of Bayesian statistics, if there is a strong prior belief

about a model parameter, it should be expressed through the prior distribution.

However, a strongly informative but incorrect prior can have negative impact in the

quality of the posterior estimate, especially if the amount of data is not sufficient to

overcome the misplaced certainty of the prior distribution.

A thorough investigation of the sensitivity of the Single Pareto model to the choice

of priors is carried in Udaltsova (2014). The authors examine the impact to the pos-

terior inference of the model parameters θ, N and τ of a weak prior, a moderately

informative prior which is consistent with the true value and a strongly informative

but incorrect prior. The conclusion of that study is that a strong but incorrect

prior can adversely affect the posterior inference, thus the use of weak priors is rec-

ommended. Our numerical simulations for both the single Pareto model and the

broken Power Law model verified this conclusion and thus we opt for using weakly

informative priors provided to us by our collaborators from the astronomical society.

However, a slight misspecification on the priors doesn’t seem to affect the posterior

estimates of the parameters.

2.4.3 Model Selection

In the previous sections we developed a series of 3 different models for estimating the

flux distribution; a model with no-breaks, a model with 1-break and a model with

2-breaks. The question that arises revolves around selecting the appropriate model

for a given set of data. This is not a trivial choice and the relevant literature is quite

extended on the topic (see Draper 1995, O’Hagan 1995, and their discussions for an

overview), although there is not a single best solution. In most cases, we expect a

larger model, in our case the models with breaks, to better fit the data. However,

we should examine whether the improvement in the fit is statistically significant and

not just a result of over-fitting. Some of the more commonly used methods include

the Bayes factors and the Deviance Information Criterion (DIC).

Bayes factors is a method for model selection in which two candidates models are
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compared using the ratio of the marginal likelihood under one model to the marginal

likelihood of the other model. If we define as H1 and H2 the two competing models,

then:

Bayes factor(H2;H1) =
p(y|H2)

p(y|H1)

Kass & Raftery (1995) provide a comprehensive overview of the method and an

interpretation of the estimated Bayes factor.

The DIC (Spiegelhalter et al. 2002, see) measures the discrepancy between the data

and the model. It is defined as:

DIC = −2 log p(y|θBayes) + 2pDIC ,

where θBayes is the posterior estimate and the second term of the equation defines

the bias correction term that estimates the effective number of parameters.

Udaltsova (2014) explores the performance of Bayes factor and the DIC for auto-

matic model selection for choosing the most appropriate model, in our case the

number of breaks. Their simulation results indicate that neither of those methods

can lead to a reliable model selection procedure, mainly because of the complicated

hierarchical structure. They also propose a new model selection method, called

Bayesian Adaptive Fence Method, which besides being very computationally expen-

sive, it stills doesn’t show consistent performance in the simulation studies. We

believe that further research on the topic is appropriate, which may call for the

development of more problem specific methods for model selection (we discuss our

proposed approach at the Discussion section of this Chapter as well as at the last

Chapter of this Thesis).

54



2.5 Application: CHANDRA Deep Field South

The methodology developed in the previous sections is applied to the CHANDRA

Deep Field South (CDFS) 2MS survey, one of the most sensitive X-ray surveys ever

done. The CDFS is an image taken by the Chandra X-ray Observatory satellite.

This survey is a deep 0.5-7.0 keV survey covering 0.11 square degrees comprised of

11 days of CHANDRA ACIS-I exposure. In our analysis we consider a sample of 358

observed sources, from which we exclude 3 sources for which we do not have spectral

data (in the next section we will incorporate the uncertainty about the flux-to-count

conversion factor γ in our model which requires having the spectrum of each source;

thus to facilitate the comparison of the results, we also exclude those 3 sources from

the current analysis).

Figure 2.21: CHANDRA ”true” colour image of the CDFS.

2.5.1 Single Power Law model

For the single Power Law model we assume the following priors for the parameters

(N, θ, τ):
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θ ∼ Gamma(a = 2, b = 1)

τ ∼ Gamma(am = 1.38, bm = 3.46× 10−16)

N ∼ Negative-Binomial(aN = 8.05, bn = 0.014)

We ran the Blocked Gibbs sampler, as described in the previous sections, using the

aforementioned priors for 60,000 iterations. As it is always a good practise with

MCMC samplers, we ran 3 independent chains with different starting values, which

all of them gave us very similar posterior estimates. More specifically, the first chain

provided us with the posterior estimates for the parameters of interest (N, θ, τ) that

are depicted in the Table 2.3 using the last 30,000 iterations (we discarded the first

30,000 iterations as burn-in).

Table 2.3: Posterior estimates of major parameters for the CDFS dataset for the single Pareto model
using the last 30,000 iterations for 1 of the 3 chains we ran.

Mean Median SD 2.5% 97.5% Mode
θ 0.963 0.976 0.03 0.894 1.00 0.980
N 2826.3 2803 223.1 2472 3368 2778
τ 9.67× 10−18 1.00× 10−17 9.14× 10−19 7.72× 10−18 1.06× 10−17 1.01× 10−17

Figure 2.22 shows the trace plots for the parameters of interest (N, θ, τ) for the

first chain we ran. The convergence is quite fast as we can deduce. Figure 2.23

depicts the posterior bivariate scatter plots and 1-dimensional histograms for the

parameters of interest. From both the bivariate scatter plots and the histograms

of the posteriors draws we can observe that the marginal posterior distribution of

the slope θ and the marginal posterior distribution of τ exhibit signs of bi-modality.

This could be interpreted as an indication that the log(N) − log(S) curve is not

linear but rather piece-wise linear.

The posterior draws of the flux for the complete source population gives rise to the

posterior distribution plot of the log(N)− log(S) curve shown in Figure 2.24. Each

curve in the plot corresponds to a set of fluxes for the complete source population

sampled from a single iteration of Blocked Gibbs sampler scheme with observed

sources shown in grey and missing sources in red. Current plot exhibits sample

of 100 flux sets. The blue line is the estimated log(N) − log(S) curve using the
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posterior modes of θ,N, τ . The depicted curve does not appear to be linear. This

indicates that a broken Power Law model might be a better fit, especially if we take

into consideration the bi-modality in the marginal posterior distributions.

Figure 2.22: Trace plots of the main parameters of interest θ,N, τ of the CDFS dataset for the
Single Pareto model.

Figure 2.23: Bivariate scatter plots and 1-dimensional histograms of the main parameters of interest
θ,N, τ of the CDFS dataset for the Single Pareto model. The figures are plotted using the posterior
draws from the Blocked Gibbs sampler after removing a burn -in sample of about 30,000 draws.

57



Figure 2.24: The posterior distribution of the log(N) − log(S) plot of the CDFS dataset for the
Single Pareto model. Each line in the plot corresponds to a set of fluxes for the complete source pop-
ulation sampled from a single iteration of the Blocked Gibbs sampler scheme with observed sources
shown in grey and missing sources in red. Current plot exhibits sample of 100 flux sets. The depicted
curve does not appear to be linear. This indicates that a Broken Power Law model might be a better
fit.

2.5.2 Broken Power Law model with 1 break

For the Broken Power Law model with 1 break, the following priors were assumed

for the parameters (N, θ1, θ2, τ1, τ2):

θ1 ∼ Gamma(a = 2, b = 1)

θ2 ∼ Gamma(a = 2, b = 1)

τ1 ∼ Gamma(am = 1.38, bm = 3.46× 10−16)

η2 = log(τ2 − τ1) ∼ N(µ = −35, σ2 = 1)

N ∼ Negative-Binomial(aN = 8.05, bn = 0.014)
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We ran the Blocked Gibbs sampler, as described in the previous sections, using the

aforementioned priors for 60,000 iterations. As it is always a good practise with

MCMC samplers, we ran 3 independent chains with different starting values. More

specifically, the first chain provided us with the posterior estimates for the param-

eters of interest (N, θ1, θ2, τ1, τ2) that are depicted in the Table 2.4 using the last

30,000 iterations (we discarded the first 30,000 iterations as burn-in).

Table 2.4: The posterior estimates for the major parameters for the CDFS dataset using the last
30,000 iterations for the Broken Power law model with 1 break for 1 of the 3 chains we ran.

Mean Median SD 2.5% 97.5% Mode
θ1 0.759 0.759 0.05 0.661 0.860 0.780
θ2 1.52 1.27 0.77 0.677 3.86 1.13
N 2139 2096 336 1608 2929 1879
τ1 0.91× 10−17 0.91× 10−17 1.76× 10−18 5.73× 10−18 1.23× 10−17 0.96× 10−17

τ2 5.07× 10−15 2.19× 10−15 7.01× 10−15 2.59× 10−16 2.74× 10−14 1.05× 10−15

Figure 2.25 shows the trace plots for the parameters of interest (N, θ1, θ2, τ1, τ2). Fig-

ure 2.26 depicts the posterior bivariate scatter plots and 1-dimensional histograms

for the parameters of interest. From both the bivariate scatter plots and the his-

tograms of the posteriors draws we can observe that the marginal posterior distri-

bution of the slope θ1 and the marginal posterior distribution of τ1 are unimodal

distributions in contrast to the no-break case. However, the marginal posterior dis-

tributions of both τ2 and θ2 have fat tails and exhibit signs of multimodality. This

behaviour is similar to the one we observed during the validation study, where we

stated that this behaviour might be a result of a lack of enough sources with high

values of flux. Thus, the MCMC chain explores many different areas for τ2 and

subsequently for the slope θ2. If we are considering a point estimate for the pa-

rameters of interest, we suggest using the posterior mode, since it might be a more

appropriate choice than the posterior mean.
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Figure 2.25: Trace plots of the main parameters of interest θ1, θ2, N, τ1, τ2 of the CDFS dataset for
the broken Power law model with 1-break. Note that the symbol ”e” on the axis values denotes the
scientific notation for 10 to the respective power.

Figure 2.26: Bivariate scatter plots and 1-dimensional histograms of the main parameters of interest
θ1, θ2, N, τ1, τ2 of the CDFS dataset for the broken Power law model with 1-break. The figures are
plotted using the posterior draws from the Blocked Gibbs sampler after removing a burn -in sample
of about 30,000 draws.

In order to examine whether this behaviour shows up as a result of lack of conver-

gence in the MCMC chain, we compute the R̂ statistic suggested in Gelman et al.

(2014) for monitoring the convergence of scalar estimands. The value of R̂ is 1.002

for τ2, thus we have evidence that the chains have converged. We also look at the
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individual trace plots of all the 3 chains for τ2 depicted in Figure 2.27 which indicate

similar behaviour. Moreover, in Figure 2.28 we plot the histograms of the marginal

posterior distribution of τ2 for the 3 chains individually, and for all of the chains

combined. We can observe that the histograms look very similar for all chains indi-

vidually and for all of them combined.

Figure 2.27: Trace plots of parameter τ2 of the CDFS dataset for the Broken Power law model with
1-break for all of the 3 parallel chains. Note that the symbol ”e” on the axis values denotes the sci-
entific notation for 10 to the respective power.
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Figure 2.28: Histograms of the marginal posterior distribution of parameter τ2 of the CDFS dataset
for the Broken Power law model with 1-break for all of the 3 parallel chains. We can observe that the
histograms are very similar. The bottom right histogram is the histogram of all the posterior samples
of τ2 from the 3 chains combined. It has a similar shape to the each individual histogram.

The posterior draws of the flux for the complete source population gives rise to the

posterior distribution plot of the log(N)− log(S) curve shown in Figure 2.29. Each

curve in the plot corresponds to a set of fluxes for the complete source population

sampled from a single iteration of Blocked Gibbs sampler scheme with observed

sources shown in grey and missing sources in red. Current plot exhibits sample of

100 flux sets. The blue line is the estimated log(N) − log(S) using the posterior

modes of θ2, τ1, τ2 and the posterior medians of θ1 and N . The reason we choose

the posterior medians of θ1 and N as point estimates lies on the shape of their

marginal posterior distributions. More specifically, both of those marginal posterior

distributions are flat around the mode, so the actual estimation of the mode is very

difficult and numerically unstable. The resulting posterior log(N)− log(S) curve in

Figure 2.29 does not appear to be linear. Thus the broken power law model with

1-break seems like a better candidate than the no break model.
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Figure 2.29: The posterior distribution of the log(N) − log(S) plot of the CDFS dataset for the
broken power law model with 1-break. Each line in the plot corresponds to a set of fluxes for the
complete source population sampled from a single iteration of the Blocked Gibbs sampler scheme
with observed sources shown in grey and missing sources in red. Current plot exhibits sample of 100
flux sets. The depicted curve does not appear to be linear, so a broken power law model seems like a
better fit.

2.5.3 Broken Power Law model with 2 breaks

For the Broken Power Law model with 2 breaks, the following priors were assumed

for the parameters (N, θ1, θ2, θ3, τ1, τ2, τ3):

θ1 ∼ Γ(a = 10, b = 10)

θ2 ∼ Γ(a = 10, b = 10)

θ23 ∼ Γ(a = 10, b = 10)

τ1 ∼ Γ(am = 1.38, bm = 3.46× 10−16)

η2 = log(τ2 − τ1) ∼ N(µ = −35, σ2 = 4)

η3 = log(τ3 − τ2) ∼ N(µ = −33, σ2 = 4)

N ∼ Negative-Binomial(aN = 8.05, bn = 0.014)

We ran the Blocked Gibbs sampler, as described in the previous sections, using the
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aforementioned priors for 60,000 iterations. As for the no-break and the 1-break

model, we ran 3 independent chains with different starting values. More specifically,

the first chain provided us with the posterior estimates for the parameters of inter-

est (N, θ1, θ2, θ3, τ1, τ2, τ3) that are depicted in the Table 2.5 using the last 30,000

iterations (we discarded the first 30,000 iterations as burn-in).

Table 2.5: The posterior estimates for the major parameters for the CDFS dataset using the last
30,000 iterations for the Broken Power law model with 2-breaks for 1 of the 3 chains we ran.

Mean Median SD 2.5% 97.5% Mode
θ1 0.749 0.749 0.06 0.644 0.867 0.750
θ2 1.05 1.04 0.24 0.581 1.51 1.02
θ3 1.16 1.12 0.40 0.457 2.14 1.15
N 1932 1886 292 1480 2622 1797
τ1 1.01× 10−17 1.04× 10−17 1.77× 10−18 6.35× 10−18 1.24× 10−17 1.21× 10−17

τ2 1.06× 10−15 9.89× 10−16 5.52× 10−16 2.83× 10−16 2.56× 10−15 1.07× 10−15

τ3 8.31× 10−15 7.01× 10−15 4.93× 10−15 2.53× 10−15 2.17× 10−14 5.18× 10−15

Figure 2.30 shows the trace plots for the parameters of interest (N, θ1, θ2, θ3, τ1, τ2, τ3).

Figure 2.31 depicts the posterior bivariate scatter plots and 1-dimensional his-

tograms for the parameters of interest. From both the bivariate scatter plots and

the histograms of the posteriors draws we can observe that the marginal posterior

distribution of the slope θ and the marginal posterior distribution of τ exhibit signs

of bi-modality. This could be interpreted as an indication that the log(N)− log(S)

curve is not linear but rather piece-wise linear.
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Figure 2.30: Trace plots of the main parameters of interest (N, θ1, θ2, θ3, τ1, τ2, τ3) of the CDFS
dataset for the Broken Power law model with 2-breaks. Note that the symbol ”e” on the axis values
denotes the scientific notation for 10 to the respective power.

The posterior draws of the flux for the complete source population gives rise to the

posterior distribution plot of the log(N)− log(S) curve shown in Figure 2.32. Each

curve in the plot corresponds to a set of fluxes for the complete source population

sampled from a single iteration of Blocked Gibbs sampler scheme with observed

sources shown in grey and missing sources in red. Current plot exhibits sample of

100 flux sets. The blue line is the estimated log(N) − log(S) using the posterior

modes of θ1, θ2, θ3, τ1, τ2 and the posterior medians of τ3 and N . As in the case of

the model with 1-break, we err on the side of using the posterior medians as point

estimates since both of the marginal posterior distributions of τ3 and N are flat

around the mode, so the actual estimation of the mode is very difficult and numeri-

cally unstable.The depicted curve does not appear to be linear. This indicated that

a Broken Power Law model might be a better fit.
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Figure 2.32: The posterior distribution of the log(N) − log(S) plot of the CDFS dataset for the
broken power law model with 2-breaks. Each line in the plot corresponds to a set of fluxes for the
complete source population sampled from a single iteration of the Blocked Gibbs sampler scheme
with observed sources shown in grey and missing sources in red. Current plot exhibits sample of 100
flux sets. The depicted curve does not appear to be linear. Thus a broken power law model seems
like a better candidate than the no break model.

2.6 Discussion and Further Research Direction

In the previous sections, we described a hierarchical Bayesian model for estimating

the log(N) − log(S) relationship for both the linear and the piece-wise linear case

based on Udaltsova (2014). This model properly accounts for the detector biases

and uncertainties, and the missing data mechanism, while the relevant methods in

the literature can only handle ideal, complete surveys. More specifically, it models

the joint distribution of the complete data and model parameters, and then derives

the posterior distribution of the model parameters marginalised across all missing
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data information.

Our approach extends the work of Udaltsova (2014) in 2 ways. It employs a survey

specific incompleteness function, which plays a crucial role in the posterior infer-

ence, and thus it should reflect the exact characteristics of the astronomical survey.

Secondly, we utilise the survey specific background and exposure maps in order to

create a joint distribution for the background contamination, the effective area and

the off-axis angle. This creates a far more realistic distribution which can be used

when sampling for the missing sources. Our approach provides a generalised frame-

work for estimating the log(N) − log(S) relationship for various different surveys.

We applied our model in the CDFS dataset survey, and we present the estimated

posterior log(N)− log(S) relationship.

The flexible hierarchical Bayesian framework allows us to further extend the model

at will in order to account and correct our estimates for different sources of uncer-

tainty. During our discussion about the flux to count rate conversion, we introduced

a factor γ. This parameter depends on the spectral model that is assumed and the

energy band of the source. In the relevant literature about log(N) − log(S) , this

factor was considered to be constant for all the sources. In the next Chapter we

extend our model to incorporate this source of uncertainty.

The main limitation of the model is the lack of a proper and effective automatic

model selection process. Udaltsova (2014) conducts simulation studies to test the

performance of various model selection methods, such as the Bayes factor and the

DIC. However, those methods fail to show consistency in choosing the model used for

simulating the data. We are suggesting two different research directions for model

selection. The first approach would be focused on developing model specific heuris-

tics and techniques for model selection. For example, we can define statistics, such

as the similarity between the marginal posterior distributions of the 2 consecutive

slopes, θ1 and θ2. If the differences in the two distributions are small under some

metric (such as Hellinger distance), then we can assume that the there is not enough

evidence about the existence of a breakpoint. However, extensive simulations would

be required in order to properly test the power of such diagnostics.

A more statistically interesting approach to model selection would be the use of the
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Reversible Jump MCMC (Green 1995) on the hierarchical Bayesian model. The

Reversible Jump MCMC sampler is a framework for MCMC simulation that is well

suited for problems in which the dimensions of the parameter space can vary be-

tween the iterations of the chain. The power of the Reversible Jump MCMC lies

in the fact that, given a countable collection of candidate models, it produces a

full probabilistic description of the posterior probabilities of each model. It can be

employed in models like the one presented in this chapter, by applying it to the joint

posterior distribution of all 3 models, namely the single Pareto, the broken power

law with 1-break and the broken power law with 2-breaks.

Implementing successfully a Reversible Jump MCMC is not a trivial pursuit. The

main difficulty lies in the construction of the proposal moves between different mod-

els, which is achieved via the concept of dimension matching. More specifically, in

case we want to propose a move from a state (θk) in model Mk with dimensions n,

to a state (θ∗k) in model M∗
k with higher dimensions m, m > n, we have to generate

a random vector u with length m− n to match the dimensions. This vector is gen-

erated from a known density qdk−>k∗ , and the current state along with the vector u

are mapped to the new state through a one-to-one mapping function gk−>k∗ . Defin-

ing effective mapping functions can be challenging though, even for nested models.

Thus, applying the Reversible Jump MCMC for model selection in our context is

undoubtedly a promising approach, but not a straightforward one.
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3
Bayesian Analysis of the log(N)− log(S)

Problem with γ Uncertainty

3.1 Introduction

In the previous Chapter, we developed a comprehensive method for estimating the

log(N) − log(S) relationship. This Bayesian hierarchical model properly accounts

for the incompleteness of the astronomical surveys which is manifested through the

missing data and the detector biases. However, due to the nature of astronomical

surveys, there are other form of uncertainties associated with the measurements that

should be accounted for. In this Chapter we focus our attention on the flux-to-count

conversion factor γ.

As we saw in the previous chapter, we do not directly observe the flux in the as-

tronomical surveys. Instead the data collection consists of photon counts for the

observed source population. The photon counts that we measure on the detector for

each source i include both the counts from the actual astronomical source, Y src
i , and

the background contamination, Y bkg
i , i.e. Y tot

i = Y src
i + Y bkg

i . The photon counts

from the actual astronomical source are connected to the flux S through the rela-

tionship:
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Y src
i |Si, Ei, γi

ind∼ Poisson (
Si · Ei
γi

)

The flux-to-count rate conversion factor γ for a specific source, depends on the spec-

tral model that is assumed for the source as well as the energy band of the source.

More specifically, when we fit a model to the spectrum of an astronomical source,

we get point estimates for the parameters of the fit, along with the uncertainty in

that estimation. The estimation of the flux-to-count conversion factor γ is based on

the estimates of the parameters of the model we fit to the spectrum. Thus, since

we have uncertainty in the estimation of the parameters of the model, there is a

subsequent uncertainty about the value of γ.

In the vast majority of the relevant literature that tries to estimate the log(N) −
log(S) relationship, the factor γ is assumed to be constant for all the sources. To

the best of our knowledge, the only work that explores the idea of incorporating the

uncertainty of the flux-to-count conversion parameter is in Zezas et al. (2007); they

discuss how the uncertainty of γ for each source can be included in a log-likelihood

estimation of a log(N)− log(S) curve by assuming that the distribution of γ can be

approximated by a multivariate normal distribution with variance taken from the

covariance matrix of the spectral fit. However, they do not actually implement this

methodology.

In this chapter we develop a methodology for incorporating the uncertainty of the

flux-to-count rate conversion factor γ to the Bayesian hierarchical model we devel-

oped for estimating the log(N)− log(S) relationship. In Section 3.2 we discuss how

we can construct a prior distribution for γ for the sources of a specific astronomic

survey, both for the observed and the unobserved sources. In Section 3.3 we extend

the Bayesian hierarchical model by including the uncertainty of γ and extract the

joint posterior distribution of all the parameters of interest. The sampling algo-

rithm for drawing samples from this posterior distribution is thoroughly analysed.

Section 3.4 focuses on the validation of the model. In Section 3.5, we apply our

methodology to the Chandra Deep Field South survey and we compare the results

with those from the model that assumes constant γ for all the sources. Finally, we

summarise our findings in Section 3.6.
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3.2 Extracting the Prior p(γ)

Extracting the uncertainty about the flux-to-count conversion factor γ for each

source we observe in an astronomical survey, expressed as a probability distribu-

tion, is the first step in modifying our Bayesian hierarchical model for estimating

the log(N) − log(S) in order to account for the uncertainty in γ. This is straight-

forward to accomplish using modern astronomical software.

Given the photometric data from astronomical surveys such as the Chandra Deep

Field South (CDFS), we can fit a model to the spectrum of each source using the

Sherpa software package (Refsdal et al. 2009, Freeman et al. 2001), and more specif-

ically the software library pyBLoCXS ∗. The pyBLoCXS library is a python extension

of Sherpa and runs a Markov chain Monte Carlo (MCMC) based algorithm designed

to carry out Bayesian Low-Count X-ray Spectral (BLoCXS) analysis in the Sherpa

environment (see van Dyk et al. 2001, for an analysis of the MCMC techniques

applied by pyBLoCXS). The pyBLoCXS code produces conditional posterior distri-

butions of the parameters of a predefined spectral model fit (from those available in

Sherpa) to high-energy X-ray spectral data.

By choosing a spectral model and using pyBLoCXS, we can extract a posterior dis-

tribution of the γ for each astronomical source by means of MCMC draws. This

procedure though provides us with the distributions of γi’s for the observed sources,

γobs, of an astronomical survey. Nevertheless, if we assume that the individual

characteristics of the spectrum of each source that affect the distribution of γ are

independent of the missing data mechanism, then we can assume that the distri-

butions of γmis for the missing sources would not differ from that of the observed

sources. The question that arises here is how we can fit a hierarchical prior on

γ = (γ1, ..., γN) for the complete source population (hierarchical because it is spec-

ified in terms of parameters that are themselves fit to the data). Our approach

on this issue is motivated by another research project on astrostatistics and the

methodology we developed in that particular case.

∗http://cxc.harvard.edu/sherpa4.4/threads/pyblocxs/
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3.2.1 Influenced from Testing the Redshift Dependence in Large-

Scale X-ray/Radio Emission

Astronomical jets are beams of ionised matter accelerated to high speeds close to

the speed of light. While the exact mechanism that creates the jets is not fully

understood, jets in active galaxies are created by supermassive black holes (SMBH).

Detecting jets by X-rays is a rather challenging endeavour due to the small number

of X-ray photon counts observed from jets relative to their corresponding quasar

cores.

McKeough et al. (2016) work focuses on analysing 11 X-ray images from the Chan-

dra telescope (where 25 radio jet features are present in those 11 images) and trying

to detect the existence of X-ray jets. Testing for X-ray jets is based on applying a

multi-scale Bayesian method known as Low Count Image Reconstruction and Anal-

ysis (LIRA, see Connors & van Dyk 2007). This method is based on testing the

hypothesis that a baseline model with a flat background is insufficient to explain

the observed data. The exact application of this methodology as well as the expla-

nation of how to construct efficiently a p-value for the hypothesis testing is nicely

presented in Stein et al. (2015).

As it was mentioned above, the generating mechanism of jets is still under debate.

McKeough et al. (2016) try to test the hypothesis that there is dependence between

the redshift and the X-ray to radio luminosity ratio ρx,r, and thus this ratio can

be used as a potential diagnostic of the emission mechanism. In order to test this

hypothesis, we look at the posterior distribution from LIRA of the energy flux ratio

for each detected jet, and we split the distributions into two samples consisting of

the jets with high redshift (z > 3), and with low redshift (z < 3). Subsequently,

2 Gaussian hierarchical priors are fitted to the the two different samples so as to

examine whether the two samples differ in terms of their means.

Fitting this hierarchical prior is not trivial; a novel statistical procedure is developed

that describes the process of fitting a hierarchical prior to posterior distributions that

were computed using another statistical procedure (LIRA in the case of McKeough

et al. 2016). This is a rather general methodology that can be easily applied to

projects of similar nature. In the following subsection, we describe the method and

we apply to the posterior distributions of γ we get from pyBLoCXS for the observed
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sources, in order to fit a hierarchical prior of γ for the complete population.

3.2.2 Estimating the parameters of the Prior p(γ)

As we described earlier, for each observed source in a given astronomical survey, we

can define a spectral model in the Sherpa software and subsequently use pyBLoCXS

to draw samples from the posterior distribution p(γ|SD), where SD describes the

spectral data. We postulate that

γ ∼ Gamma(aγ, bγ) (3.1)

where Gamma(aγ, bγ) defines a Gamma distribution with shape parameter aγ and

scale parameter bγ. The assumption for the Gamma distribution as a hierarchical

prior comes from the shape of the distribution of all the samples for γ obtained from

Sherpa for all observed sources in the CDFS survey. This distribution is depicted in

Figure 3.1.
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Figure 3.1: Histogram of all the samples of γ obtained from Sherpa for all observed sources com-
bined in the CDFS survey. Note that the symbol ”e” on the axis values denotes the scientific nota-
tion for 10 to the respective power.

We independently assume non-informative priors for the parameters in Equation 3.1,

i.e., p(aγ, bγ) ∝ 1/bγ. The distribution in Equation 3.1 can be viewed as a hierarchi-

cal prior on γ = (γ1, ..., γN) for the complete source population; hierarchical because

it is specified in terms of parameters that are themselves fit to the data. We denote

this hierarchical prior distribution by p(γ|aγ, bγ).

The prior distribution used in pyBLoCXS however does not coincide with that one

described in Equation 3.1. More specifically, pyBLoCXS assumes flat priors on the

parameters NH ,Γ, Am of the assumed spectral model (absorbed power law in our

case). This translates to a non standard prior distribution ppyBLoCXS(γ) that can be

computed numerically using a non parametric density estimator. Figure 3.2 shows

the histogram of ppyBLoCXS(γ). The red curve that is over-plotted is the proba-

bility density of the distribution computed using a non parametric kernel density

estimation with a Gaussian kernel.
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Figure 3.2: Histogram of the non standard prior distribution ppyBLoCXS(γ). The red line is the prob-
ability density of the distribution computed using a non parametric kernel density estimation with a
Gaussian kernel. Note that the symbol ”e” on the axis values denotes the scientific notation for 10 to
the respective power.

The difference between p(γ|aγ, bγ) and ppyBLoCXS(γ) indicates that pyBLoCXS pro-

duces a Monte Carlo sample from

p(γ|SD)pyBLoCXS =
p(γ|aγ, bγ, SD) · ppyBLoCXS(γ)

p(γ|aγ, bγ)
(3.2)

In order to derive Equation 3.2, we express the target posterior distribution p(γ|aγ, bγ, SD)

(given conditional independence between (aγ, bγ) and SD) as:

p(γ|aγ, bγ, SD) =
p(SD|γ) · p(γ|aγ, bγ)

p(SD)
(3.3)

where p(SD) =
∫
p(SD|γ)·p(γ|aγ, bγ)dγ. Moreover, pyBLoCXS produces a posterior
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sample from

p(γ|SD)pyBLoCXS =
p(SD|γ) · ppyBLoCXS(γ)

ppyBLoCXS(SD)
(3.4)

where ppyBLoCXS(SD) =
∫
p(SD|γ) ·ppyBLoCXS(γ)dγ. So, by combining Equations 3.3,

3.4 we conclude the relationship 3.2.

The proposed strategy in order to draw samples from the target posterior distribu-

tion p(γ|aγ, bγ, SD) is to use samples from the pyBLoXCS posterior as a proposal

rule in a Metropolis Hastings update. The following algorithm describes the sam-

pling scheme:

Sampling Algorithm

Step 1: Run the pyBLoXCS for all the observed sources to obtain posterior samples.

Step 2: Set γ(0) to a randomly selected value from the pyBLoXCS Monte Carlo

sample of γ. Using standard Bayesian methods described in Son & Oh (2006), fit

the γ(0) to the model in Equation (3.1) to obtain a
(0)
γ , b

(0)
γ .

Step 3: For t = 1, . . . , T

Step 3a: Select randomly a proposal γprop from the pyBLoXCS Monte Carlo sam-

ple of γ.

Step 3b: Compute the n Metropolis Hastings acceptance probabilities,

77



ri =
p(γpropi | a(t−1)γ , b

(t−1)
γ , SD)ppyBLoXCS(γ

(t−1)
i | SD)

p(γ
(t−1)
i | a(t−1)γ , b

(t−1)
γ , SD)ppyBLoXCS(γpropi | SD)

=
p(γpropi | a(t−1)γ , b

(t−1)
γ ) · ppyBLoXCS(γ

(t−1)
i )

p(γ
(t−1)
i | a(t−1)γ , b

(t−1)
γ ) · ppyBLoXCS(γpropi )

(3.5)

for i = 1, .., n.

Step 3c: For i = 1, ..., n set

γ
(t)
i =

γ
prop
i with probability min(1, ri)

γ
(t−1)
i otherwise

(3.6)

Step 3d: Sample a
(t)
γ , b

(t)
γ using standard Bayesian methods.

The algorithm described above is Markov chain Monte Carlo simulation, so appro-

priate convergence checks should be implemented as well as burn in checks.

3.2.3 Posterior Inference of the Parameters of the Prior p(γ)

After 12,000 iterations of the sampling algorithm, the posterior estimates for the

parameters of interest, aγ and bγ, are depicted in Table (3.1) (after neglecting the

first 2,000 iterations as burn in).

Table 3.1: Posterior estimates of aγ and bγ after 12,000 iterations of the sampling algorithm (we
neglect the first 2,000 iterations as burn in).

Mean 2.5% 97.5%
aγ 5.58 4.72 6.48
bγ 7.07×10−10 6.04×10−10 8.38×10−10

For the observed source populations, we also get from the sampling algorithm the

p(γi|aγ, bγ, SD) for i = 1, ..., n. Figure 3.3 plots the histogram (blue colour) of all the

samples of γ obtained from Sherpa, along with the histogram of the distribution of

all the samples of γ after correcting for the difference in the prior (green colour). The
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red line is the pdf of the prior Gamma distribution with parameters the posterior

means of aγ, bγ as showed in the Table 3.1.

Figure 3.3: The blue histogram is the histogram of all the samples of γ obtained from Sherpa. The
green histogram shows the distribution of all the samples of γ after correcting for the difference
in the prior. The red line is the pdf of the prior Gamma distribution with parameters the posterior
means of aγ , bγ as showed in the above table. Note that the symbol ”e” on the axis values denotes
the scientific notation for 10 to the respective power.

3.3 Probability Modelling of the log(N)− log(S) Relationship

The main difference from the model we discussed in the previous chapter lies in the

incorporation of the uncertainty about the flux-to-count conversion factor, defined

as γ, into our hierarchical bayesian model. The uncertainty about the flux-to-count

conversion rate γ is expressed through the Gamma prior distribution

p(γ) ∼ Gamma(γ; aγ, bγ) =
b
aγ
γ

Γ(aγ)
θaγ−1e−bγθ (3.7)

which was extracted following the procedure in the previous section. For the ob-

served sources, we also have spectroscopic data, so we have the posterior distribution

p(γobs,i|SDi, αγ, bγ). This distribution is given to us not in a close form, but through

10,000 MCMC draws.
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The distributional assumptions for other parameters of interest remain the same as

in the previous chapter, and we omit there here for keeping the text more concise.

3.3.1 Derivation of the Joint Posterior Distribution

In the previous subsection we define the probability modelling for the flux distri-

butions. In order to obtain the posterior distribution, we combine all the model

assumptions with the prior distributions. We follow the same methodology as in

the first chapter for the model without γ uncertainty. More specifically, we define

as Scom = (Sobs, Smis) the flux vector of observed and missing sources. Similarly

Y tot
obs = (Y tot

i=1, ..., Y
tot
i=n), Y tot

mis = (Y tot
i=n+1, ..., Y

tot
i=N) where i = 1, .., n corresponds to the

observed sources. The complete data posterior distribution can be summarised as:

p(N, θ, τ, γcom, Scom, Icom,Y
src
obs , Y

src
mis, Y

tot
mis , Bmis, Lmis, Emis, Amis|

n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

where SDobs is the spectral data for the observed sources and (aγ, bγ) are the param-

eters of the prior of γ. In order to overcome the significant computational difficulties

posed by the presence of the missing data, we marginalise the full joint posterior

distribution over the missing sources, i.e. we integrate out out the missing data

parameters

(Smis, Imis, Y
src
mis, Y

tot
mis , γmis, Bmis, Lmis, Emis, Amis).

This leaves the main parameters of interest (N, θ, τ) and the parameters of the flux,

flux to counts conversion factors and source photon counts (Sobs, γobs, Y
src
obs ) of the

observed sources in the marginalised joint posterior. By using this sampling scheme,

the dimension of the sampled quantities is kept constant.

The marginalised joint-posterior distribution of the parameters of interest is (see the
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Appendix A for detailed derivation):

p(γobs, N, θ, τ, Sobs, Y
src
obs | n, Y tot

obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ) (3.8)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, µ, σ)

·
(
N

n

)
· (1− π(θ, τ))N−n (3.9)

· p(N) · p(θ) · p(τ) · p(Bobs, Lobs, Eobs|N, θ, τ)

· p(γobs | SDobs, aγ, bγ) · p(Sobs|θ, τ)

· p(Iobs | γobs, Sobs, Bobs, Lobs, Eobs)

· p(Y tot
obs | Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

· p(Y src
obs | Y tot

obs , Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

where

π(θ, τ) =

∫
g(S,B, L,E, γ) · p(γ) · p(S|θ, τ) · p(B,L,E) dS dB dE dL dγ
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• Single power law model: the Equation (3.9) becomes:

p(γobs, N, θ, τ, Sobs, Y
src
obs | n, Y tot

obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

∝ 1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

·
(
N

n

)
· (1− π(θ, τ))N−n

·
(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
I{N∈Z+}

· ba

Γ(a)
θa−1e−bθI{θ>0}

· bamm
Γ(am)

τam−1e−bmτI{τ>0}

·
n∏
i=1

p(γi|SDi, aγ, bγ) · θτ θS−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei, γi)

·
(SiEi
γi

+BiAi)
Y tot
i

Y tot
i !

e
(
SiEi
γi

+BiAi)
I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( SiEi
γi

SiEi
γi

+BiAi

)Y src
i
(

1−
SiEi
γi

SiEi
γi

+BiAi

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

• Broken power law model: the Equation (3.9) becomes:

p(γobs, N, θ, τ, Sobs, Y
src
obs | n, Y tot

obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

∝ 1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

·
(
N

n

)
· (1− π(θ, τ))N−n

·
(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
I{N∈Z+}

·
m∏
j=1

[ b
aj
j

Γ(aj)
θ
aj−1
j e−bjθI{θj>0}

]
· p(τ1, τ2, ..., τm)I{0<τ1<τ2<...<τm}

·
n∏
i=1

[
p(γi|SDi, aγ, bγ) · g(Si, Bi, Li, Ei, γi)

·
m∑
j=1

[ j−1∏
i=1

(τi+1

τi

)−θi](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1}

·
(SiEi
γi

+BiAi)
Y tot
i

Y tot
i !

e
(
SiEi
γi

+BiAi)
I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( SiEi
γi

SiEi
γi

+BiAi

)Y src
i
(

1−
SiEi
γi

SiEi
γi

+BiAi

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

]
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3.3.2 Derivations of the Conditional Posterior Distributions

The sampling of such a complicated posterior distribution is not trivial. Following

the same logic as in the previous chapter, we utilise a Blocked Gibbs sampler in

which each conditional posterior distribution requires a different sampling strategy.

The derivation of the conditional posterior distributions can be found in detail at the

Appendix. Here we present each conditional posterior distribution and the strategy

used for sampling from that distribution.

Conditional Posterior Distributions of the Single Power Law model

For the Single Power Law model, we have:

Conditional distribution of Y src
obs : The full conditional distribution for Y src

obs is:

p(Y src
obs |·) ∝ p(Y src

obs |Y tot
obs , Bobs, Lobs, Eobs, Iobs, Sobs, γobs)

=
n∏
i=1

Binomial
(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
,

where λi = SiEi/γi and ki = BiAi. Since the observed sources are independent we

can sample the vector Y src
obs component-wise for i = 1, ..., n as

p(Y src
i |·) ∼ Binomial

(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
.

Conditional distribution of Sobs: The full conditional distribution for Sobs is:

p(Sobs|·) ∝ p(Sobs|N, θ, τ) · p(Iobs|Sobs, Bobs, Lobs, Eobs, γobs)

· p(Y tot
obs |Bobs, Lobs, Eobs, Iobs, Sobs, γobs) · p(Y src

obs |Y tot
obs , Bobs, Lobs, Eobs, Iobs, Sobs, γobs)
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where λ(Si, Ei, Bi, Li) = SiEi/γi and k(Bi, Ai) = BiAi. By independence of the Sobs

we can sample component-wise for i = 1, ..., n as

p(Si|·) ∼ Pareto(Si|N, θ, τ)I{τ<Si} · g(Si, Bi, Li, Ei, γi) · Poisson(Y tot
i ;λi + κi)

·Binomial
(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
.

In the datasets we are interested in, the values of the flux S are really small∼ 10−18−
10−12. In order to avoid numerical overflows we take a logarithmic transformation

zi = log(Si)

p(zi|·) = ezi · p(Si = ezi)·

We use the Metropolis- Hastings Algorithm in order to sample each zi. A truncated

normal distribution is used as a proposal distribution since we have a lower bound

log(τ), and we tune the variance of the proposal distribution adaptively during the

first 300 iterations of the MCMC so as to achieve an acceptance ratio between 20%

to 60%.

Conditional distribution of θ: The full conditional distribution for θ is:

p(θ|·) ∝ p(θ) · p(Sobs|N, θ, τ) · (1− π(θ, τ))N−n

∝ (1− π(θ, τ))N−n ·Gamma
(
θ; a+ n, b+

n∑
i=1

log(
Si
τ

)
)

We use the Metropolis- Hastings Algorithm in order to sample θ. A symmetric

normal distribution is used as a proposal distribution, i.e. N(θprop; θcurr, σ2
θ). The

variance of the proposal distribution σ2
θ is chosen so as to achieve an acceptance

ratio between 20% to 60%.
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Conditional distribution of N : The full conditional distribution for N , the total

unknown number of sources, is:

p(N |·) ∝
(
N

n

)
I{n≤N}(1− π(θ, τ))N−n · p(N)

∝ Γ(N + aN)

Γ(N − n+ 1)
·
( 1

1 + bN

)N
· (1− π(θ, τ))N−nI{n≤N}

We draw samples from this conditional distribution by the inverse CDF method.

The CDF is computed analytically.

Conditional distribution of τ : The full conditional distribution for τ is:

p(τ |·) ∝ p(τ) · (1− π(θ, τ))N−n · p(Sobs|N, θ, τ)

∝ τnθ+am−1 · e−bmτ · (1− π(θ, τ))N−n · I{τ<cm}, where cm = min(S1, ..., Sn)

The τ is the most challenging parameter to sample since it is in the deepest level

in the model hierarchy. Since τ is smaller than the minimum of S, its value is very

small. Thus, we take a logarithmic transformation in order to avoid underflowing

and to increase the numerical stability, i.e.:

η = log(τ)

p(η|·) = eη · p(τ = eη)

We use the Metropolis- Hastings Algorithm in order to sample τ . A truncated nor-

mal distribution is used as a proposal distribution since we have an upper bound

log(cm), the minimum value of the observed fluxes. We tune the variance of the

proposal distribution so as to achieve an acceptance ratio between 20% to 60%.

Conditional posterior distribution of γobs,i: For the observed sources i =

1, ..., n we have the spectral information SDi. So, the full conditional posterior
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distribution is

p(γobs|·) ∝
n∏
i=1

p(γi|SDi, aγ, bγ) · g(Si, Bi, Li, Ei, γi)

·
(SiEi
γi

+BiAi)
Y toti

Y tot
i !

e
(
SiEi
γi

+BiAi)
I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( SiEi
γi

SiEi
γi

+BiAi

)Y srci
(

1−
SiEi
γi

SiEi
γi

+BiAi

)Y toti −Y srci

I{Y srci ∈{0,1,...,Y toti }}

By independence of the observed sources, we can sample component-wise for i =

1, ..., n as:

p(γi|·) ∝ p(γi|SDi, aγ, bγ) · g(Si, Bi, Li, Ei, γi) · Poisson(Y tot
i ;

SiEi
γi

+BiAi)

·Binomial
(
Y src
i ;Y tot

i ,

SiEi
γi

SiEi
γi

+BiAi

)
.

We use the Metropolis- Hastings Algorithm in order to sample each γi, using p(γi|SDi,

aγ, bγ) as proposal distribution. The algorithm would be as follows:

Step 1: Sample a proposal state randomly from p(γi|SDi, aγ, bγ), i.e. γpropi ∼
p(γi|SDi, aγ, bγ).
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Step 2: Compute the Metropolis Hastings ratio :

αi =
p(γpropi |·) · p(γcurri |SDi, aγ, bγ)

p(γcurri |·) · p(γpropi |SDi, aγ, bγ)

=
g(Si, Bi, Li, Ei, γ

prop
i ) · Poisson(Y tot

i ; SiEi
γpropi

+BiAi)

g(Si, Bi, Li, Ei, γcurri ) · Poisson(Y tot
i ; SiEi

γcurri
+BiAi)

·
Binomial

(
Y src
i ;Y tot

i ,

SiEi
γ
prop
i

SiEi
γ
prop
i

+BiAi

)
Binomial

(
Y src
i ;Y tot

i ,
SiEi
γcurr
i

SiEi
γcurr
i

+BiAi

)

Step 3: Set

γ
(new)
i =

γ
prop
i with probability min(1, αi)

γcurri otherwise

The limitation of sampling p(γi|·) in that manner is the lack of flexibility in tuning

the acceptance ration. However, in our numerical experiments for both simulated

data and the CDFS data, we haven’t come across a case for which the acceptance

ratio was below 10%.

Computing π(θ, τ ): The marginal probability of observing a source as a function

of the slope (or slopes) θ and τ , i.e.

π(θ, τ) =

∫
g(S,B, L,E, γ) · p(γ) · p(S|θ, τ) · p(B,L,E) dS dB dE dL dγ

is computed using Monte Carlo integration. More specifically, we draw samples

from the empirical distribution of B,L,E as we discussed in the first chapter. We

draw samples of the flux S from a Pareto distribution conditional on the values of

(θ, τ) if we assume a single power law model (or the m-component broken power

law distribution if we assume a broken power law model). We also sample γ from

the prior p(γ|aγ, bγ). The empirical average of g is the approximation of π(θ, τ).
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Conditional Posterior Distributions of the Broken Power Law model

For the Broken Power Law model, the conditional distributions for N and Y src
obs are

the same as in the Single Power Law model, except for the different computation

of π(θ, τ) in which we replace the Pareto distribution for the flux S with the bro-

ken Pareto pdf. The main computational differences in the Gibbs sampler lie in

sampling from the conditional posterior distributions of p(τ1|·), p(τ2, ..., τm|·) and

p(θ1, ..., θm|·). More specifically, we have that

Conditional posterior distribution of θ = (θ1, ..., θm)T : The full conditional

posterior distribution for θ = (θ1, ..., θm) is:

p(θ | ·) ∝ [1− π(θ, τ)]N−n ·
m∏
j=1

Gamma
(
θj; aj + n(j),

bj + I{j 6=m} log(
τj+1

τj
)

m∑
i=1

[n(i)I{i≥j+1}] +
∑
i∈I(j)

log(
Si
τj

)
)

where I(j) = {i : τj ≤ Si ≤ τj+1} denotes the existence of sources with flux con-

tained in the interval corresponding to the j -th mixture component, and n(j) is

the cardinality of I(j) (the number of sources in that interval). The sampling of the

vector θ is done using the Metropolis-Hastings algorithm. A multivariate normal

distribution is used as a proposal distribution with the covariance matrix chosen so

as to achieve an acceptance ratio between 20% to 60%.

Conditional posterior distribution of τ1: The full conditional posterior distri-

bution for τ1 is:
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p(τ1|·) ∝ τnθ1+am−1 · e−bmτ · (1− π(θ, τ))N−n ·
m∏
j=2

e−
c2m·[log(τm−τ(m−1))−µm]2

2

· 1

τm − τ(m−1)
· I{τ<cm}

The sampling of τ1 is performed similarly to the case of τ in the Single Power Law

model. In other words, we take a logarithmic transformation η1 = log(τ1) and we

use the Metropolis- Hastings Algorithm in order to sample τ1. A truncated normal

distribution is used as a proposal distribution since we have an upper bound log(cm),

the minimum value of the observed fluxes. We tune the variance of the proposal

distribution so as to achieve an acceptance ratio between 20% to 60%.

Conditional posterior distribution of (τ2, ...τm): We sample (τ2, ...τm) via the

full joint conditional posterior distribution of the transformed variables η2, ..., ηm.

We remind that ηj = hj(τj | τj−1) = log(τj−τj−1), j = 2, ...,m. Thus, after applying

a change of variables we have:

p(η2, ...ηm|·) ∝ e
∑m
j=2 ηj · [1− π(θ, τ)]N−n ·Multivariate Gaussian(µ,C)

·
m∏
j=1

{ j−1∏
l=1

(τl+1

τl

)−θl}n(j)
·
∏
i∈I(j)

(θj
τj

)(S
τj

)−(θj+1)

The sampling of the vector (η2, ...ηm) is done using the Metropolis-Hastings algo-

rithm. A multivariate normal distribution is used as a proposal distribution with

the covariance matrix chosen so as to achieve an acceptance ratio between 20% to

60%.
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3.3.3 Parameter Inference

The posterior inference for the model parameters is based on the posterior MCMC

draws. For the single power law model, our main parameter of interest is the slope θ,

while the minimum threshold τ and the total number of sources N are of secondary

interest. Similarly, for the broken power law model, are main focus is on the broken

power law slopes θ1, ..., θm and the flux breakpoints τ2, ..., τm.

We use the posterior mean, median and mode to represent the posterior point es-

timates and the 95% posterior credible intervals to represent the uncertainty. We

estimate those values after running the MCMC chains for a large number of itera-

tions. We disregard the first half part of the chain as burn-in. The convergence of

the chains is examined by looking at the trace plots.

We also construct a posterior log(N)− log(S) plot using the MCMC draws and sam-

pling the Smis for each iteration. Examining this posterior log(N)− log(S) curve is

helpful in assessing the parameter estimates from a visual perspective.

3.4 Model Validation

As in the previous chapter, it is crucial to perform a validation of our model and our

software, since the model is complex and contains many different levels. We should

also exercise caution in the development of the code, since we come across relatively

small numbers for some of the parameters, like the flux, and thus we should consider

the problems with arithmetic underflowing. The validation is done by generating

data according to the model and check the model-fitting software for consistent pos-

terior estimates.

3.4.1 Validation using posterior interval plots

We follow the same methodology for performing the validation as in the previous

chapter. As a reminder, we generate simulated datasets from the model generating

software given some fixed values of the parameters, and then fit the simulated dataset

to the model-fitting software to obtain posterior draws of the parameters. For each

90



parameter, we evaluate posterior credible sets C of level α:∫
C

p(x | yobs)dx = 1− α.

The estimate based on the samples from the Blocked Gibbs sampler is (x̂L, x̂U) such

that q(x̂L) = α/2 and q(x̂U) = 1 − α/2. For each parameter, we record if the pos-

terior credible set C of level α contains the ”true” value of the parameter used for

generating the simulated dataset.

The steps 1,2 and 3 are repeated 20 times. We expect for each parameter that the

posterior credible set C of level α contains the ”true” value of the parameter most of

the times, especially if the above steps were to be repeated for a very large number

of times.

Single Pareto Model: For the single Pareto model, we simulated 20 datasets us-

ing parameters θ = 0.8, N = 1000 and τ = 2 × 10−17. For the flux to count rate

conversion factor distributions of the observed sources, p(γ|SD), we sample with

replacement from the set of the 355 distributions we have estimated from the CDFS

dataset as described in previous subsection. More specifically, we draw N sam-

ples from a Pareto distribution for the flux of the complete source population, i.e.

Stot
i ∼ Pareto(θ, τ), i = 1, ..., N and then draw Bi, Li, Ei from the joint distribution

p(B,L,E) as described in the first Chapter. using the background map and exposure

map from the Chandra Deep Field South survey. Then, we apply the incomplete-

ness function to extract the Sobs by computing the function g(Ci = Si∗Ei
γi

, Bi, Li, Ei)

and comparing it with ui ∼ Uniform(0,1) and assuming the source i is observed if

ui < g(Si, Bi, Li, Ei). For the γi in the incompleteness function, we use the mean of

the p(γi|SD) as a point estimate.

Figures 3.4, 3.5 and 3.6 show the posterior 95% interval for each of the 20 simu-

lated datasets for the parameters θ, N and τ respectively. At least 19 out of the 20

posterior intervals contain the values of the parameters that were used to generate

the simulated datasets.
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Figure 3.4: Posterior credible intervals of θ from 20 dataset simulations using validation process for
the Single Pareto model. The ”true” value is θ = 0.8.

Figure 3.5: Posterior credible intervals of N from 20 dataset simulations using validation process for
the Single Pareto model. The ”true” value is N = 1000.
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Figure 3.6: Posterior credible intervals of τ from 20 dataset simulations using validation process for
the Single Pareto model. The ”true” value is τ = 2 × 10−17. Note that the symbol ”e” on the axis
values denotes the scientific notation for 10 to the respective power.

Broken Pareto Model with 1 breakpoint: For the Broken Pareto model with

1 break, we simulated 20 datasets using parameters θ1 = 0.8, θ2 = 1.2, N = 2000,

τ1 = 1.5 × 10−17 and τ = 2 × 10−15. The flux to count rate conversion factor dis-

tributions of the observed sources, p(γ|SD), were sampled with replacement from

the set of the 355 distributions of the CDFS dataset. More specifically, we draw

N samples from the Broken Power law distribution for the flux of the complete

source population (using the inverse CDF method), and then draw Bi, Li, Ei from

the joint distribution p(B,L,E) as described in the first Chapter. Then, we ap-

plied the incompleteness function to extract the Sobs by computing the function

g(Ci = Si∗Ei
γi

, Bi, Li, Ei) and comparing it with ui ∼ Uniform(0,1) and assuming

the source i is observed if ui < g(Si, Bi, Li, Ei). For the γi in the incompleteness

function, we use the mean of the p(γi|SD) as a point estimate.

Figures 3.7, 3.8, 3.9,3.10 and 3.11 show the posterior 95% interval for each of the

20 simulated datasets for the parameters θ1, θ2, N , τ1 and τ2 respectively. All the 20

marginal posterior intervals of all 5 parameters contain the values of the parameters

that were used to generate the simulated datasets. As in Chapter 2, we can observe

that the posterior intervals of the breakpoint τ2 are rather wide. We observe the

same multimodality and skewness in the marginal posterior distribution of τ2 for

the CDFS dataset. We believe that this multimodality is an evidence of a lack of
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enough data, and thus the MCMC explores many different regions. We refer the

reader to the corresponding subsection in the Chapter 2 for more details.

Figure 3.7: Posterior credible intervals of θ1 from 20 dataset simulations using validation process for
the Broken Pareto model with 1 break. The ”true” value is θ1 = 0.8.

Figure 3.8: Posterior credible intervals of θ2 from 20 dataset simulations using validation process for
the Broken Pareto model with 1 break. The ”true” value is θ2 = 1.2.
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Figure 3.9: Posterior credible intervals of N from 20 dataset simulations using validation process for
the Broken Pareto model with 1 break. The ”true” value is N = 2000.

Figure 3.10: Posterior credible intervals of τ1 from 20 dataset simulations using validation process
for the Broken Pareto model with 1 break. The ”true” value is τ1 = 1.5 × 10−17. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.
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Figure 3.11: Posterior credible intervals of τ2 from 20 dataset simulations using validation process
for the Broken Pareto model with 1 break. The ”true” value is τ2 = 2× 10−15. Note that the symbol
”e” on the axis values denotes the scientific notation for 10 to the respective power.

Broken Pareto Model with 2 breakpoint: For the Broken Pareto model with

2 breaks, we simulated 20 datasets using parameters θ1 = 0.5, θ2 = 0.7, θ3 = 1.3,

N = 1000, τ1 = 1.5 × 10−17, τ = 1.3 × 10−15 and τ3 = 6 × 10−15. Similarly as

in the 1-breakpoint model, the flux to count rate conversion factor distributions

of the observed sources, p(γ|SD), were sampled with replacement from the set of

the 355 distributions of the CDFS dataset. More specifically, we draw N samples

from the Broken Power law distribution for the flux of the complete source pop-

ulation (using the inverse CDF method), and then draw Bi, Li, Ei from the joint

distribution p(B,L,E). Then, we applied the incompleteness function to extract

the Sobs by computing the function g(Ci = Si∗Ei
γi

, Bi, Li, Ei) and comparing it with

ui ∼ Uniform(0,1); we assume that the source i is observed if ui < g(Si, Bi, Li, Ei).

For the γi in the incompleteness function, we use the mean of the p(γi|SD) as a

point estimate.

Figures 3.12, 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18 show the posterior 95% interval

for each of the 20 simulated datasets for the parameters θ1, θ2, θ3, N , τ1, τ2 and τ3

respectively. At least 19 out of the 20 marginal posterior intervals of all 7 parame-

ters of interest contain the values of the parameters that were used to generate the

simulated datasets. As in the case of the Broken Pareto Model with 1 break, we can

observe a bias in the estimation of τ3. More specifically, we can observe that the
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posterior intervals of the breakpoint τ3 are rather wide (as well as for θ3, since those

2 parameters are heavily correlated). We believe that the wide posterior interval

indicates that the model doesn’t not have enough data to converge to a specific

breakpoint and explores many different regions for the breakpoint.

Figure 3.12: Posterior credible intervals of θ1 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is θ1 = 0.5.

Figure 3.13: Posterior credible intervals of θ2 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is θ2 = 0.7.
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Figure 3.14: Posterior credible intervals of θ3 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is θ3 = 1.3.

Figure 3.15: Posterior credible intervals of N from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is N = 1000.
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Figure 3.16: Posterior credible intervals of τ1 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is τ1 = 1.5 × 10−17. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.

Figure 3.17: Posterior credible intervals of τ2 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is τ2 = 1.3 × 10−15. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.
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Figure 3.18: Posterior credible intervals of τ3 from 20 dataset simulations using validation process
for the Broken Pareto model with 2 breaks. The ”true” value is τ3 = 6 × 10−15. Note that the
symbol ”e” on the axis values denotes the scientific notation for 10 to the respective power.

3.5 Application: CHANDRA Deep Field South

We apply the hierarchical Bayesian model that incorporates the uncertainty about

γ to the CHANDRA Deep Field South (CDFS) survey which was introduced in the

first chapter. As a reminder, in our analysis we consider a sample of 358 observed

sources, from which we exclude 3 sources for which we do not have spectral data

3.5.1 Single Power Law model

For the Single Power Law model with γ uncertainty, we assumed the following priors

for the parameters (N, θ, τ):
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θ ∼ Γ(a = 2, b = 1)

τ ∼ Γ(am = 1.38, bm = 3.46× 10−16)

N ∼ Negative-Binomial(aN = 8.05, bn = 0.014)

We ran the Blocked Gibbs sampler, as described in the previous sections, using the

aforementioned priors for 60,000 iterations. We simulated 3 independent chains with

different starting values, which all of them gave us very similar posterior estimates.

More specifically, the first chain provided us with the posterior estimates for the

parameters of interest (N, θ, τ) that are depicted in the Table 3.2 using the last

30,000 iterations (we discarded the first 30,000 iterations as burn-in).

Table 3.2: The posterior estimates for the major parameters for the CDFS dataset using the last
30,000 iterations for the single Pareto model with γ uncertainty for 1 of the 3 chains we ran.

Mean Median SD 2.5% 97.5% Mode
θ 0.713 0.711 0.05 0.626 0.805 0.682
N 2240 2176 348 1759 3139 2019
τ 9.32×10−18 9.77×10−18 1.69×10−18 4.90×10−18 1.13×10−17 1.12×10−17

Figure 3.19 shows the trace plots for the parameters of interest (N, θ, τ). The con-

vergence is quite fast as we can deduce. Figure 3.20 depicts the posterior bivariate

scatter plots and 1-dimensional histograms for the parameters of interest. If we

compare the results with those from the single Pareto model with constant γ, we

notice that the model with γ uncertainty converges to a smaller value for the slope

and as a result assumes a smaller number of sources for the complete population.

Moreover, we do not observe the bi-modality that was evident in the marginal pos-

terior distributions of the slope θ and the marginal posterior distribution of τ for

the single Pareto model with constant γ.

The posterior draws of the flux for the complete source population gives rise to the

posterior distribution plot of the log(N)− log(S) curve shown in Figure 3.21. Each

curve in the plot corresponds to a set of fluxes for the complete source population

sampled from a single iteration of Blocked Gibbs sampler scheme with observed

sources shown in grey and missing sources in red. Current plot exhibits sample of

100 flux sets. The blue line is the estimated log(N)− log(S) curve using the poste-

101



rior medians of θ,N, τ . The depicted curve does not appear to be linear.

Figure 3.19: Trace plots of the main parameters of interest θ,N, τ of the CDFS dataset for the
Single Pareto model with γ uncertainty. Note that the symbol ”e” on the axis values denotes the
scientific notation for 10 to the respective power.

Figure 3.20: Bivariate scatter plots and 1-dimensional histograms of the main parameters of interest
θ,N, τ of the CDFS dataset for the Single Pareto model with γ uncertainty. The figures are plotted
using the posterior draws from the Blocked Gibbs sampler after removing a burn -in sample of about
30,000 draws.
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Figure 3.21: The posterior distribution of the log(N) − log(S) plot of the CDFS dataset for the
Single Pareto model with γ uncertainty. Each line in the plot corresponds to a set of fluxes for the
complete source population sampled from a single iteration of the Blocked Gibbs sampler scheme
with observed sources shown in grey and missing sources in red. Current plot exhibits sample of 100
flux sets. The depicted curve does not appear to be linear.

3.5.2 Broken Power Law model with 1 break

For the Broken Power Law model with 1 break and with γ uncertainty, the following

priors were assumed for the parameters (N, θ1, θ2, τ1, τ2):

θ1 ∼ Γ(a = 2, b = 1)

θ2 ∼ Γ(a = 2, b = 1)

τ1 ∼ Γ(am = 1.38, bm = 3.46× 10−16)

η2 = log(τ2 − τ1) ∼ N(µ = −35, σ2 = 1)

N ∼ Negative-Binomial(aN = 8.05, bn = 0.014)

We ran the Blocked Gibbs sampler, as described in the previous sections, using the

aforementioned priors for 60,000 iterations. We simulated 3 independent chains with
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different starting values. More specifically, the first chain provided us with the pos-

terior estimates for the parameters of interest (N, θ1, θ2, τ1, τ2) that are depicted in

the Table 3.3 using the last 30,000 iterations (we discarded the first 30,000 iterations

as burn-in).

By comparing the posterior statistics with those from the broken power law model

with 1 break and with constant γ, we mainly see some differences in the marginal

posterior distribution of θ1 which has a smaller posterior mean and the slightly

higher posterior mode of τ2.

Table 3.3: The posterior estimates for the major parameters for the CDFS dataset using the last
30,000 iterations for the broken power law model with 1 break and with γ uncertainty for 1 of the 3
chains we ran.

Mean Median SD 2.5% 97.5% Mode
θ1 0.669 0.669 0.05 0.574 0.762 0.714
θ2 1.24 1.17 0.36 0.742 2.11 1.04
N 2140 2075 352 1649 3068 2016
τ1 8.92×10−18 9.29×10−18 1.85×10−18 4.13×10−18 1.22×10−17 9.13×10−18

τ2 1.73×10−15 1.53×10−15 1.57×10−15 2.69×10−16 4.55×10−15 2.33×10−15

Figure 3.22 shows the trace plots for the parameters of interest (N, θ1, θ2, τ1, τ2). Fig-

ure 3.23 depicts the posterior bivariate scatter plots and 1-dimensional histograms

for the parameters of interest. We observe that the marginal posterior distribution

of τ2 is relatively flat except for a spike. Thus, if we are considering a point estimate

for the parameters of interest, we suggest using the posterior mode for τ2 and the

τ1, since it might be a more appropriate choice than the posterior median.

The posterior draws of the flux for the complete source population gives rise to the

posterior distribution plot of the log(N)− log(S) curve shown in Figure 3.24. Each

curve in the plot corresponds to a set of fluxes for the complete source population

sampled from a single iteration of Blocked Gibbs sampler scheme with observed

sources shown in grey and missing sources in red. Current plot exhibits sample of

100 flux sets. The blue line is the estimated log(N) − log(S) using the posterior

modes of τ1 and τ2 and the posterior medians of θ1, θ2 and N . The resulting posterior

log(N)− log(S) curve in Figure 3.24 does not appear to be linear. Thus the broken

power law model with 1-break seems like a better candidate than the no break model.
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Figure 3.22: Trace plots of the main parameters of interest (N, θ1, θ2, τ1, τ2) of the CDFS dataset
for the broken power law model with 1 break and with γ uncertainty. Note that the symbol ”e” on
the axis values denotes the scientific notation for 10 to the respective power.

Figure 3.23: Bivariate scatter plots and 1-dimensional histograms of the main parameters of inter-
est (N, θ1, θ2, τ1, τ2) of the CDFS dataset for the broken power law model with 1 break and with γ
uncertainty. The figures are plotted using the posterior draws from the Blocked Gibbs sampler after
removing a burn -in sample of about 30,000 draws.
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Figure 3.24: The posterior distribution of the log(N) − log(S) plot of the CDFS dataset for the
broken power law model with 1 break and with γ uncertainty. Each line in the plot corresponds to
a set of fluxes for the complete source population sampled from a single iteration of the Blocked
Gibbs sampler scheme with observed sources shown in grey and missing sources in red. Current plot
exhibits sample of 100 flux sets. The depicted curve does not appear to be linear. This indicated that
a broken power Law model might be a better fit.

3.5.3 Broken Power Law model with 2 breaks

For the Broken Power Law model with 2 breaks, the following priors were assumed

for the parameters (N, θ1, θ2, θ3, τ1, τ2, τ3):
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θ1 ∼ Γ(a = 10, b = 10)

θ2 ∼ Γ(a = 10, b = 10)

θ23 ∼ Γ(a = 10, b = 10)

τ1 ∼ Γ(am = 1.38, bm = 3.46× 10−16)

η2 = log(τ2 − τ1) ∼ N(µ = −35, σ2 = 4)

η3 = log(τ3 − τ2) ∼ N(µ = −33, σ2 = 4)

N ∼ Negative-Binomial(aN = 8.05, bn = 0.014)

We ran the Blocked Gibbs sampler, as described in the previous sections, using the

aforementioned priors for 60,000 iterations. As for the no-break and the 1-break

model, we ran 3 independent chains with different starting values. More specifically,

the first chain provided us with the posterior estimates for the parameters of inter-

est (N, θ1, θ2, θ3, τ1, τ2, τ3) that are depicted in the Table 3.4 using the last 30,000

iterations (we discarded the first 30,000 iterations as burn-in).

The posterior statistics are similar with those from the broken power law model

with 2-breaks and with constant γ, except for θ1, τ2 and τ3. For θ1, we mainly see

some differences in the marginal posterior distribution of θ1 which has a smaller

posterior mean. However, the posterior mode of τ3 is identical with the posterior

mode of τ2 for the broken power law model with 2-breaks and with constant γ (the

posterior mode of τ2 is smaller). This might be an indication that the model does

not considers the existence of another break. This distance between posterior modes

could be a useful heuristic for model selection.
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Table 3.4: The posterior estimates for the major parameters for the CDFS dataset using the last
30,000 iterations for the broken power law model with 2-breaks and with γ uncertainty for 1 of the 3
chains we ran.

Mean Median SD 2.5% 97.5% Mode
θ1 0.661 0.661 0.05 0.561 0.757 0.650
θ2 1.04 1.01 0.23 0.662 1.57 1.00
θ3 1.22 1.21 0.34 0.588 1.91 1.18
N 2003 1969 268 1569 2618 1914
τ1 9.39×10−18 9.75×10−18 1.49×10−18 5.96×10−18 1.13×10−17 1.08×10−17

τ2 1.01×10−15 8.2×10−16 5.87×10−16 2.87×10−16 2.41×10−15 5.79×10−16

τ3 6.62×10−15 5.47×10−15 4.45×10−15 2.06×10−15 1.89×10−14 2.45×10−15

Figure 3.25 shows the trace plots for the parameters of interest (N, θ1, θ2, θ3, τ1, τ2,τ3).

The convergence is quite fast. Figure 3.26 depicts the posterior bivariate scatter

plots and 1-dimensional histograms for the parameters of interest. From both the

bivariate scatter plots and the histograms of the posteriors draws we can observe

that the marginal posterior distributions of the τ2 and τ3 are multi-modals. Thus,

we suggest using the posterior median as point estimate, since the estimation of the

mode would be numerically unstable.

Figure 3.25: Trace plots of the main parameters of interest (N, θ1, θ2, θ3, τ1, τ2, τ3) of the CDFS
dataset for the broken power law model with 2-breaks and with γ uncertainty. Note that the symbol
”e” on the axis values denotes the scientific notation for 10 to the respective power.

The posterior draws of the flux for the complete source population gives rise to the

posterior distribution plot of the log(N)− log(S) curve shown in Figure 3.27. Each
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curve in the plot corresponds to a set of fluxes for the complete source population

sampled from a single iteration of Blocked Gibbs sampler scheme with observed

sources shown in grey and missing sources in red. Current plot exhibits sample of

100 flux sets. The blue line is the estimated log(N) − log(S) curve using the pos-

terior medians of N, θ1, θ2, θ3, τ1, τ2, and τ3. The depicted curve does not appear to

be linear. This indicated that a broken power law model might be a better fit.

Figure 3.27: The posterior distribution of the log(N) − log(S) plot of the CDFS dataset for the
broken power law model with 2-breaks and with γ uncertainty. Each line in the plot corresponds to
a set of fluxes for the complete source population sampled from a single iteration of the Blocked
Gibbs sampler scheme with observed sources shown in grey and missing sources in red. Current plot
exhibits sample of 100 flux sets. The depicted curve does not appear to be linear. This indicated that
a broken power law model might be a better fit.

3.5.4 Comparison with the Model without γ uncertainty

In the previous subsections we obtained posterior estimates for the log(N)− log(S)

curve for different number of breaks, while accounting for the uncertainty in the

flux-to-count conversion factor γ. Naturally, the first question that arises revolves
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around whether incorporating this level of uncertainty affects significantly the pos-

terior estimates we obtained in the previous chapter by using the simpler model that

assumed a constant value for γ.

In the case of the model with no breaks, we can see that the simpler model suggests

a steeper slope θ than the model with γ uncertainty, although the 95% posterior

intervals do overlap. The posterior estimates for the lower threshold τ are very close

for both models, although the bi-modality that we observed in the simpler model

for both the slope and the lower threshold are not present in the model with γ

uncertainty, possibly because the uncertainty in γ creates a more diffused posterior

distribution. For the log(N)− log(S) with 1-break, the posterior estimates for both

model are relatively close. What pops out is that the model with γ uncertainty

seems to exhibit less variance in the marginal posterior distributions of θ2 (the slope

of the second line), and τ2 (the location of the break-point). We can hypothesise

that this behaviour might be a result of the uncertainty in γ that creates a more

diffused posterior distribution. In the case of the log(N)− log(S) with 2-breaks, the

posterior estimates of the parameters of interest are very close.

Thus, although we believe that further research is required in terms of applying

the two models to more surveys, including the uncertainty about the flux-to-count

conversion factor doesn’t seem to dramatically affect the posterior estimates, except

for the case of the model with no breaks.

3.6 Discussion

In this Chapter we extended the hierarchical Bayesian model for estimating the

log(N) − log(S) relationship, by properly incorporating the uncertainty about the

flux-to-count conversion factor γ. This constitutes a very innovative approach on

the log(N) − log(S) estimation, since the methods in the relevant log(N) − log(S)

estimation assume that γ is constant for all the sources. However, the value of γ

depends on the spectral model that is assumed for the source as well as the energy

band of the source. Thus, it should be properly accounted for when estimating the
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parameters of the log(N)− log(S) curve.

In order to account for this uncertainty, we have to extract the uncertainty about

γ, expressed as a different probability distribution for each observed source, using

modern astronomical software. Given those distributions and assuming that the

individual characteristics of the spectrum of each source that affect the distribution

of γ are independent of the missing data mechanism, we fit a hierarchical prior for

the complete source population (hierarchical because it is specified in terms of pa-

rameters that are themselves fit to the data).

In order to fit this prior, we use an innovative statistical methodology that was

initially developed to tackle another astrophysical problem (McKeough et al. 2016).

Fitting a hierarchical prior based on posterior distributions is undoubtedly a very

useful concept with many applications. Hence, the flexibility of the method we de-

veloped -using an MCMC sampler to account for the difference between the prior

we are trying to fit and the prior used in order to get the existing posteriors- is well

suited to the task.

The resulting methodology about estimating log(N)−log(S) offers to the astronomi-

cal community a very powerful and at the same time versatile tool. It can be applied

to different astronomical surveys with little effort; it only requires the relevant in-

completeness function, the background and exposure maps, and the uncertainty in

the estimation of γ extracted using relevant astronomical software. Furthermore, the

hierarchical structure allows for easy extensions of the model for any other source

of uncertainty.
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4
Classifying Galaxies Using a Data Driven

Approach - Connection to the

log(N)− log(S)

In the previous Chapters, we presented a method for estimating the density of the

flux for a given astronomical population. We also emphasised that the density func-

tion will not be the same for different astronomical populations. This assumes that

we have a method to classify a priori astronomical populations to different classes.

However, accurately classifying astronomical sources is a particularly difficult prob-

lem with many complexities.

One long and heavily researched classification problem in Astronomy is the assign-

ment of galaxies to different classes based on their activity levels. Despite the

extensive literature on this problem, the existing classification schemes are mostly

purely theoretical in nature and do not offer a robust classification methodology.

This Chapter discusses a novel data-driven approach that aims to classify galaxies

to different activity classes. This classification can be used in order to produce dif-

ferent log(N)− log(S) curves for the different galaxy populations.

This chapter is organised as follows. In section 1 we describe the scientific problem

and the mathematical background. Section 2 discusses the implementation of the
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method on galaxy spectra and Section 3 compares our multidimensional data driven

classification scheme with an existing scheme. Section 4 introduces multidimensional

linear decision boundaries that we compare in terms of their prediction accuracy with

both our new method and the existing scheme. In Section 5 we review our results

and discuss further research directions.

4.1 Introduction

4.1.1 The Scientific Problem

Spectroscopy is the study of the measurement of radiation intensity as a function of

wavelength. When electrons orbiting atoms fall from energised orbits to rest orbits,

they emit light photons with wavelengths resulting from the excess energy given

up by the electrons. The atoms and molecules have unique spectra. Consequently,

these spectra can be used to detect, identify and quantify information about the

atoms and molecules.

Spectroscopy has been used extensively in Astronomy, since Astronomers can use

the spectrum of a luminous body to help determine its composition (elements) and

temperature (degree of excitement). Spectroscopy has also been utilised in iden-

tifying the main power source in active galaxies. The energy output of galaxies is

dominated by two main processes: star-formation and/or accretion onto a supermas-

sive central black-hole, the latter witnessed as an Active Galactic Nucleus (AGN).

The result of those two processes is to heat and excite their surrounding gas, making

it to glow in specific wavelengths corresponding to emission from specific atoms or

ions. The intensity of this emission is a tell-tale signature of the conditions in the

gas, but most importantly of the energy source that is heating the gas.

The interplay between those two processes -star formation and/or accretion onto a

black hole- is key for understanding the demographics of galactic activity and the

co-evolution of nuclear black-holes and their host galaxies (e.g. Kormendy & Ho

2013). The main tool we have for characterising the type of activity in galaxies

is its imprint on the emerging spectrum of the photo-ionised interstellar medium

(ISM). AGN generally produce harder ionising continua which result in stronger

high-excitation lines that we can obtain from reprocessing of the spectrum of young

stellar populations (e.g. Ferland 2003).
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Figure 4.1: A selected spectrum from the DR10 BOSS data, showing absorption (red) and emission
(blue) lines (http://www.sdss.org).

The importance of characterising the ionising source of emission-line regions was

recognised early on and led to the first systematic presentation of optical emission-

line diagnostic tools by Baldwin et al. (1981). This work introduced three dia-

grams based on four emission-line intensity ratios: log([NII]/Hα), log([SII]/Hα),

log(OI/Hα) and log(OIII/Hβ). These diagrams, known as Baldwin-Phillips-Terlevich

(BPT) diagrams, were able to discriminate between star-forming galaxies (SFGs)

and galaxies dominated by AGN activity. At the same time, a third class of galaxies

was recognized by Heckman (1980) on the basis of their relatively stronger lower-

ionisation lines (Low-Ionisation Nuclear Emission line Regions; LINERs). The for-

mat of the BPT diagrams that are typically used today was refined by Veilleux &

Osterbrock (1987), and they include all three classes of objects (SFGs, LINERS,

AGN).

However, the exact demarcation between SFGs and AGNs is generally defined empir-

ically and hence it is subject to considerable uncertainty. Based on stellar population

synthesis and photoinization models Kewley et al. (2001) introduced a maximum

’starburst’ line on the BPT diagrams which defines the upper bound for the SFGs.

Driven by the fact that AGN and SFGs observed in the Sloan Digital Sky Survey
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(SDSS; York et al. 2000) show two distinct loci extending below the demarcation line

of Kewley et al. (2001), a new empirical upper bound for the SFGs was put forward

by Kauffmann et al. (2003) in order to distinguish the pure SFGs. The objects be-

tween this new empirical SFG line and the demarcation line of Kewley et al. (2001)

belong to the class of Composite galaxies (also referred to as Transition objects in

previous studies; e.g. Ho et al. 1997). The spectra of these Composite galaxies have

been traditionally interpreted as the result of significant contributions from both

AGN and star-forming activity, although, more recently it has been proposed that

their strong high-excitation lines could be the result of shocks (e.g. Rich et al. 2014).

Subsequently, Kewley et al. (2006) introduced another empirical line for distinguish-

ing Seyferts and LINERs. More recently, Shi et al. (2015) explored other emission-

line intensity ratios that could improve the classification. They used support vector

machines to test the classification accuracy using a dataset of galaxies classified as

either SFG, AGN, or Composite based on Kauffmann et al. (2003).

Figure 4.2 depicts a sample from the SDSS DR8 survey on the BPT diagnostic dia-

grams; the red line is the maximum ’starburst’ line. Galaxies below the red line are

classified as belonging to the SFG class and galaxies above the line are classified as

AGNs. By examining the first diagnostic diagram, we can identify two different loci

of sources: a stream moving from the bottom middle to the top left and another

fuzzier stream moving from the bottom middle to the top right. The first stream

corresponds to the SFGs and the latter to the AGN. The other two diagnostics verify

that the AGN are made up of two groups, the Seyferts and the LINERs. Never-

theless, it is apparent that the SFGs in the first 2 diagrams are considerably below

the red line and the empirical blue line between the LINERs and the Seyferts seems

slightly inconsistent.
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Figure 4.2: Example diagnostic diagrams (BPT) based on a sample from the SDSS DR8.

The currently used classification scheme suffers from a significant drawback. The

use of multiple diagnostic diagrams independently of one another often gives con-

tradicting classifications for the same galaxies (e.g. Ho et al. 1997). According to

Kewley et al. (2006), 8% of the galaxies in their sample are characterised as ambigu-

ous in that they were classified as belonging to different classes based on at least two

diagnostic diagrams (for clarity we use the term contradicting to emphasise that the

different 2-dimensional diagnostics can give different classifications). Such contrac-

tions arise because BPT diagrams are projections of a complex multi-dimensional

space onto 2-dimensional planes. This limits the power of this diagnostic tool and

may lead to inconsistencies between the different diagnostic diagrams.

Moreover, the number of extragalactic emission-line objects for which accurate spec-

tra are available has grown rapidly in recent years, especially with the advent of the

SDSS. This massive dataset reveals inconsistencies between the theoretical and em-

pirical upper bounds and the actual distribution of the observed line ratios for the

different classes (e.g. Kauffmann et al. 2003).

The inefficiency of the existing approach gives rise to the question whether we could

use a more data-driven method for effectively classifying the galaxies. In this chapter

we propose a classification scheme, the soft allocation data driven (SoDDA) method,

which is based on the clustering of galaxy emission-line ratios in the 4-dimensional
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space defined by the [NII]/Hα, [SII]/Hα, OI/Hα and OIII/Hβ ratios. This is mo-

tivated by the clustering of the SFG, AGN and LINER loci on the 2-dimensional

projections of the emission line diagnostic diagrams. Our classification scheme arises

from a model that specifies the joint distribution of the emission line ratios of each

galaxy class to be a finite mixture of multivariate Gaussian (MG) distributions.

Given the emission line ratios of each galaxy, we compute the posterior probability

of each galaxy belonging to each galaxy class. This allows us to achieve a soft clus-

tering. A similar approach was successfully implemented by Mukherjee et al. (1998)

in another clustering problem in which they used a mixture of MG distributions to

discriminate between distinct classes of gamma-ray bursts.

4.1.2 Statistical Background

Expectation Maximisation Algorithm

The Expectation Maximisation algorithm (commonly referred to as EM algorithm)

is an iterative optimisation algorithm used for estimating the maximum likelihood

estimates (or posterior mode finding in a Bayesian context) in statistical models that

involve missing or unobserved latent data. It was formalised in the very influential

paper of Dempster et al. (1977), although the authors discuss that it was used pre-

viously in various applications. Since then, the EM algorithm has been used with

success in a great number of problems across many different scientific fields. The

EM is unique in contrast to other optimisation algorithms, such as Newton -type

algorithms or Gauss Seidel methods, since it is formulated in statistical terms.

More specifically, suppose that we have a statistical model with observed data x,

a vector of unknown parameters θ and unobserved data z. Suppose that we are

interested in the marginal likelihood p(x|θ), but this likelihood is hard to maximise

directly using another optimisation algorithm. However, if we can work more easily

with the conditional densities p(z, x|θ) and p(θ|z, x), then we can use the EM algo-

rithm. More specifically, the EM alternates between performing an expectation (E)

step and a maximisation (M) step as follows

E-step: Compute Q(θ|θ(t)) = Ez[log p(x, z|θ)|x, θ(t)] =
∫

log[p(z, x|θ)]p(z|θ(t), x)dz,
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M-step: Set θ(t+1) = argmaxθ Q(θ|θ(t)),

where the subscript t indexes the iteration. In the E step we essentially replace

the missing values by their expected value given the current state of the unknown

parameters θ(t), and in the M step we estimate the parameters assuming the missing

data are equal to their estimated values.

The EM algorithm enjoys stable convergence properties; by iterating between those

2 steps, the likelihood p(x|θ) increases in each iteration and furthermore the algo-

rithm converges to a stationary point of p(x|θ). There is no guarantee though that

the EM converges to the MLE, thus it is advised to routinely re-run the algorithm

with different starting values, especially for multimodal cases.

The power of the EM algorithm lies on the fact that many models, such as mixture

models or hierarchical models, can be expressed as probability models on an aug-

mented parameter space. In order to describe the concept of data augmentation,

we define as augmented data, xaug, the combination of the observed data x and any

latent variables or missing data, xmis. A data augmentation scheme is a model that

satisfies the constraint:

p(x|θ) =

∫
xmis

p(xaug|θ) dxmis (4.1)

The necessity of this requirement is obvious because p(xaug|θ) is introduced for com-

putational purposes and thus the marginal distribution of x implied by p(xaug|θ)
must be the original model p(x|θ). The utility of data augmentation lies on the

fact that a good choice of p(θ|xaug) and p(xaug|x, θ) can divide the initial problem

into two simpler conditional models. The concept of data augmentation is highly

desirable on many occasions in which direct maximisation of the likelihood is chal-

lenging. The added parameters can be thought as missing data, and thus, we can

apply the EM algorithm for maximum likelihood estimation. A classic example of

data augmentation is the finite mixture models that we explore in this chapter.
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Finite Mixture Models

Cluster analysis is a statistical method that aims to partition a dataset into sub-

groups so that the members within each subgroup are more homogeneous (according

to some criterion) than the population as a whole. In this Chapter, we use a class

of probabilistic (model-based) algorithms that assumes that the data are an identi-

cally and independently distributed (i.i.d.) sample from a population described by

a density function, which is taken to be a mixture of component density functions.

Formally a mixture model corresponds to the mixture distribution that represents

the probability distribution of observations in the overall population. Finite mixture

models have been studied extensively as a clustering technique (Wolfe 1970). It is

common to assume that the mixture components are all from the same parametric

family, such as the Gaussian. The use of mixture models arises naturally in our

problem, since the population of galaxies is made up of several homogeneous sub-

groups: SFGs, Seyferts, LINERs and Composites.

Fraley & Raftery (2002) proposed a general framework to model a population as a

mixture of K subpopulations. Specifically, let xi be a vector of length p containing

measurements of object i (i = 1, ..., n) from a population. In our application the

xi tabulates the p = 4 emission line ratios for galaxy i. A finite mixture model

expresses the likelihood of xi as:

p(xi|θ, π) =
K∑
k=1

πkfk(xi|θk), (4.2)

where fk and θk are the probability density and parameters for the distribution of

subpopulation k, and πk is the relative size of subpopulation k, with πk ≥ 0 and∑K
i=1 πk = 1. Given a sample of n independent galaxies x = (x1, x2, ..., xn), the joint

density can be expressed as:

p(x|θ, π) =
n∏
i=1

K∑
k=1

πkfk(xi|θk), (4.3)

where θ = (θ1, ..., θK) and π = (π1, ..., πK).
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Estimating the parameters of a finite mixture model

Dempster, Laird & Rubin (1977) propose a framework that can be used to com-

pute the maximum likelihood estimators (MLE) in finite mixture models using

the Expectation-Maximization (EM) algorithm. Define the unknown parameters

as φ = (θ, π). The MLE is φ? = argmaxφp(x | φ), where argmaxφ is an operator

that extracts the value of φ that maximises the likelihood function, p(x | φ).

In the context of finite mixture models, Dempster et al. (1977) introduced an unob-

served vector z (n×K), where zi• is the indicator vector of length K with zik = 1

if object i belongs to subpopulation k and 0 otherwise. Because the zi• are not

observable, they are called latent variables. In this case they specify to which sub-

population each galaxy belongs. Given a statistical model consisting of observed

data x, a set of unobserved latent data z, and a vector of unknown parameters

φ = (θ, π), the EM algorithm iteratively performs alternating expectation (E) and

maximisation (M) steps:

E-step: Compute Q(φ|φ(t)) = E[log p(x, z|φ)|x, φ(t)],

M-step: Set φ(t+1) = argmaxφ Q(φ|φ(t)),

where the superscript t indexes the iteration, and E[.] is the weighted mean evalu-

ated by marginalising over all possible values of z.

The joint distribution p(x, z|θ, π) can be factorised as p(x, z|θ, π) = p(z|θ, π) ·
p(x|z, θ, π), where p(z|θ, π) is a product of n multinomial distribution p(z|θ, π) =∏n

i=1

∏K
k=1 π

zik
k . Conditional on zik = 1, p(xi) = fk(xi|θk). The logarithm of the

conditional distribution of x and z given (θ, π), i.e. the log-likelihood, is:

`(θ, π|x, z) = log p(x, z | θ, π) =
n∑
i=1

K∑
k=1

zik log[πkfk(xi|θk)]. (4.4)

The E-step requires us to compute the conditional expectation of Equation 4.4 given

(θ(t), π(t)). Because Equation 4.4 is linear in the components of each zi•, it suffices
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to compute the conditional expectation of the components of each zi• given x and

(θ(t), π(t)). This is the conditional probabilities of i belonging to subpopulation k

given (θ(t), π(t)). More specifically:

E[zik|θ(t), π(t), x] =
π
(t)
k fk(xi|θ

(t)
k )∑K

k=1 π
(t)
k fk(xi|θ

(t)
k )

= γ(zik) (4.5)

The M-step requires us to maximise the conditional expectation of Equation 4.4

with respect to π and θ, i.e. to maximise
∑n

i=1

∑K
k=1 γ(zik) log[πkfk(xi|θk)]. The

particular form of the M-step depends on the choice of density distributions, fk, for

the subpopulations. Here we assume Multivariate Gaussian distributions for each

subpopulation.

Multivariate Gaussian (MG) mixture models can be used for data with varying

structures due to the flexibility in the definition of variance matrices. The density

of the MG distribution for subpopulation k is:

fx(xi) =
1√

(2π)p|Σk|
exp

(
− 1

2
(xi − µk)TΣ−1k (xi − µk)

)
. (4.6)

The EM formulation for an MG mixture is presented in detail in Dempster et al.

(1977). The E-step has the same formulation as in Equation 4.5, with fk given in

Equation 4.6 with θk = (µk,Σk), where µk represent the means and Σk the covari-

ance matrices of the xi line ratios for galaxies in subpopulation k. For the M-step,

the updates of the parameters have closed form solutions (Bilmes et al. 1998),

π
(t+1)
k =

1

n

n∑
i=1

γ(zik) (4.7)

µ
(t+1)
k =

∑n
i=1 xiγ(zik)∑n
i=1 γ(zik)

(4.8)

Σ
(t+1)
k =

∑n
i=1 γ(zik)(xi − µ(t+1)

k )(xi − µ(t+1)
k )T∑n

i=1 γ(zik)
. (4.9)
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Bayesian Information Criterion

The Bayesian Information Criterion (BIC) (Schwarz et al. 1978) is a model selection

criterion and is used in choosing among competing models. When fitting models,

it is possible to increase the likelihood by adding parameters, but doing so may

result in overfitting. The BIC resolves this problem by introducing a penalty term

for the number of parameters in the model. The BIC is based on the maximum

log-likelihood obtained with each candidate model, and penalised by the increased

complexity associated with more parameters. More specifically, the BIC is com-

puted as

BIC(K) = −2 · logL?(d) + d log(n),

where logL?(d) is the maximised value of the likelihood when the number of free

parameters to be estimated is d. We prefer the model with the smallest BIC.

The BIC is an asymptotic result derived under the assumptions that the data distri-

bution is in the exponential family. A concise derivation of the BIC can be found in

Bhat & Kumar (2010). A very interesting result of BIC is that it is asymptotically

consistent (Friedman et al. 2001). In other words, if we are examining a family of

models that include the true model, then BIC will select the correct model as the

sample size n→∞.

Gap Statistic

The gap statistic (Tibshirani et al. 2001) is a model selection criterion used for

estimating the number of clusters in a set of data (find the value of K in a finite

mixture model approach). The gap statistic compares the normalised intra-cluster

distances between points in a given cluster, WK , for different total number of clus-

ters K, with a null reference distribution obtained assuming data with no obvious

clustering. The null reference distribution is generated by sampling uniformly from

the original datasets bounding box multiple times. The estimate for the optimal

number of clusters K is the value for which the WK falls the farthest below the
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reference curve.

Support Vector Machines

A Support Vector Machines (SVM) (Cortes & Vapnik 1995) is a discriminative classi-

fier formally defined by a separating hyperplane. An SVM model is a representation

of the data as points in space, mapped so that the data of the separate categories

are divided by a clear gap that is as wide as possible. New data are then mapped

into that same space and predicted to belong to a category based on which side of

the gap they fall on. In other words, given classified galaxies, the algorithm outputs

an optimal hyperplane which can be used to categorise new unlabelled galaxies.

The SVM algorithm has been widely applied in many different scientific fields. In

our research, it is very useful in order to introduce hard decision boundaries after

classifying the galaxies in their respective classes.

Following the notation from Friedman et al. (2001), suppose we have N pairs (x1, y1),

(x2, y2), ..., (xN , yN), where xi ∈ R and yi ∈ {−1, 1} represents the class (2 classes

for simplicity, can be easily extended to the multi class case). The goal of SVMs is

to find an optimal separating hyperplane between the two classes. Let us define a

hyperplane by:

x : f(x) = xTβ + β0 = 0 (4.10)

where β is a unit vector. If the classes were fully separable, we could define the

function yif(xi) > 0 for every i and we would try to find the hyperplane that

creates the biggest margin M between the classes. This optimisation problem can

be written as:

maxβ,β0,||β||=1 M (4.11)

s.t. yi(x
T
i β + β0) ≥M, i = 1, ..., N

It can be shown that this optimization problem can be formulated without the norm
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constraint

maxβ,β0 ||β|| (4.12)

s.t. yi(x
T
i β + β0) ≥ 1, i = 1, ..., N

where M = 1/||β||. In more realistic applications, the classes are not fully separable.

In order to maintain the concept of maximising the margin, we allow some points

to be on the wrong side of the separating hyperplane by defining the slack variables

(ξ1, ξ2, ..., ξN) so that the constraint becomes yi(x
T
i β + β0) ≥ M(1 − ξi) for ξi ≥ 0

and
∑N

i=1 ξi ≤ constant. By defining as above M = 1/||β|| we can rewrite the

optimisation problem as:

maxβ,β0 ||β|| (4.13)

s.t. yi(x
T
i β + β0) ≥ 1− ξi ∀i

ξi ≥ 0,
N∑
i=1

ξi ≤ constant (4.14)

This formulation shows a very important aspect of SVM; the points that are well

inside their class boundary do not play a major role in defining the boundary. The

most important points are the ones close to the boundary and whose on the wrong

side of the separating hyperplane.This optimisation problem is quadratic with linear

inequality constraints, so it is a convex optimisation problem. Further details can

be found at Friedman et al. (2001).

A very interesting feature of SVM is the so called ”kernel trick”. Whereas the orig-

inal problem may be stated in a finite dimensional space, it often happens that the

sets to discriminate are not linearly separable in that space. For this reason, it was

proposed that the original finite-dimensional space be mapped into a much higher-

dimensional space, presumably making the separation easier in that space. To keep

the computational load reasonable, the mappings used by SVM schemes are designed

to ensure that dot products may be computed easily in terms of the variables in the

original space, by defining them in terms of a kernel function k(x, y) selected to suit

the problem. Therefore, instead of linear boundaries, SVMs can produce more com-
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plex decision boundaries in the original dimensional space by enlarging the feature

space using basis expansions such as polynomials or splines. Some commonly used

kernel functions are the polynomial kernel (of dth degree) and the gaussian kernel.

4.2 The classification Scheme

As it was discussed in the previous section, a mixture model is a probabilistic model

for representing the presence of subpopulations within an overall population, with-

out requiring that an observed data set should identify the sub-population to which

an individual observation belongs. The use of mixture models arises naturally in

our problem, since the population of galaxies is made up of several homogeneous

subgroups: SFGs, Seyferts, LINERs and Composites.

Fraley & Raftery (2002) point out that mixtures of Multivariate Gaussian (MG)

distributions are appropriate if the subpopulations are centred at the means, µk,

with increased density for data closer to the means. As a result, the practical use

of MG mixture models could be limited if the data exhibit non-Gaussian features,

including asymmetry, multi-modality and/or heavy tails. In the SDSS DR8 dataset

that we examine, it is apparent that the subpopulations exhibit non Gaussians char-

acteristics such as convexity, skewness and multimodality. In order to account for

these non-Gaussian features, we use a mixture of MG distributions with K consid-

erably larger than the actual number of galaxy classes. In this way, we represent

each galaxy class by a mixture of several MG distributions. This allows a great deal

of flexibility in the class-specific distributions of emission line ratios. With the fitted

(large K) MG mixture in hand we can then perform hyper-clustering of the K MG

distributions so as to concatenate them into subpopulations representing the four

desired galaxy classes. The number (K >> 4) of MG distributions that we fit to

our data is chosen using the Bayesian Information Criterion (BIC) of Schwarz et al.

(1978) and the gap statistic (Tibshirani et al. 2001).

Our Soft Data Driven Allocation (SoDDA) scheme accomplishes the hyper-clustering

of the K subpopulations into the four galaxy classes using the classification scheme

of Kewley et al. (2006). More specifically, we treat the fitted subpopulations means

(µ?1, ..., µ
?
K) as a dataset and classify them into the four galaxy classes. For example,

suppose we fit 10 MG distributions and the means of the distributions 1, 3 and 5 are
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classified by Kewley et al. (2006) as SFGs, then the distribution of the SFGs under

SoDDA would be

fSFG(xi) =
π?1f1(x|θ?1, π?1) + π?3f3(x|θ?3, π?3) + π?5f5(x|θ?5, π?5)

π?1 + π?3 + π?5
. (4.15)

Via the allocations of the means of the K subpopulations into the four galaxy classes,

we have defined the distribution of the emission line ratios for each galaxy class as

a finite mixture of MG distributions. Specifically, let fSFG(x), fLINER(x),

fSeyfert(x), and fComp(x) be the distributions under SoDDA of the emission line ra-

tios of SFGs, LINERs, Seyferts and Composites galaxies respectively. Then, given

the four emission line ratios xi of a galaxy i, the posterior probability of galaxy i

being of type c is:

ρic = P (galaxy i is of type c) (4.16)

=
fc(x)∑
c fc(x)

, for c in {SFG,LINER, Seyfert,Comp}. (4.17)

4.2.1 Implementation

The SDSS provides an excellent resource of nuclear spectra of galaxies covering

all different activity types (e.g. Kauffmann et al. 2003). For the definition of our

multi-dimensional activity diagnostics we use the ”galspec” database of spectral-line

measurements from the Max-Plank Institute for Astronomy and Johns Hopkins Uni-

versity group. We used the version of the catalog made publicly available through

the SDSS Data Release 8 (Aihara et al. 2011, Eisenstein et al. 2011), which contains

1,843,200 objects. The spectral-line measurements are based on single Gaussian

fits to star-light subtracted spectra, and they are corrected for foreground Galactic

absorption (Tremonti et al. 2004, Kauffmann et al. 2003, Brinchmann et al. 2004).

Since the same catalog has been used for the definition of the two-dimensional and

multi-dimensional diagnostics of Kauffmann et al. (2003) and Vogt et al. (2014) re-

spectively, it is the best benchmark for testing the SoDDA. From this catalog we

selected all objects which have line flux measurements for the 8 diagnostic lines we

consider here, with a signal-to-noise ratio (SNR) greater than 6, which ensures the

127



use of reliable line flux measurements for our analysis. The final sample consists of

90,388 galaxies.

We implement the fitting of the mixture of K MG distributions using the scikit

-learn Python library ∗ under the constraint that the covariance matrices are full

rank, and the diagonal elements cannot be smaller than 10−3 to avoid overestima-

tion, i.e. converging to a small number of data points. Because this algorithm can

be sensitive to the choice of starting values, we routinely rerun it with 5 different

randomly selected sets of starting values. We choose the value among the 5 con-

verged points with the largest likelihood to be the MLE, denoted (π?, µ?,Σ?).

We apply the BIC and gap statistic for values of K ranging from 5 to 50 in in-

crements of 5. Figures 4.3 and 4.4 plot the BIC and gap statistics. BIC suggests

an optimum value of around K = 20, while the gap statistic suggests a value of

K = 10. Since we are ultimately concatenating the clusters, we err on the side

of large K, with K = 20, so as to capture as much detail in the data as possible

without overfitting.

Figure 4.3: The Bayesian Information Criterion (BIC) computed over a grid of values of K (in in-
crements of 5) using the data of the SDSS DR8. The BIC is a model selection criterion based on
the log-likelihood; the model with the lowest BIC value is preferred, indicating that in this case the
optimal number of subpopulations is K = 20.

∗http://scikit-learn.org/stable/
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Figure 4.4: The Gap statistic computed over a grid of values of K (in increments of 5) using the
data of the SDSS DR8. The Gap statistic compares the intra-subpopulation distances between points
in a given subpopulation with a null reference distribution of the data, i.e., a distribution with no ob-
vious clustering. This figure shows that the smallest value of K for which the data measure exceeds
the randomly generated measure is K = 10.

Figure 4.5 displays the BPT diagnostic diagrams for SDSS DR8 with each point

colour coded according to its most probable subpopulation among the K = 20 fit.

The means of the subpopulations are plotted for k = 1, .., 20. To visualise the spacial

extent of each of the 20 subpopulation, Figure 4.6 plots the [NII]/Hα vs OIII/Hβ di-

agnostic diagram for each subpopulation. We emphasise that the full 4-dimensional

geometry of the subpopulations cannot be seen in the 2-dimensional projections.

Subpopulation 4 is located in a different region in each of the three diagnostic dia-

grams in Figure 4.5. Furthermore, the 3-dimensional distribution of Subpopulation 4

is fuzzy, distorted, and totally disjoint from the distribution of the other subpopula-

tions (Figure 4.7). Inspection of the optical spectra of several of the sources allocated

to Subpopulation 4, shows broad emission lines with complex structure. Because

these lines cannot be well modelled with the single Gaussians used, the resulting

line measurements are unreliable. Therefore, we discard Subpopulation 4 from our

analysis. In order to normalize the probabilities, we divide all the subpopulations

weights by (1− π?4).

SoDDA associates each of the 19 clusters with one activity class based on the pro-

jection of their mean on the 2-dimensional BPT diagnostic diagrams, and their

location with respect to the activity class separating lines reported in Kewley et al.
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Figure 4.5: The BPT diagnostic diagrams for the SDSS DR8 sample; each datapoint is coloured
according to its most probable allocation to one of the 20 multivariate Gaussian Distributions. The
maximum ’starburst’ line of Kewley et al. (2001) is shown as a solid red line and the empirical up-
per bound on SFG of Kauffmann et al. (2003) is plotted as dashed blue line. The empirical line for
distinguishing Seyferts and LINERs of Kewley et al. (2006) is depicted by the solid blue line.

Figure 4.6: The 20 subpopulations plotted on the [NII]/Hα vs OIII/Hβ projection of the 4-
dimensional diagnostic diagram. The subpopulations are numbered following the scheme in Fig-
ure 4.5. This figure shows the spatial extent of each subpopulation and their location with respect
to the standard diagnostic lines in the OIII/Hβ diagram. Since these are 2-dimensional projection of
the 4-dimensional distribution in each subpopulation, they only give an indication of the extent and
location of each subpopulation.
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Figure 4.7: A 3-dimensional projection of the SDSS DR8 sample on the ([NII ]/Hα, [SII ]/Hα,
[OIII ]/Hβ) volume, showing the locus of the data points allocated to subpopulation 4 (yellow) in
comparison to all other subpopulations (grey). The distribution of Subpopulation 4 is clearly distinct
from the that of the other data. The 3 dimensional structure of the joint distribution of the 19 other
subpopulations (in grey) shows complexities that are lost in its 2-dimensional projections.
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(2006). The allocations are given in Table 4.1 for the 19 subpopulations means.

Subpopulation 10 transcends the Composite and Seyfert classes. The main discrim-

inator between Composite galaxies and Seyferts is the [NII ]/Hα diagnostic and the

mean of subpopulation 10 is clearly above the maximum ’starburst’ line on the BPT

diagrams introduced by Kewley et al. (2001) as an upper bound of SFGs. Thus,

we include subpopulation 10 in the Seyfert class. After combining the 19 subpop-

ulations to form the 4 galaxy classes as described in Table 4.1, we compute the

posterior probability of each galaxy being a SFG, Seyfert, LINER, or Composite

using Equation 4.17. The second row in Figure 4.8 shows the BPT diagnostic dia-

grams for SDSS DR8 with each galaxy colour coded according to its most probable

galaxy class (red for SFGs, yellow for Seyferts, blue for LINERs, and green for the

Composites) under SoDDA. To highlight the spatial extent of each cluster, we plot

the BPT diagrams for each activity class (SFGs, Seyferts, LINERs and Composites)

individually in Figure 4.9. Figure 4.10 depicts a 3-dimensional projection of the

SDSS DR8 sample on the ([NII ]/Hα, [SII ]/Hα, [OIII ]/Hβ) volume.

SoDDA provides a robust classification for the vast majority of the galaxies in the

SDSS DR8 sample. For 90.6% of the galaxies, maxc ρic is greater than 75%. That

is, the most probably class for each of 90.6% of the galaxies has a posterior proba-

bility greater than 75%, indicating strong confidence in the adopted classification.

Furthermore, the difference between the largest and the second largest ρic (among

the classes) is smaller than 1% for only 0.17% of the galaxies, which indicates that

the classification is uncertain for very few galaxies. This is illustrated in Figure 4.11

which plots maxc ρic, against the difference between maxc ρic and the second largest

ρic among the classes. The red line denotes a difference between the two highest

values of ρic (among the classes) of 1%. There are only a few galaxies with a most

probably class that is less that 1% (or even 10%) more probably than the second

most probably class.

In order to assess the stability of the classification we randomly select a bootstrap

sample consisting of 90% of the SDSS DR8 data (sampled without replacement and

excluding Subpopulation 4). Using the bootstrap sample, we retune the classifier by

estimating the means, weights, and covariance matrices for the 19 subpopulations,

assigning each to one of the 4 activity classes, and recalculating the probability that

each galaxy (in the SDSS DR8 sample we used for our original analysis excluding

Subpopulation 4) belongs to each of the 4 classes. We denote these probabilities,
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Table 4.1: The suggested classification of the 19 subpopulations means.

Class Subpopulation ID
SFG 1,2,5,6,7,8,11,13,14,15,17,18

Seyferts 3,10,20
LINER 9

Composites 12,16,19

ρbootic , to distinguish them from those computed with the full SDSS DR8 sample,

namely ρic. There is excellent agreement between the original classification and

that obtained using the bootstrap sample. Specifically, 99.2% of the galaxies are

classified into the same activity type with both classifiers. Similarly, 95.7% of the

galaxies classified as Composites using the original classifier are classified in the

same way using the set of parameters obtained from using the bootstrap sample.

The figures are 96.3% for Seyferts, 97.9% for LINERs, and 99.9% for SFGs.

Overall there is little difference between the class probabilities of the individual

galaxies computed with the full data and with the bootstrap sample. To illustrate

this, we plot maxc ρic − maxc ρ
boot
ic against maxc ρic in Figure 4.12. Galaxies that

are classified differently by the two classifiers are plotted in red. Again, there is

excellent agreement: Not only is the classification of the vast majority of galaxies

the same for both classifiers, but the probabilities of belonging to the chosen class

are both similar and high. Of the few galaxies (0.8%) that are classified differently,

86% have maxc ρic < 60%, meaning their classification was not clear to begin with.

Overall, our classifier appears robust to the choice of sample used for tuning.

4.3 Comparing with Existing Classification Scheme

In order to show the advantages of our approach, we compare our method with the

scheme proposed by Kewley et al. (2006). In contrast to the standard approach of us-

ing hard thresholds to define the different classes, SoDDA uses soft clustering rather

than hard thresholds. We thus calculate the posterior probability of each galaxy be-

longing to each activity class. Moreover, SoDDA is not based on any particular set

of 2 dimensional projections of the distributions of emission line ratios, but rather

takes into account the joint distribution of all 4 emission-line ratios. Thus, the main

difference between the two schemes is that SoDDA does not produce contradictory
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Figure 4.8: The BPT diagrams for the galaxies in the SDSS DR8 sample, based on the Kewley
et al. (2006) scheme (top) and SoDDA (bottom). Each galaxy is colour coded according to its clas-
sification: red for SFGs, yellow for Seyferts, blue for LINERs, green for the Composite galaxies, and
black for the Contradicting classifications. Note the lack of any contradicting classifications (black
points) in the SoDDA results (bottom). For reference we also plot the the maximum ’starburst’ line
of Kewley et al. (2001) (solid red), the empirical upper bound on SFG of Kauffmann et al. (2003)
(dashed blue), and the empirical line distinguishing Seyferts and LINERs (Kewley et al. 2006; solid
blue).
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Figure 4.10: A 3-dimensional projection of the SDSS DR8 sample on the ([NII ]/Hα, [SII ]/Hα,
[OIII ]/Hβ) volume, in which each datapoint is plotted with different colour according to the alloca-
tion from SoDDA classification scheme (red for SFGs, yellow for Seyferts, blue for LINERs, green for
the Composites and black for the Ambiguous galaxies) This 3-dimensional projections allows us to
observe the complex structure of the 4 galaxy activity classes.

Figure 4.11: The difference between the SoDDA probabilities of the most likely and second most
likely class for each galaxy in the SDSS D8 sample. The difference is plotted against the probability
of the most likely class. The red line corresponds to a difference of 1%. Only 0.17% of the galaxies
exhibit a difference between the probabilities of the most and second most likely classes of less than
1%. 90.6% of the galaxies have maxc ρic > 75%, indicating a highly confident classification.
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Figure 4.12: A plot of the difference between the class probabilities of the individual galaxies com-
puted with the full data and with the bootstrap sample, namely a plot of maxc ρic − maxc ρ

boot
ic

against maxc ρic. Galaxies that are classified differently by the two schemes are plotted in red. The
vast majority of galaxies have the same classification under both schemes; those that do not (only
0.8% of the full sample) have maxc ρic < 60% (86% of them), meaning they lie close to the iso-
probability surface between two or more classes.

classifications for the same galaxy; there is no contradictory classification from the

different diagnostics, because SoDDA provides a single coherent summary based on

all diagnostic line ratios: a posterior membership probability for each galaxy.

A 3-way classification table that compares SoDDA with the commonly used scheme

proposed by Kewley et al. (2006) appears in Table 4.2. Each cell has 3 values: the

number of galaxies with (i) ρic ≥ 75%, (ii) 50% ≤ ρic < 75%, and (iii) ρic < 50%,

where ρic is the posterior probability that galaxy i belongs to galaxy class c. For

example, the cell in the first row and first column shows that of the galaxies that

both SoDDA and the Kewley et al. (2006) method classify as SFG, 65,080 are SFGs

under SoDDA with probability greater than 75%, 946 with probability between 50%

and 75%, and only 3 with probability less than 50%. On the other hand, 1,744 of the

galaxies that are characterised as ambiguous by Kewley et al. (2006) are estimated

with SoDDA to be SFGs with probability over 75%, a robust classification.

The first row in Figure 4.8 shows the classification suggested by Kewley et al. (2006),

using the same colour coding as in the second row of Figure 4.8 (which shows the
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classification suggested by SoDDA) but with galaxies that are characterised as hav-

ing contradictory classification plotted in black. The overlap between the composite

galaxies (green) and the SFGs (red) is clear in the SoDDA classification (middle

and right panels of Figure 4.8), indicating that the 2-dimensional projection of this

4-dimensional parameter space is insufficient for capturing its complex structure

and accurately classifying the galactic activity. The use of hard boundaries defined

independently in the 2-dimensional projections is responsible for those galaxies with

contradictory classification. On the other hand the probabilistic approach of SoDDA

simultaneously accounts for the 4-dimensional structure of the data space and in-

herently alleviates these inconsistent classifications, while at the same time giving a

confident classification of the galaxies to activity classes.

In order to offer some connection between the classification result and the underlying

spectra, we plot in Figure 4.13 the spectra from 2 galaxies that have contradicting

classification by Kewley et al. (2006), but the galaxy in the upper panel is classified

as Seyfert with probability 87.4% by SoDDA, while the galaxy in the lower panel

is classified as SFG with probability 99.9% by SoDDA. Similarly, in Figure 4.14,

the upper panel shows a spectra from a galaxy that is classified as LINER by both

Kewley et al. (2006) and SoDDA (with probability 99.4%), and the lower panel

a spectra from a galaxy that is classified as having contradictory classification by

Kewley et al. (2006), but SoDDA classifies it as Composite with probability 91.6%.

4.4 Multidimensional Decision Boundaries

In order to provide a more immediately usable diagnostic in the spirit of the classi-

fication lines of Kauffmann et al. (2003) and Kewley et al. (2006), which however,

simultaneously employ the information in all diagnostic lines, we use a support vec-

tor machine (SVM) (Cortes & Vapnik 1995) to obtain multidimensional decision

boundaries based on the SoDDA results. A SVM is a discriminative classifier for-

mally defined by a separating hyperplane. In other words, given classified galaxies,

the algorithm outputs an optimal hyperplane which can be used to categorise new

unlabelled galaxies.
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(a) The galaxy with SpecObjId 3348489347031656448 from SDDS DR8 (http://www.sdss.org).

(b) The galaxy with SpecObjId 3347403029526636544 from SDDS DR8 (http://www.sdss.org).

Figure 4.13: The upper subplot shows the spectra of the galaxy with SpecObjId
3348489347031656448 from SDDS DR8. This galaxy is characterised as having contradicting clas-
sification by Kewley et al. (2006), but SoDDA classify it as Seyfert with probability 87.4%. The
lower subplot shows the spectra of the galaxy with SpecObjId 3347403029526636544 from SDDS
DR8. This galaxy is characterised as having contradicting classification by Kewley et al. (2006), but
SoDDA classify it as SFG with probability 99.9%.
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(a) The galaxy with SpecObjId 3344072333894641664 from SDDS DR8 (http://www.sdss.org).

(b) The galaxy with SpecObjId 3347403029526636544 from SDDS DR8 (http://www.sdss.org).

Figure 4.14: The upper subplot shows the spectra of the galaxy with SpecObjId
3344072333894641664 from SDDS DR8. This galaxy is characterised as LINER by both Kewley et al.
(2006) and SoDDA (with probability 99.4%). The lower subplot shows the spectra of the galaxy with
SpecObjId 3185219567408408576 from SDDS DR8. This galaxy is characterised as having contra-
dicting classification by Kewley et al. (2006), but SoDDA classify it as Composite with probability
91.6%.
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4.4.1 4-dimensional Decision Boundaries

The input data for the derivation of the boundaries implied by the SVM are the 4

emission line ratios for the galaxies in SDSS DR8 (i.e. x), and the classification for

each galaxy yi as obtained with SoDDA. We use the scikit-learn Python library

to fit the SVM model. We employ a linear kernel function; a more complex function

did not provide an improvement significant enough to justify its use, especially given

the simplicity of a linear kernel. The SVM algorithm requires tuning the cost factor

parameter C, that sets the width of the margin between hyperplanes separating

different classes of objects. After a grid search in a range of values for C, we sug-

gest a value of C = 1 based on 10-fold cross-validation. K-fold cross-validation is a

model validation method for estimating the performance of the model. The data is

split in K roughy equal parts. For each κ ∈ (1, ...,K) we fit the model in the other

K−1 parts of the data and calculate the prediction error of the fitted model when

predicting the κth part of the data. By repeating this procedure in a range of values

for the model parameters, we choose the values of the parameters that give us the

model with the minimum expected prediction error.

Using the SoDDA classification, we employ a SVM approach to define multidimen-

sional surfaces separating the galaxy activity classes. More specifically, we find an

optimal separation hyperplane using the 4 emission line ratios for the galaxies from

SDSS DR8 and their most probable classification obtained by SoDDA as inputs.

The 4-dimensional linear decision boundaries for the four galaxy classes are defined

as:

SFG:

−5.964 log([NII]/Hα)− 1.487 log([SII]/Hα)− 0.048 log([OI]/Hα)

− 5.447 log([OIII]/Hβ) > 1.562 (4.18)

−3.202 log([NII]/Hα)− 3.363 log([SII]/Hα)− 5.613 log([OI]/Hα)

+ 0.275 log([OIII]/Hβ) > 8.072 (4.19)

−19.83 log([NII]/Hα)− 1.679 log([SII]/Hα)− 5.916 log([OI]/Hα)

− 6.140 log([OIII]/Hβ) > 16.98 (4.20)
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Seyferts:

−5.964 log([NII]/Hα)− 1.487 log([SII]/Hα)− 0.048 log([OI]/Hα)

− 5.447 log([OIII]/Hβ) < 1.562 (4.21)

0.42 log([NII]/Hα)− 5.391 log([SII]/Hα)− 6.899 log([OI]/Hα)

+ 11.90 log([OIII]/Hβ) > 11.92 (4.22)

6.724 log([NII]/Hα) + 4.065 log([SII]/Hα)− 2.521 log([OI]/Hα)

+ 10.19 log([OIII]/Hβ) > 2.832 (4.23)
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LINERs:

−3.202 log([NII]/Hα)− 3.363 log([SII]/Hα)− 5.613 log([OI]/Hα)

+ 0.275 log([OIII]/Hβ) < 8.072 (4.24)

0.420 log([NII]/Hα)− 5.391 log([SII]/Hα)− 6.899 log([OI]/Hα))

+ 11.90 log([OIII]/Hβ) < 11.92 (4.25)

2.753 log([NII]/Hα) + 11.77 log([SII]/Hα) + 5.280 log([OI]/Hα)

− 1.647 log([OIII]/Hβ) > −10.11 (4.26)

Composites:

−19.83 log([NII]/Hα)− 1.679 log([SII]/Hα)− 5.916 log([OI]/Hα)

− 6.140 log([OIII]/Hβ) < 16.98 (4.27)

6.724 log([NII]/Hα) + 4.065 log([SII]/Hα)− 2.521 log([OI]/Hα)

+ 10.19 log([OIII]/Hβ) < 2.832 (4.28)

2.753 log([NII]/Hα) + 11.77 log([SII]/Hα) + 5.280 log([OI]/Hα)

− 1.647 log([OIII]/Hβ) < −10.11 (4.29)

These multidimensional decision boundaries achieve a mean classification accuracy

of about 98% based on a 10-fold cross validation with respect to the SoDDA classifi-

cation. Table 4.3 compares the SoDDA classification with the proposed classification

from the SVM, while Table 4.4 compares the scheme from Kewley et al. (2006) with

the SVM. We see excellent agreement between the SoDDA and the SVM based clas-

sification. More specifically, 99% of the galaxies classified as SFGs by SoDDA are

classified in the same way the SVM-based classification. The figures are 96% for

Seyferts, 93% for LINERs, and 88% for Composites. On the other hand, the com-

parison with the traditional 2-dimensional diagnostics reveals a larger discrepancy

owing mainly to the inconsistent classifications between each of the three different

diagnostic diagrams.
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Table 4.3: Comparison of the SoDDA classification with that of the 4-dimensional SVM ([NII]/Hα,
[SII]/Hα, OI/Hα and OIII/Hβ space).

S
V

M

SoDDA
SFGs Seyferts LINERs Composites Total

SFGs 69794 0 0 573 70367
Seyferts 3 7033 59 273 7368
LINERs 0 20 2703 143 2866

Composites 391 253 132 7478 8254
Total 70188 7306 2894 8467

Table 4.4: Comparison of the classifications of a 4-dimensional SVM with that of the method by
Kewley et al. (2006) ([NII]/Hα, [SII]/Hα, OI/Hα and OIII/Hβ space). Contradictory classifications
are called ambiguous classifications by Kewley et al. (2006).

S
V

M

Kewley et al. (2006)
SFGs Seyferts LINERs Composites Contradictory Total

SFGs 66199 6 0 2348 1814 70367
Seyferts 0 5831 0 4 1533 7368
LINERs 0 22 782 873 1189 2866

Composites 142 11 0 7032 1069 8254
Total 66341 5870 782 10257 5605

4.4.2 3-dimensional Decision Boundaries

Because the [OI] line is generally hard to observe (very weak and hence difficult

to measure), it is common to use measurements of log([NII]/Hα), log([SII]/Hα)

and log([OIII]/Hβ), but not for log([OI]/Hα). Thus, we derive decision boundaries

by fitting the SVM algorithm to the SDSS DR8 dataset using the classifications

from SoDDA and only the 3 emission line ratios (log([NII]/Hα), log([SII]/Hα) and

log([OIII]/Hβ)) as inputs. The resulting 3-dimensional decision surfaces for the four

galaxy classes are defined as:
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SFG:

−5.989 log([NII]/Hα)− 1.534 log([SII]/Hα)

− 5.465 log([OIII]/Hβ) > 1.543 (4.30)

−6.307 log([NII]/Hα)− 8.721 log([SII]/Hα)

− 1.184 log([OIII]/Hβ) > 6.781 (4.31)

−19.42 log([NII]/Hα)− 6.912 log([SII]/Hα)

− 6.415 log([OIII]/Hβ) > 12.62 (4.32)

Seyferts:

−5.989 log([NII]/Hα)− 1.534 log([SII]/Hα)

− 5.465 log([OIII]/Hβ) < 1.543 (4.33)

0.112 log([NII]/Hα)− 10.74 log([SII]/Hα)

+ 10.13 log([OIII]/Hβ) > 8.089 (4.34)

5.918 log([NII]/Hα) + 1.422 log([SII]/Hα)

+ 9.623 log([OIII]/Hβ) > 1.611 (4.35)

LINERs:

−6.307 log([NII]/Hα)− 8.721 log([SII]/Hα)

− 1.184 log([OIII]/Hβ) < 6.781 (4.36)

0.112 log([NII]/Hα)− 10.74 log([SII]/Hα)

+ 10.13 log([OIII]/Hβ) < 8.089 (4.37)

2.383 log([NII]/Hα) + 14.56 log([SII]/Hα)

+ 0.378 log([OIII]/Hβ) > −6.724 (4.38)
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Table 4.5: Comparison of the SoDDA classification with that of the 3-dimensional SVM ([NII]/Hα,
[SII]/Hα and OIII/Hβ space).

S
V

M

SoDDA
SFGs Seyferts LINERs Composites Total

SFGs 69746 0 7 808 70561
Seyferts 5 7010 99 278 7392
LINERs 0 66 2574 154 2794

Composites 437 230 214 7227 8108
Total 70188 7306 2894 8467

Composites:

−19.42 log([NII]/Hα)− 6.912 log([SII]/Hα)

− 6.415 log([OIII]/Hβ) < 12.62 (4.39)

5.918 log([NII]/Hα) + 1.422 log([SII]/Hα)

+ 9.623 log([OIII]/Hβ) < 1.611 (4.40)

2.383 log([NII]/Hα) + 14.56 log([SII]/Hα)

+ 0.378 log([OIII]/Hβ) < −6.724 (4.41)

The multidimensional decision boundaries achieve a mean classification accuracy of

about 97% based on a 10-fold cross validation with respect to the SoDDA classifica-

tion. Table 4.3 compares the SoDDA classification with the proposed classification

from the SVM, while Table 4.4 compares the scheme from Kewley et al. (2006) with

the SVM. Similarly as in the case of the 4-dimensional based SVM classification, we

have excellent agreement with the SoDDA classification and slightly worse agree-

ment with the traditional 2-dimensional diagnostics. Surprisingly we find excellent

agreement between the 3-dimensional and the 4- dimensional SVM diagnostics in-

dicating that the lack of the 4th dimension ([OI]/Hα) does not significantly affect

the quality of the classification. More specifically, the 3-dimensional SVM has 99%

accuracy for SFGs with the SoDDA, 96% for the Seyferts, 89% for the LINERs and

85% for the Composites. In other words, removing the [OI]/Hα) dimension has no

impact on the classification error for SFGs and the Seyferts, and affects the error

by 4% for the LINERs and by 3% for the Composites.
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Table 4.6: Comparison of the classifications of a 3-dimensional SVM with that of the method by
Kewley et al. (2006) ([NII]/Hα, [SII]/Hα and OIII/Hβ space). Contradictory classifications are called
ambiguous classifications by Kewley et al. (2006).

S
V

M

Kewley et al. (2006)
SFGs Seyferts LINERs Composites Ambiguous Total

SFGs 66274 5 0 2383 1899 70561
Seyferts 0 5782 0 5 1605 7392
LINERs 0 81 782 838 1093 2794

Composites 67 2 0 7031 1008 8108
Total 66341 5870 782 10257 5605

4.5 Discussion and Connection with the log(N)− log(S)

We propose a new soft clustering scheme, the soft allocation data driven method

(SoDDA), for classifying galaxies using emission-line ratios. Our method uses an

optimal number of MG distributions in order to capture the multi-dimensional struc-

ture of the dataset and afterwards concatenate those MG distributions into groups

by assigning them to different activity types, based on the location of their means

with respect to the loci of the activity types as defined by Kewley et al. (2006).

4.5.1 Comparison with standard diagnostic

The main advantages of this method are the use of all four optical-line ratios si-

multaneously, thus maximising the available information and avoiding contradicting

classifications, and treating each class as a distribution resulting into soft classifica-

tion boundaries.

One of the issues with data-driven classification is whether the data have enough

discriminating power for distinguishing the different activity classes. A strong indi-

cation in this direction comes from the fact that the original BPT diagnostic Baldwin

et al. (1981) and its more recent redefinition by Kauffmann et al. (2003) and Kewley

et al. (2006) was driven by the clustering of the activity classes in different loci on

the 2-dimensional line-ratio diagrams. Furthermore, this distinction was supported

by photoionisation models (Kewley et al. 2001) which indicate that while there is

a continuous evolution of the location of sources on the 2-dimensional diagnostic

diagrams as a function of their metallicity and hardness of the ionising continuum,

star-forming galaxies occupy a distinct region of this diagram. In our analysis we fol-
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low a hybrid approach in which we identify clusters based on the multi-dimensional

distribution of the object line-ratios, and we associate the clusters with activity

types based on their location of the standard 2-dimensional diagnostic diagrams.

This way we give a physical interpretation to each cluster, while tracing the multi-

dimensional distribution of the line ratios.

The fact that our analysis identifies multiple clusters within each activity class could

indicate that there are subclasses that merit special attention. An indication for this

is cluster 4. The morphology of this cluster is distinct from the remaining popula-

tion (Figure 4.7), which was attributed to the complex spectra of the objects in this

cluster.

The approach followed in this paper treats the multi-dimensional emission-line diag-

nostic diagram as a mixture of different classes. This is a more realistic approach as

it does not assume fixed boundaries between the activity classes. Instead, it takes

into account the fact that the emission-line ratios of the different activity classes

may overlap, which is reflected on the probabilities for an object to belong to a

given class. This in fact is reflected in the often inconsistent classification between

different 2-dimensional diagnostics (Ho et al. 1997, Yuan et al. 2010). Therefore,

the optimal way to characterize a galaxy is by calculating the probability that it

belongs to each of the activity classes. This also gives us the possibility to define

samples of galaxies in the different classes at various confidence levels.

Another advantage of this approach is that we take into account all available in-

formation for the activity classification of galactic nuclei. This is important given

the complex shape of the multi-dimensional distributions of the emission line ratios

(e.g. online 3-dimensional rotating diagnostics, see also Vogt et al. (2014)). This

way we increase the power of the 2-dimensional diagnostic tools, and eliminate the

contradicting classifications they often give. This is demonstrated by the excel-

lent agreement between the classification of the 4-dimensional diagnostic (OIII/Hβ,

OI/Hα, NII/Hα, SII/Hα) with the 3-dimensional diagnostic excluding the often weak

and hard to detect OI line (OIII/Hβ, , NII/Hα, SII/Hα); see 4.4.2. This agreement

indicates that the loss of the diagnostic power of the OI/Hα line (which the main

discriminator between LINERs and other activity types (e.g. Kewley et al. (2006))

in the 4-dimensional diagnostic, can be compensated by the structure of the locus of

the different activity types which allows their distinction even in the 3-dimensional
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diagnostic.

Although we believe that the probabilistic clustering contains more information

about the classification of each active galaxy, the use of hard decision boundaries

for classification is effective and closer to the standard approach used in the litera-

ture. Therefore, we also present hard classification criteria by employing SVM on

the distribution of line-ratios of objects assigned to each activity class. The clas-

sification accuracy with these hard criteria is ∼ 98% when compared to the soft

classification (SoDDA). This indicates that the extended tails of the line-ratio dis-

tributions of the different activity classes result in only a small degree of overlap

and hence misclassification.

4.5.2 Connection to log(N)− log(S)

Having a classification scheme in order to distinguish between AGNs and SFGs will

open new horizons in the log(N)−log(S) research. Most of the sources we observe in

the deep field images (extended observations of the sky that try to measure distant

astronomical sources) are galaxies. So, using SoDDA, the soft-clustering scheme we

propose, we will be able to create individual log(N) − log(S) curves for the four

classes of galaxies, i.e. SFGs, LINERs, Seyferts and Composites and examine the

different parameters of the distribution of the flux.

As it was stated in the previous chapters, the parameters of the log(N) − log(S)

curve are informative about the type of population. In the literature there have been

attempts to create different log(N)− log(S) curves for the different type of galaxies.

Lehmer et al. (2012) focuses on the CDFS survey and uses Kewley et al. (2006) clas-

sification scheme in order to cluster galaxies and then build log(N)− log(S) curves

for each type. This approach is limited by the fact that the existing classification

scheme provides hard-clustering and fails to classify many galaxies due to ambiguity.

The classification scheme we propose gives posterior probabilities for each galaxy of

belonging to one of the four categories. Thus if we define the matrix that contains the

posterior probabilities as m and define an indicator matrix J , where Ji,j = 1 if the

galaxy i is of type j and zero otherwise, then our Gibbs Sampler could be written as:
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Step 1: Sample J t+1 ∼Multinomial(m).

Step 2: Cluster using J t+1 the galaxies and for each of the four categories run one

iteration of the Gibbs sampler using the galaxies of each type as the observed sources.

This method will yield four different log(N)− log(S) curves for the different types

of galaxies, allowing Astronomers to study the differences of those populations using

the parameters of the curves.
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5
Discussion

In this work, we present a comprehensive and innovative approach to estimating the

log(N)− log(S) relationship, both for the linear and the piece-wise linear case with

a known number of pieces. More specifically, we develop a hierarchical Bayesian

model that properly accounts for the missing data mechanism and other sources of

uncertainty, such as the uncertainty about the flux-to-count conversion factor. By

using a Bayesian approach, our method produces a posterior distribution for the

log(N)− log(S) curve instead of a best-fit estimate, and the uncertainty of the pos-

terior estimates of the parameters of interest can be closely examined through their

respective marginal posterior distributions.

Our work extends a recently proposed Bayesian approach for estimating the log(N)−
log(S) relationship (Udaltsova 2014). The author proposes a hierarchical Bayesian

model in order to take into consideration the measurement and detector biases, as

well as the missing data mechanism. Our approach extends the work of Udaltsova

(2014) by employing a survey specific incompleteness function, and by utilising the

survey specific background and exposure maps in order to create a joint distribution

for the background contamination, the effective area and the off-axis angle.

We further extend the hierarchical Bayesian model for estimating the log(N)−log(S)

relationship, by properly incorporating the uncertainty about the flux-to-count con-

version factor γ. This constitutes a very innovative approach on the log(N)− log(S)
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estimation, since the methods in the relevant log(N) − log(S) estimation assume

that γ is constant for all the sources. We extract the uncertainty about γ, expressed

as a different probability distribution for each observed source, using modern as-

tronomical software, and then we fit a hierarchical prior for the complete source

population. In order to fit this prior, we use an innovative statistical methodology

that can be applied to multiple statistical problems of similar nature.

The resulting methodology about estimating log(N) − log(S) offers to the astro-

nomical community a very powerful and at the same time versatile tool, while the

hierarchical structure allows for easy extensions of the model for any other source

of uncertainty.

5.1 Creating a Soft Clustering Scheme for Classifying Galaxies

Studying the log(N)− log(S) relationship for different source populations can give

us further insight into the differences between the various types of astronomical

populations. Exploiting this idea, we delved into a long and heavily researched clas-

sification problem in Astronomy, which is the classification of galaxies to different

activity classes (Star Forming Galaxies, LINERs, Seyferts and Composites).

Therefore, we propose a new soft clustering scheme, the soft allocation data driven

method (SoDDA), for classifying galaxies using emission-line ratios. Our method

utilises a big number of Multivariate Gaussian (MG) distributions in order to capture

the multi-dimensional structure of the dataset and afterwards concatenate those MG

distributions into groups by assigning them to different activity types. The main

advantage of this method is the use of all four optical-line ratios simultaneously, thus

maximising the available information and avoiding contradicting classifications. We

also present hard classification criteria by employing SVM on the distribution of

line-ratios of objects assigned to each activity class.

5.1.1 Connection to log(N)− log(S)

Having a classification scheme that enables us to distinguish between AGNs and

SFGs will undoubtedly open new horizons in the log(N) − log(S) research. The
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use of SoDDA, the soft-clustering scheme we propose, will allow for the creation of

individual log(N) − log(S) curves for the four classes of galaxies, i.e. SFGs, LIN-

ERs, Seyferts and Composites, offering the opportunity to examine the different

parameters of the 4 distributions of the flux. In the last Section of Chapter 4, we

discuss a framework for estimating the 4 different log(N)− log(S) curves using the

hierarchical Bayesian model.

5.2 Limitations

The main limitation of the hierarchical Bayesian model is the lack of a proper and

effective automatic model selection process. Despite a series of simulation studies

by Udaltsova (2014), neither of the standard model selection methods, such as the

Bayes factor and the DIC, manage to exhibit consistency in choosing the model used

for simulating the data. As a result, further research should be conducted on the

model selection procedure.

Towards this end, we suggest two different research directions; the development of

model specific heuristics and techniques, and the implementation of a Reversible

Jump MCMC sampler. For the first case, we can define statistics, such as the sim-

ilarity between the marginal posterior distributions of the 2 consecutive slopes, θ1

and θ2, measured by some metric. If the distance between the two distributions is

small under that predefined measure, then we can assume that there is not enough

evidence to support the hypothesis of the existence of a breakpoint. Extensive sim-

ulations would be required in order to properly test the power of such diagnostics.

A more statistically interesting approach to model selection would be the use of the

Reversible Jump MCMC (Green 1995) on the hierarchical Bayesian model. The

Reversible Jump MCMC sampler is a framework for MCMC simulation that is well

suited for problems in which the dimensions of the parameter space can vary be-

tween the iterations of the chain. However, implementing successfully a Reversible

Jump MCMC is not a trivial task. The main difficulty lies in the construction of

the proposal moves between different models .Thus, applying the Reversible Jump

MCMC for model selection in our context is undoubtedly a promising approach, but

not a straightforward one.
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A
A.1 Bayesian Modelling for log(N)−log(S) with γ (flux-to-count con-

version rate) uncertainty

A.1.1 Model Assumptions

The distributional assumptions for the parameters of interest are the following:

• The flux S:

– For the Single power law model we have for the pdf of the flux S and

the associated priors:

p(S) ∼ Pareto(S; θ, τ) = θτ θS−(θ+1) (A.1)

p(θ) ∼ Gamma(θ; a, b) =
ba

Γ(a)
θa−1e−bθ (A.2)

p(τ) ∼ Gamma(τ ; am, bm) =
bamm

Γ(am)
τam−1e−bmτ (A.3)

– For the Broken power-law model with (m− 1) breaks we have for the

flux S :
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f(S) = p(S|θ, τ) =
m∑
j=1

[ j−1∏
i=1

(τi+1

τi

)−θi](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1},

(A.4)

where θ = (θ1, ..., θm) are the m power-law slopes, τ1 is the flux popula-

tion minimum threshold, (τ2, ..., τm) are the consequent breakpoints and∏0
i=1

(
τi+1

τi

)−θi
= 1.

θj ∼ Gamma(aj, bj), j = 1, ...,m (A.5)

τ1 ∼ Gamma(aτ , bτ ) (A.6)

ηj = hj(τj | τj−1) = log(τj − τj−1), j = 2, ...,m (A.7)

η ∼ Multivariate Gaussian(µ,C) (A.8)

• Total number of sources N (observed and unobserved):

p(N) ∼ Negative-Binomial(N ; aN , bN) =

(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
(A.9)

• The flux-to-count conversion rate γ:

p(γ) ∼ Gamma(γ; aγ, bγ) =
b
aγ
γ

Γ(aγ)
θaγ−1e−bγθ (A.10)

• The photon counts for each source, i = 1, ..., N :

Y tot
i = Y src

i + Y bgr
i (A.11)

Y src
i |Si, Ei, γi

ind∼ Poisson ( λ(Si, Ei, γi) =
SiEi
γi

= λi ) =
e−λiλ

Y src
i
i

Y src
i !

(A.12)

Y bkg
i |Bi, Ai

ind∼ Poisson ( k(Bi, Ai) = BiAi = ki ) =
e−kik

Y bgr
i
i

Y bgr
i !

(A.13)

• The incompleteness function:
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g(S,B, L,E, γ) = P (I = 1 | S,B, L,E, γ) (A.14)

• The marginal probability of detection

π(θ, τ) =

∫
P (I = 1 | S,B, L,E, γ) · p(S,B, L,E, γ|θ, τ) dS dB dE dL dγ

=

∫
g(S,B, L,E, γ) · p(S|θ, τ) · p(B,L,E) · p(γ) dS dB dE dL dγ

(A.15)

P (Sobs | n, θ, τ, Bobs, Lobs, Eobs, γobs) =
n∏
i=1

P (Sobs,i | n, θ, τ, Bobs,i, Lobs,i, Eobs,i,

γobs,i)

=
n∏
i=1

p(Si, Ii = 1 | θ, τ, Bi, Li, Ei, γi)

=
n∏
i=1

p(Si | θ, τ)p(Ii = 1 | Bi, Li, Ei, γi)

=
n∏
i=1

Pareto(Si; θ, τ)g(Si, Bi, Li, Ei, γi)

(A.16)

P (Smis | n,N, θ, τ, Bobs, Lobs, Eobs, γobs) =
N∏

i=n+1

P (Smis,i | n, θ, τ, Bobs,i, Lobs,i, Eobs,i,

γobs,i)

=
N∏

i=n+1

p(Si, Ii = 0 | θ, τ, Bi, Li, Ei, γi)

=
N∏

i=n+1

p(Si | θ, τ)p(Ii = 0 | Bi, Li, Ei, γi)

=
N∏

i=n+1

Pareto(Si; θ, τ)(1− g(Si, Bi, Li, Ei, γi))

(A.17)
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Let λi = SiEi/γi and ki = BiAi. Then

p(Y tot
obs | n, Sobs, Bobs, Lobs, Eobs, γobs) =

n∏
i=1

p(Y tot
obs,i | n, Sobs,i, Bobs,i, Lobs,i, Eobs,i, γobs,i)

=
n∏
i=1

(λi + ki)
Y tot
obs,ie−(λi+ki)

Y tot
obs,i

=
n∏
i=1

Poisson(Y tot
obs,i;λi + ki) (A.18)

We know that if X ∼ Poisson(λi), Y ∼ Poisson(ki) and W = X +Y , then X | W =

w ∼ Binomial(X;w, λi
λi+ki

). Thus,

p(Y src
obs | Y tot

obs , n,N, Sobs, Bobs, Lobs, Eobs, γobs) =
n∏
i=1

p(Y src
obs,i | Y tot

obs,i, n,N, Sobs,i, Bobs,i,

(A.19)

Lobs,i, Eobs,i, γobs,i)

=
n∏
i=1

Binomial(Y src
obs,i;Y

tot
obs,i,

λi
λi + ki

)

(A.20)

A.1.2 Derivation of Posterior Distribution

The complete data posterior distribution is

p(N, θ, τ, γcom, Scom, Icom, Y
src
obs , Y

src
mis, Y

tot
mis ,Bmis, Lmis, Emis, Amis| (A.21)

n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

where SDobs is the spectral data for the observed sources and (aγ, bγ) are the pa-

rameters of the prior of γ. We integrate out the missing data parameters

(Smis, Imis, Y
src
mis, Y

tot
mis , γmis, Bmis, Lmis, Emis, Amis).

This leaves the main parameters of interest (N, θ, τ) and the parameters of the flux,

flux to counts conversion factors and source photon counts (Sobs, γobs, Y
src
obs ) of the
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observed sources in the marginalised joint posterior. By using this sampling scheme,

the dimension of the sampled quantities is kept constant.

The marginalised joint-posterior distribution of the parameters of interest is:

p(γobs, N, θ, τ, Sobs, Y
src
obs | n, Y tot

obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

·∫
p(γcom, Icom, Scom, Y

src
com, Y

tot
com, Bcom, Lcom, Ecom, Acom, n|N, θ, τ, SDobs, aγ, bγ)

· p(N, θ, τ)dγmisdImis dSmis dBmis dLmis dEmis dAmis dY src
mis dY tot

mis

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

· p(N, θ, τ)·∫
p(γcom, Icom, Scom, Y

src
com, Y

tot
com, Bcom, Lcom, Ecom, Acom|N, θ, τ, SDobs, aγ, bγ)I{∑N

i=1 Ii=n}

dγmisdImis dSmis dBmis dLmis dEmis dAmis dY src
mis dY tot

mis

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

· p(N, θ, τ)·∫
A

p(γcom, Icom, Scom, Y
src
com, Y

tot
com, Bcom, Lcom, Ecom, Acom|N, θ, τ, SDobs, aγ, bγ)

dγmisdImis dSmis dBmis dLmis dEmis dAmis dY src
mis dY tot

mis

where A = {all permutations of vector I of length N with entries Ij ∈ {0, 1} such

that
∑N

j=1 Ij = n}. Since we do not know which components Si of the vector Scom

are missing, in order to integrate with respect to Imis, we integrate over all the N−n
components for which Ii = 0. This is done by integrating over all permutations of

the vector Icom in which
∑N

i=1 Ii = n.

Consider the simplest case where N − n = 1, i.e. there is only 1 missing value

and for the rest components we have that Ii = 1. In that case there are only N

combinations in which there is a source with Ii = 0. Then:
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∫
A

p(γcom, Icom, Scom, Y
src
com, Y

tot
com, Bcom, Lcom, Ecom, Acom|N, θ, τ, SDobs, aγ, bγ)

dγmis,1dImis,1 dSmis,1 dBmis,1 dLmis,1 dEmis,1 dAmis,1 dY src
mis,1 dY tot

mis,1

=

∫
A

N∏
i=1

p(γi, Ii, Si, Y
src
i , Y tot

i , Bi, Li, Ei, Ai|N, θ, τ, SDobs, aγ, bγ)

dγmis,1 dImis,1 dSmis,1 dBmis,1 dLmis,1 dEmis,1 dAmis,1 dY src
mis,1 dY tot

mis,1

= N ·
∫ N∏

i=2

p(Ii = 1, γi, Si, Y
src
i , Y tot

i , Bi, Li, Ei, Ai|N, θ, τ, SDobs, aγ, bγ)

p(I1 = 0, γ1, S1, Y
src
1 , Y tot

1 , B1, L1, E1, A1|N, θ, τ, SDobs, aγ, bγ)

dγ1 dS1 dB1 dL1 dE1 dA1 dY src
1 dY tot

1

= N · p(γobs, Iobs, Sobs, Y
src
obs , Y

obs
obs , Bobs, Lobs, Eobs, Aobs|N, θ, τ, SDobs, aγ, bγ)∫

p(I1 = 0, γ1, S1, Y
src
1 , Y tot

1 , B1, L1, E1, A1|N, θ, τ, aγ, bγ)

dγ1 dS1 dB1 dL1 dE1 dA1 dY src
1 dY tot

1

= N · p(γobs, Iobs, Sobs, Y
src
obs , Y

obs
obs , Bobs, Lobs, Eobs, Aobs|N, θ, τ, SDobs, aγ, bγ)∫

p(B1, L1, E1, A1) · p(γ1 | aγ, bγ)
{∫

p(I1 = 0 | S1, γ1, B1, L1, E1) · p(S1 | θ, τ)dS1

·
∫
p(Y tot

1 |N, θ, S1, B1, L1, E1) dY tot
1 ·

∫
p(Y src

1 |Y tot
1 , N, θ, S1, B1, L1, E1) dY src

1

}
dγ1 dB1 dL1 dE1 dA1

= N · p(γobs, Iobs, Sobs, Y
src
obs , Y

obs
obs , Bobs, Lobs, Eobs, Aobs|N, θ, τ, SDobs, aγ, bγ)∫

(1− g(S1, γ1, B1, L1, E1)) · p(S1 | θ, τ) · p(γ1 | aγ, bγ) · p(B1, L1, E1) dS1 dγ1

dB1 dL1 dE1

= N · p(γobs, Iobs, Sobs, Y
src
obs , Y

obs
obs , Bobs, Lobs, Eobs, Aobs|N, θ, τ, SDobs, aγ, bγ)

· (1− π(θ, τ))

For the case of N − n = 2 we have
(
N
2

)
combinations and by independence we can

conclude that the integral over the missing values will simplify to (1 − π(θ, τ))2.
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Following the same logic, for the general
(
N
n

)
we have that the posterior distribution

over the parameters of interest would be:

p(γobs, N, θ, τ, Sobs, Y
src
obs | n, Y tot

obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ) (A.22)

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

· p(N, θ, τ)·∫
A

p(γcom, Icom, Scom, Y
src
com, Y

tot
com, Bcom, Lcom, Ecom, Acom|N, θ, τ, SDobs, aγ, bγ)

dγmisdImis dSmis dBmis dLmis dEmis dAmis dY src
mis dY tot

mis

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

· p(N, θ, τ)·(
N

n

)
· p(γobs, Iobs, Sobs, Y

src
obs , Y

obs
obs , Bobs, Lobs, Eobs, Aobs|N, θ, τ, SDobs, aγ, bγ)

· (1− π(θ, τ))N−n

=
1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, µ, σ)

·
(
N

n

)
· (1− π(θ, τ))N−n

· p(N) · p(θ) · p(τ) · p(Bobs, Lobs, Eobs|N, θ, τ)

· p(γobs | SDobs, aγ, bγ) · p(Sobs|θ, τ)

· p(Iobs | γobs, Sobs, Bobs, Lobs, Eobs)

· p(Y tot
obs | Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

· p(Y src
obs | Y tot

obs , Iobs, Sobs, Bobs, Lobs, Eobs, γobs)

where

π(θ, τ) =

∫
g(S,B, L,E, γ) · p(γ) · p(S|θ, τ) · p(B,L,E) dS dB dE dL dγ

169



• Single power law model: the Equation A.23 becomes:

p(γobs, N, θ, τ, Sobs, Y
src
obs | n, Y tot

obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

∝ 1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

·
(
N

n

)
· (1− π(θ, τ))N−n

(A.23)

·
(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
I{N∈Z+}

· ba

Γ(a)
θa−1e−bθI{θ>0}

· bamm
Γ(am)

τam−1e−bmτI{τ>0}

·
n∏
i=1

p(γi|SDi, aγ, bγ) · θτ θS−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei, γi)

·
(SiEi
γi

+BiAi)
Y tot
i

Y tot
i !

e
(
SiEi
γi

+BiAi)
I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( SiEi
γi

SiEi
γi

+BiAi

)Y src
i
(

1−
SiEi
γi

SiEi
γi

+BiAi

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}
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• Broken power law model: the Equation A.23 becomes:

p(γobs, N, θ, τ, Sobs, Y
src
obs | n, Y tot

obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

∝ 1

p(n, Y tot
obs , Bobs, Lobs, Eobs, Aobs, SDobs, aγ, bγ)

·
(
N

n

)
· (1− π(θ, τ))N−n

(A.24)

·
(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
I{N∈Z+}

·
m∏
j=1

[ b
aj
j

Γ(aj)
θ
aj−1
j e−bjθI{θj>0}

]
· p(τ1, τ2, ..., τm)I{0<τ1<τ2<...<τm}

·
n∏
i=1

[
p(γi|SDi, aγ, bγ) · g(Si, Bi, Li, Ei, γi)

·
m∑
j=1

[ j−1∏
i=1

(τi+1

τi

)−θi](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1}

·
(SiEi
γi

+BiAi)
Y tot
i

Y tot
i !

e
(
SiEi
γi

+BiAi)
I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( SiEi
γi

SiEi
γi

+BiAi

)Y src
i
(

1−
SiEi
γi

SiEi
γi

+BiAi

)Y tot
i −Y src

i

I{Y src
i ∈{0,1,...,Y tot

i }}

]

A.1.3 Derivations of the Conditional Posterior Distributions for

Single Power Law Model

Conditional distribution of Y src
obs : The full conditional distribution for Y src

obs is:

p(Y src
obs |·) ∝ p(Y src

obs |Y tot
obs , Bobs, Lobs, Eobs, Iobs, Sobs, γobs)

∝
n∏
i=1

(
Y tot
i

Y src
i

)( λi
λi + κi

)Y srci
(

1− λi
λi + κi

)Y toti −Y srci

I{Y srci ∈{0,1,...,Y toti }}

=
n∏
i=1

Binomial
(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
,

where λi = SiEi/γi and ki = BiAi. Since the observed sources are independent we

can sample the vector Y src
obs component-wise for i = 1, ..., n as
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p(Y src
i |·) ∼ Binomial

(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
.

Conditional distribution of Sobs: The full conditional distribution for Sobs is:

p(Sobs|·) ∝ p(Sobs|N, θ, τ) · p(Iobs|Sobs, Bobs, Lobs, Eobs, γobs)

· p(Y tot
obs |Bobs, Lobs, Eobs, Iobs, Sobs, γobs) · p(Y src

obs |Y tot
obs , Bobs, Lobs, Eobs, Iobs, Sobs,

γobs)

∝
n∏
i=1

θτ θS
−(θ+1)
i I{τ<Si} · g(Si, Bi, Li, Ei, γi) ·

(λi + κi)
Y toti

Y tot
i !

e(λi+κi)I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( λi
λi + κi

)Y srci
(

1− λi
λi + κi

)Y toti −Y srci

I{Y srci ∈{0,1,...,Y toti }}

where λ(Si, Ei, Bi, Li) = SiEi/γi and k(Bi, Ai) = BiAi. By independence of the Sobs

we can sample component-wise for i = 1, ..., n as

p(Si|·) ∼ Pareto(Si|N, θ, τ)I{τ<Si} · g(Si, Bi, Li, Ei, γi) · Poisson(Y tot
i ;λi + κi)

·Binomial
(
Y src
i ;Y tot

i ,
λi

λ1 + κi

)
.
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Conditional distribution of θ: The full conditional distribution for θ is:

p(θ|·) ∝ p(θ) · p(Sobs|N, θ, τ) · (1− π(θ, τ))N−n

=
ba

Γ(a)
θa−1e−bθI{θ>0} ·

[ n∏
i=1

θτ θS
−(θ+1)
i I{τ<Si}

]
· (1− π(θ, τ))N−n

∝ θa+n−1e−θ[b+
∑n
i=1 log(

Si
τ
)]
I{θ>0} · (1− π(θ, τ))N−n

∝ (1− π(θ, τ))N−n ·Gamma
(
θ; a+ n, b+

n∑
i=1

log(
Si
τ

)
)

Conditional distribution of N : The full conditional distribution for N , the total

unknown number of sources, is:

p(N |·) ∝
(
N

n

)
I{n≤N}(1− π(θ, τ))N−n · p(N)

∝
(
N

n

)
I{n≤N}(1− π(θ, τ))N−n ·

(
N + aN − 1

aN − 1

)( 1

1 + bN

)N( bN
1 + bN

)aN
I{N∈Z+}

∝ Γ(N + aN)

Γ(N − n+ 1)
·
( 1

1 + bN

)N
· (1− π(θ, τ))N−nI{n≤N}

Conditional distribution of τ : The full conditional distribution for τ is:

p(τ |·) ∝ p(τ) · (1− π(θ, τ))N−n · p(Sobs|N, θ, τ)

∝ bamm
Γ(am)

τam−1e−bmτI{τ>0} · (1− π(θ, τ))N−n ·
[ n∏
i=1

θτ θS
−(θ+1)
i I{τ<Si}

]
∝ τnθ+am−1 · e−bmτ · (1− π(θ, τ))N−n · I{τ<cm}, where cm = min(S1, ..., Sn)
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Conditional posterior distribution of γobs,i: For the observed sources i =

1, ..., n we have the priors p(γobs,i|·). So, the full conditional posterior distribution is

p(γobs|·) ∝
n∏
i=1

p(γi|SDi, aγ, bγ) · g(Si, Bi, Li, Ei, γi)

·
(SiEi
γi

+BiAi)
Y toti

Y tot
i !

e
(
SiEi
γi

+BiAi)
I{Y toti ∈Z+}

·
(
Y tot
i

Y src
i

)( SiEi
γi

SiEi
γi

+BiAi

)Y srci
(

1−
SiEi
γi

SiEi
γi

+BiAi

)Y toti −Y srci

I{Y srci ∈{0,1,...,Y toti }}

By independence of the observed sources, we can sample component-wise for i =

1, ..., n as:

p(γi|·) ∝ p(γi|SDi, aγ, bγ) · g(Si, Bi, Li, Ei, γi) · Poisson(Y tot
i ;

SiEi
γi

+BiAi)

·Binomial
(
Y src
i ;Y tot

i ,

SiEi
γi

SiEi
γi

+BiAi

)
.
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A.1.4 Derivations of the Conditional Posterior Distributions for

Broken Power Law Model

Conditional posterior distribution of θ = (θ1, ..., θm)T : The full conditional

posterior distribution for θ = (θ1, ..., θm) is:

p(θ |) ∝ [1− π(θ, τ)]N−n·
m∏
j=1

θ
aj−1
j e−bjθjI{θj>0} ·

n∏
i=1

[ m∑
j=1

[ j−1∏
l=1

(τl+1

τl

)−θl](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1}

]

The indicators I{τj≤S≤τj+1} eliminate all the terms in the sum but one. Thus, we

have that

p(θ |) ∝ [1− π(θ, τ)]N−n ·
m∏
j=1

θ
aj−1
j e−bjθjI{θj>0}

·
m∏
j=1

{ j−1∏
l=1

(τl+1

τl

)−θl}n(j)
·
∏
i∈I(j)

(θj
τj

)(S
τj

)−(θj+1)

where I(j) = {i : τj ≤ Si ≤ τj+1} denotes the existence the sources with flux

contained in the interval corresponding to the j -th mixture component, and n(j)

is the cardinality of I(j) (the number of sources in that interval). By re-writing the

above equation, we get
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p(θ |) ∝ [1− π(θ, τ)]N−n ·
m∏
j=1

θ
aj+n(j)−1
j I{θj>0} ·

m∏
j=1

e−bjθj

·
m∏
j=1

{ j−1∏
l=1

(τl+1

τl

)−θl}n(j)
·
m∏
j=1

e
−θj

∑
i∈I(j) log(

Si
τj

)

∝ [1− π(θ, τ)]N−n ·
m∏
j=1

θ
aj+n(j)−1
j I{θj>0}

· exp
(
−
[
θjbj + n(j)I{j>0}

j−1∑
l=1

θl log(
τl+1

τl
) + θj

∑
i∈I(j)

log(
Si
τj

)
])

∝ [1− π(θ, τ)]N−n ·
m∏
j=1

Gamma
(
θj; aj + n(j),

bj + I{j 6=m} log(
τj+1

τj
)

m∑
i=1

[n(i)I{i≥j+1}] +
∑
i∈I(j)

log(
Si
τj

)
)

Conditional posterior distribution of τ1: The full conditional posterior distri-

bution for τ1 is:

p(τ1|·) ∝ [1− π(θ, τ)]N−n · p(τ1, τ2, ..., τm)I{0<τ1<τ2<...<τm} ·
[ n∏
i=1

p(Bi, Li, Ei)

· g(Si, Bi, Li, Ei) ·
m∑
j=1

[ j−1∏
i=1

(τi+1

τi

)−θi](θj
τj

)(S
τj

)−(θj+1)

I{τj≤S≤τj+1}

]
∝ [1− π(θ, τ)]N−n · τam−11 e−bmτ1 ·

m∏
j=2

e−
c2m·[log(τm−τ(m−1))−µm]2

2 · 1

τm − τ(m−1)

· I{τ<cm} ·
m∏
j=1

{ j−1∏
l=1

(τl+1

τl

)−θl}n(j)
·
∏
i∈I(j)

(θj
τj

)(S
τj

)−(θj+1)

∝ τnθ1+am−1 · e−bmτ · (1− π(θ, τ))N−n ·
m∏
j=2

e−
c2m·[log(τm−τ(m−1))−µm]2

2

· 1

τm − τ(m−1)
· I{τ<cm}
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Conditional posterior distribution of (τ2, ...τm): We sample (τ2, ...τm) via the

full joint conditional posterior distribution of the transformed variables η2, ..., ηm.

We remind that ηj = hj(τj | τj−1) = log(τj−τj−1), j = 2, ...,m. Thus, after applying

a change of variables we have:

p(η2, ...ηm|·) ∝ p(τ2, ...τm|·) · e
∑m
j=2 ηj

∝ e
∑m
j=2 ηj · [1− π(θ, τ)]N−n · p(η2, ...ηm) ·

m∏
j=1

{ j−1∏
l=1

(τl+1

τl

)−θl}n(j)
·
∏
i∈I(j)

(θj
τj

)(S
τj

)−(θj+1)

∝ e
∑m
j=2 ηj · [1− π(θ, τ)]N−n ·Multivariate Gaussian(µ,C)

·
m∏
j=1

{ j−1∏
l=1

(τl+1

τl

)−θl}n(j)
·
∏
i∈I(j)

(θj
τj

)(S
τj

)−(θj+1)
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