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Testing One Hypothesis Multiple Times

Abstract

The identification of new rare signals in data, the detection of a sudden change in a

trend, and the selection between competing models, are among the most challenging

problems in statistical practice. In these settings, standard regularity conditions

(e.g., those required by Wilks theorem) fail to hold and thus classical inferential

tools, such as the generalized likelihood ratio test, are not applicable. In this thesis,

we show how these challenges can be tackled using a test of hypothesis where a

nuisance parameter is present only under the alternative. Several solutions have

been proposed in the statistical literature and their practical implementation often

reduces the problem into one of Testing One Hypothesis Multiple times (TOHM).

Specifically, a fine discretization of the space of the non-identifiable parameter is

specified, and an ensemble of sub-test statistics is obtained to test the null hypothesis

against a set of sub-alternative hypothesis where the value of the non-identifiable

parameter is fixed at each point of the discretization. The goal is to provide a

global p-value as the standard of evidence for comparing the null hypothesis and

the alternative hypothesis. In this thesis, we combine elements of extreme value

theory, differential geometry, graph theory and simulations methods to provide an

easy to compute, computationally efficient and highly generalizable inferential tool

to perform TOHM under stringent significance requirements, such as those typically

required in the physical sciences. The methods proposed in this thesis formalize

and extend recent results presented in physics literature. Several applications are

discussed in the context of indirect searches for dark matter.
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Preface

The data revolution characterizing the 21st century has led to a massive increase

in the demand of modern analytical tools to effectively extrapolate useful and ex-

haustive information from the volume, the variety and the complexity of the data

available. The need of statistical innovation has contributed to exponential advance-

ments in the areas of data mining, machine learning and data science, and the vast

variety and complexity of new scientific problems has encouraged the development

of statistical solutions which generalize beyond the specifics of the original scientific

settings. In this thesis, we attempt to address this demand by providing a general-

ized framework to perform statistical inference in the context scientific discoveries.

In statistical terms, discoveries of new phenomena often translate into a problem

of identifying an unexpected mode in the distribution of data, detecting a sudden

change in a data trend or selecting among competing non-nested models. The main

difficulty of tackling this class of problems with classical inferential procedures is

that standard asymptotic results [e.g., Wilks, 1938] do not apply. Whereas, solutions

based on simulations and resampling methods such as the bootstrap [e.g., Efron and

Tibshirani, 1994] may become prohibitive in a multidimensional framework, when

dealing with complex models or under stringent significance requirements. This

aspect is particularly relevant in high energy physics where discoveries are often

claimed when the respective p-value is in the order of 2.7 ·10−7 or lower [e.g., Lyons,

2013]. Additionally, because of the complexity of the models involved, for instance

when the instrumental error must be taken in account, the data simulation that

would be necessary to assess large significance requirements may be computation-

ally prohibitive, or simply inefficient. Finally, corrections for multiple hypothesis

testing may be of limited use because they are overly conservative [e.g., Bonferroni,

1935, 1936], require independence among the tests being conducted [e.g., Hochberg,

1988], or do not account for the enormous cost associated with a type I error [e.g.,

Benjamini and Hochberg, 1995].

In this thesis, we show how these challenges can be overcome by considering what

is known in statistical literature as “testing statistical hypotheses when a nuisance

parameter is present only under the alternative” or equivalently, “testing with an

unidentifiable parameter under H0”. Specifically, we are interested in situations
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where the model specified under the alternative hypothesis is characterized by the

parameter being tested, hereafter η, and an additional parameter, hereafter θ, which

is not considered in the test and has no meaning under H0. This problem occurs for

instance when testing the number of components that exist within a finite mixture

model [e.g., Davison, 2003, p. 144]. Here we provide a high-level overview of existing

methods and those we propose to tackle this class of problems. A more complete

literature review appears in Chapter 1.

The general problem has long been studied, starting at least from the seminal work

of Hotelling [1939], who introduced the so-called volume-of-tube formulae to assess

the significance of the parameters in nonlinear regression models, and Davies [1977,

1987], where a stochastic process indexed by the nuisance parameter is considered,

and the p-value of interest is obtained by approximating/bounding the tail probabil-

ity of the supremum of the process via extreme value theory (EVT). Further works

in the econometrics literature include Andrews and Ploberger [1994], who discuss

optimal tests in presence of non-identifiable parameters under the alternative, and

Hansen [1991, 1992, 1996], whose approach relies on the theory of empirical pro-

cesses. In their practical implementation, all these inferential solutions reduce the

problem of testing with an unidentifiable parameter underH0 into one of Testing One

Hypothesis Multiple times (TOHM). Specifically, a grid of size R over the parameter

space of θ is specified, and a single null hypothesis, H0, is tested against R different

sub-alternative hypotheses, H11, . . . , H1r, . . . , H1R, via R separate sub-test statistics,

one for each value of the grid. It follows that each of the H1r sub-alternatives is a

special case of the global alternative hypothesis H1, where θ is unknown. The num-

ber R of sub-tests is typically large, and the goal is to provide a global p-value as

the standard of evidence for comparing H0 and H1, i.e., the probability of rejecting

H0 when H0 is true and θ is unknown.

The above-mentioned methods often rely on case-by-case mathematical computa-

tions (e.g., Hotelling [1939], Davies [1977]), estimate integrals via total variations

which can easily diverge (e.g., Davies [1987]), require the estimation of the covari-

ance structure (e.g., Hansen [1991]), imply the specification of adequate weighting

functions (e.g., Andrews and Ploberger [1994]), or rely on the full simulation of the

empirical process involved (e.g., Hansen [1992, 1996]). Additionally, they may be

limited to the one dimensional case, i.e., the non-identifiable parameter is assumed

to be a scalar (e.g., Davies [1977, 1987]).

In this work we first discuss a computational efficient method to perform TOHM

which overcomes these limitations in the one dimensional setting, i.e., when θ =
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θ ∈ Θ ⊂ R. The solution proposed relies on the theoretical framework of Davies

[1977, 1987]; specifically, we consider a stochastic process indexed by θ and we bound

the distribution of its supremum considering the expected number of upcrossings of

the process. Additionally, on the basis of a recent result proposed in the physics

literature by Gross and Vitells [2010], we combine the probabilistic constructs of

EVT with the flexibility of Monte Carlo simulation [Algeri and van Dyk, 2017].

This avoids the need of mathematical computations on a case-by-case basis, and

drastically reduces the number of simulations required by a full simulation, especially

under stringent significance requirements.

In practical applications, researchers often wish to avoid to use Bonferroni’s correc-

tion because of its perceived conservativeness. In this thesis we use classical EVT

results for random sequences to identify situations where Bonferroni is equivalent

to TOHM, and thus it can be used without being overly conservative [Algeri and

van Dyk, 2017]. Further, in order to cover for situations where equivalence between

the two approaches does not hold, we provide general guidelines to practitioners to

select among different inferential procedures [Algeri et al., 2016b].

Finally, we extend Algeri and van Dyk [2017], and implicitly Davies [1977, 1987],

to the multidimensional setting. In practice, we provide a simple, efficient and

comprehensive tool to perform bump-hunting in two or more dimensions and to

tackle other problems where structural changes can be characterized by a multidi-

mensional parameter, θ. Specifically, as described in Algeri and van Dyk [2018] we

consider a random field indexed by the non-identifiable multi-dimensional parame-

ter, θ ∈ Θ ⊂ RD, with D ≥ 1, and on the basis of the seminal work of Worsley

[1994], Taylor and Adler [2003], Adler and Taylor [2009], Taylor and Worsley [2008]

pertaining to the distribution of the suprema of random fields, we use the mean Eu-

ler characteristic of the excursion set of the random field to approximate the global

p-value. Unfortunately, closed-form expressions for the quantities involved are not

easy to obtain. Thus, we propose a simple estimation procedure for the constructs

involved, and we introduce a novel algorithm, based on graph theory, which allows

a simplified computation of the Euler characteristic in multiple dimensions.

The remainder of the thesis is organized as follows. In Chapter 1 we review several

non-standard hypothesis tests, specifically, those investigated by Chernoff [1954],

Davies [1977, 1987], Gross and Vitells [2010], Pilla et al. [2005], Pilla and Loader

[2005] and classical Multiple Hypothesis testing to control for the family-wise type I

error [Bonferroni, 1935, 1936]. The methods discussed in Chapter 1 set the ground

for the developments of the subsequent chapters in which we collect our novel con-
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tributions. Specifically, in Chapter 2 we discuss how the approaches of Chernoff

[1954] and Gross and Vitells [2010] can be combined to test non-nested models. In

Chapter 3 we define the framework for TOHM and we derive a computable upper

bound for the tail probability of interest by generalizing the method proposed by

Gross and Vitells [2010]. In Chapter 4 we discuss the combined impact of classical

EVT and stringent significance requirements on both the bound proposed in Chap-

ter 3 and the usual Bonferroni’s bound. In Chapter 5 we compare the approach of

Pilla et al. [2005], Pilla and Loader [2005] with the one investigated by Gross and

Vitells [2010] and we discuss simple guidelines on how to select among these methods

and multiple hypothesis testing. In Chapter 6 we introduce the multidimensional

extension of TOHM. We conclude with a general discussion of our results and future

works. Finally, in Appendix A we quantify the rate of convergence of the bounds

and approximations discussed in Chapters 3 and 4.
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1
Background on hypothesis

testing under non-standard

regularity conditions

In this chapter, we propose a comprehensive review on statistical inference under

standard and non-standard regularity conditions. Specifically, we first list all the as-

sumptions required by classical asymptotic theory to guarantee the limiting normal

distribution of the Maximum Likelihood Estimate (MLE) and the limiting χ2 dis-

tribution of the Likelihood Ratio Test (LRT). Second, we discuss how the absence

of some of these regularity conditions may affect the LRT and describe exsisting

solutions to obviate these limitations. Finally, we consider a classical signal detec-

tion problem to outline the use of volume-of-tube formulae and multiple hypothesis

testing to compute global p-values.

1.1 The large-samples distribution of the MLE and LRT

1.1.1 Classical regularity conditions

Let Y be a random variable with probability density h(y,η, θ), from which a random

sample of observations y1, . . . , yn is drawn. To simplify the notation, let δ = (η, θ),
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denote with ∆ its parameter space, and write h(y, δ) = h(y,η, θ). We let Dk(δ)

be the k-dimensional array of the kth order of partial derivatives of log h(y, δ), δ∗

be the true value of δ under which y is generated, and I(δ) = −E
[
D2
n(δ)

]
be the

Fisher information matrix. It can be shown (e.g., Serfling [2009] and Davison [2003,

p. 140]) that the MLE of δ, δ̂, exists and

√
n(δ̂ − δ∗) d−→ N(0, I−1(δ∗)) (1.1)

if Conditions 1.1.1 listed below hold.

Conditions 1.1.1.

B1. δ∗ is in the interior of ∆;

B2. Let Dk(δ)i1,...,ik be the element of Dk(δ) in position i1, . . . , ik. Then, for any

value in the support of Y , Dk(δ)i1,...,ik exists for all i1, . . . , ik and k = 1, 2, 3.

B3. For each δ† ∈ δ, there exist functions hk(y), eventually depending on δ†, such

that for δ in a ball B(δ†), |Dk(δ)i1,...,ik | < hk(y) for i1, . . . , ik, for all y, and

with k = 1, 2, 3. Further, for all δ ∈ B(δ†) and all y, we have
∫
hk(y)∂y <∞

when k = 1, 2, and E[h3(y)] <∞.

B4. I(δ) exists and is positive-definite for δ† ∈∆.

C1. The support of Y does not depend on δ.

C2. The model h(y, δ) is identifiable, i.e., h(y, δ) 6= h(y, δ′), ∀δ, δ′ ∈∆.

Conditions B1-B4 corresponds to the classical regularity conditions which guarantee

the asymptotic normality of the MLE, whereas Conditions C1 and C2, are necessary

conditions for B2 and B4, respectively. Given their technical nature, B2 and B4 can

only be assessed once the derivatives of log h(y, δ) have been computed up to the

third order; conversely Conditions C1 and Condition C2 can be easily verified once

the probability density function h(y,η, θ) is specified. Among Conditions 1.1.1, B1,

B4 and C2 often fail in practice and they are the main object of our focus in this

chapter.

1.1.2 Testing under non-standard regularity conditions

Let y1, . . . , yn be a random sample of observations of the random variable Y in-

troduced in Section 1.1.1. Suppose we wish to conduct the two-sided hypothesis

6



test

H0 : η = η0 versus H1 : η 6= η0. (1.2)

We let η ∈ Ξ index the hypotheses in that η = η0 defines H0, Ξ denotes the

parameter space of η, and let θ be a parameter that only exists under H1, it has no

value under H0, and its parameter space is Θ ≡ [L;U] ⊂ R.

Common tests of hypothesis for (1.2) such as LRT, z-tests and t-tests typically rely

on the known asymptotic distribution of their respective test statistics which in turn

depends on the asymptotic normal distribution of the MLE in (1.1). These large-

sample properties are guaranteed under Conditions 1.1.1. The presence of a nuisance

parameter θ, which is defined only under H1, corresponds to a failure of condition

C2 and (consequently) B4. This assumption is needed to ensure non-singularity of

the Fisher Information matrix and consistency of the MLE. In the absence of B4 and

C2, the asymptotic normality of the MLE is not guaranteed under H0, and neither

is the asymptotic distribution of test statistic which relies on this normality. The

failure of condition C2 provides the main motivation of this work and allows us to

set up our framework for TOHM.

We denote the likelihood function of h(y,η, θ), by Ln(η, θ), i.e.,

Ln(η, θ) =
n∏
i=1

h(yi,η, θ).

and we let λn(θ) be the ratio of the likelihoods under H0 and under H1 with θ fixed,

i.e.,

λn(θ) =
Ln(η0, -)

Ln(η̂θ, θ)
(1.3)

where η̂θ is the MLE of η under H1, with θ fixed. We can specify the LRT statistic

for a given value of θ ∈ Θ, namely Tn(θ), as

Tn(θ) = −2 log λn(θ). (1.4)

In order to derive the asymptotic distribution of (1.4) we require Conditions 1.1.2,

in addition to Conditions 1.1.1.

Conditions 1.1.2.

B5. Denote with ∆0 and ∆1, the parameter space of δ under H0 and H1, respec-

tively. Then, ∆0 ⊆∆ and ∆1 ≡∆ \∆0.

C3. The models specified under H0 and H1 are nested.
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Notice that C3 is necessary condition for B5. Throughout this chapter we assume

that Conditions 1.1.2 are verified, whereas in Chapter 2 we discuss a simple approach

to extend the LRT to situations where C3 and consequently B5 are not met.

From Wilks theorem [Wilks, 1938] it follows that, for a given value of θ ∈ Θ,

Conditions 1.1.1-1.1.2 hold (including B4 and C2), and the LRT in (1.4) is such

that

Tn(θ) ∼ χ2
s as n→∞, (1.5)

where s is the dimension of the parameter η being tested. We can then consider

a stochastic process {Tn(θ)}, indexed by θ ∈ Θ, whose components are defined as

in (1.4) and such that, by (1.5), each has asymptotically marginal χ2
s distribution

under H0. In general terms, knowing the asymptotic distribution of the marginals

of {Tn(θ)} is not sufficient to determine the asymptotic distribution of the entire

process. However, as discussed in Hansen [1991], this can be done if Conditions

1.1.3 are satisfied.

Conditions 1.1.3. Let ln(η, θ) = log Ln(η, θ) be the log-likelihood function, and

write for brevity ln(δ), with δ ∈ ∆ defined as in Conditions 1.1.1. Sn(η, θ) =
∂
∂η
ln(η, θ) is the score vector and Mn(η, θ) is the matrix of elements − ∂2

∂ηη′
ln(η, θ).

Let Ξ̊ be some neighborhood of η0. We require that

(i) ∆ is compact;

(ii) l(δ) = limn→∞E[ln(δ)] is continuous in δ uniformly over ∆;

(iii) ln(δ)
p−→ l(δ) for all δ ∈∆;

(iv) ln(δ)− l(δ) is stochastically equicontinuous in δ over ∆;

(v) under H0, for all θ ∈ Θ, ln(δ) is uniquely maximized over η ∈ Ξ at η0;

(vi) at η = η0, ln(δ) does not depend upon θ;

(vii) M(η, θ) = limn→∞E[Mn(η, θ)] and V (η, θ) = limn→∞ nE[Sn(η, θ)Sn(η, θ)′]

are continuous in (η, θ) over Ξ̊×Θ;

(viii) [Mn(η, θ), Vn(η, θ)]
p−→ [M(η, θ), V (η, θ)] for all (η, θ) in Ξ̊×Θ;

(ix) Mn(η, θ)−M(η, θ) and Vn(η, θ)−V (η, θ) are stochastically equicontinuous in

(η, θ) over Ξ̊×Θ.

(x) M(η0, θ) and V (η0, θ) are positive definite uniformly over θ ∈ Θ.
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Hansen [1991] shows that, if Conditions 1.1.3 hold and if V (η0, θ) = M−1(η0, θ)
a,

under H0

{Tn(θ)} d−→ {T (θ)} as n→∞ (1.6)

and

sup
θ∈Θ
{Tn(θ)} d−→ sup

θ∈Θ
{T (θ)} as n→∞

where {T (θ)} is a χ2
s-process i.e., a process

{T (θ)} =
s∑
j=1

{Zj(θ)}2 (1.7)

where {Z1(θ)}, . . . , {Zs(θ)} form a vector Gaussian process with mean zero and

unit variance. Hansen [1991] also shows that the covariance function of {T (θ)}, i.e.,

ρT (θ, θ†) = cov(T (θ), T (θ†)) corresponds to

ρT (θ, θ†) = lim
n→∞

cov(Tn(θ), Tn(θ†)). (1.8)

Thus, we can combine the local LRT statistics Tn(θ) into a global LRT statistic by

considering their supremum, and an asymptotic global p-value for the test in (1.2)

can be specified as in (1.9)

P

(
sup
θ∈Θ
{T (θ)} > c

)
, (1.9)

where c is the observed value of supθ∈Θ{Tn(θ)}. Notice that, instead of supθ∈Θ{Tn(θ)},
a different global test statistic can be specified. Andrews and Ploberger [1994] for in-

stance consider E[exp{Tn(θ)}], or equivalently one could simply refer to E[{Tn(θ)}].
The reason why in this thesis we focus on the supremum of the LRT-process is dual.

First of all, recall that the classical generalized LRT specifies

Tn = −2 log
Ln(η0, -)

Ln(η̂, θ̂)
,

where η̂ and θ̂ are the MLEs of η and θ, respectively. It is easy to see [Hansen,

1991, Theorem 3] that

Tn = sup
θ∈Θ
{Tn(θ)}

and thus, the results to be discussed below provide a direct generalization of classical

inferential methods based on the LRT. Second, referring to the supremum of {Tn(θ)},
aThis is typically the case in absence of serial correlation and heteroskedasticity. Alternatively,

if V (η0, θ) 6= M−1(η0, θ), {Tn(θ)} converges in distribution to a scaled χ2-process [Hansen, 1991].

9



θ
1 10 20 30 40 50 60 70 80 90 100

c

T(θ)

Figure 1.1: Upcrossings (red crosses) of the threshold c by the process {T (θ)}.

instead of his mean for instance, allows us to conveniently exploit classical EVT

results to bound/approximate probabilities of the form of (1.9), also known as an

excursion probabilities [Adler, 2000].

Specifically, we can conveniently bound (1.9) using the concept of the upcrossings

of a stochastic process (see Figure 1.1). We say that the process {T (θ)} has an

upcrossing of a threshold c ∈ R at θ0 ∈ Θ if, for some ε > 0, {T (θ)} ≤ c in the

interval (θ0 − ε, θ0) and {T (θ)} ≥ c in the interval [θ0, θ0 + ε) [Adler, 2000]. Let NT
c

be the process of upcrossings of c by {T (θ)} over Θ ≡ [L,U]. Following Cramér and

Leadbetter [2013, p. 272] the p-value in (1.9) can be rewritten as

P

(
sup
θ∈Θ
{T (θ)} > c

)
= P ({T (L) > c} ∪ {NT

c ≥ 1})

≤ P (T (L) > c) + P (NT
c ≥ 1)

(1.10)

where P (T (L) > c) is the probability that the process {T (θ)} exceedes c at the

lower bound of the parameter space of θ, i.e., at θ = L. Finally, (1.11) follows from

the last line of (1.10) by Markov’s inequality

P

(
sup
θ∈Θ
{T (θ)} > c

)
≤ P (T (L) > c) + E[NT

c ]. (1.11)

Because each component of {T (θ)} is χ2
s distributed, P (T (L) > c) = P (χ2

s > c);

whereas, E[NT
c ] is the expected number of upcrossings of c by {T (θ)} over the search

region Θ and which bounds the probability P (NT
c ≥ 1).
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Search Degree Impact Significance P-value
of surprise

Single top None Low 3σ < 1.35 · 10−3

Neutrino oscillations Medium Medium 4σ < 3.16 · 10−5

Higgs boson Medium Very high 5σ < 2.87 · 10−7

Dark matter Medium High 5σ < 2.87 · 10−7

4th generation neutrinos Substantial High 6σ < 9.87 · 10−10

Gravitational waves None High 7σ < 1.28 · 10−12

Pentaquark Substantial High/very high 7σ < 1.28 · 10−12

Faster-than-light neutrino Enormous Enormous 8σ+ < 6.66 · 10−16

Table 1.1: From Lyons [2013]. Some searches for new astrophysical phenomena, “degree of sur-
prise”, impact of the discovery, proposed significance levels, σ-significance, and p-values for claiming a
discovery.

Davies [1987] computes (1.11) as

P

(
sup
θ∈Θ
{T (θ)} > c

)
≤ P (T (L) > c) +

c
s−1
2 e−

c
2

2
s
2 Γ( s

2
)

∫
U

L

∣∣∣∣∂
√
{T (θ)}
∂θ

∣∣∣∣dθ, (1.12)

Similar results are discussed in both Davies [1977] and Davies [1987] for the normal

case. In Davies [1987], the main requirements for {T (θ)} are continuity of the

process itself and its first derivative, except possibly for a finite number of jumps in

the derivative. These assumptions guarantee the desired smoothness of the process

and ensure that E[NT
c ] < ∞. Further Davies [1987] notices that (1.11) becomes

sharp as c→∞ and if Condition 1.1.4 holds on ρT (θ, θ†).

Condition 1.1.4. ρ(θ, θ†)→ 0 as |θ − θ†| → ∞.

Condition 1.1.4 is known as long-range independence [Falk et al., 2010, p. 361]; if

it is met, NT
c assumes Poisson character as c→∞, and thus P (NT

c ≥ 1) ≈ E[NT
c ].

Hence the sharpness of the bound in (1.11).

Davies [1987] estimates the integral in (1.12) via total variation. Unfortunately, as

pointed out in Hansen [1991], there exist situations where the number of jumps in the

derivative of {T (θ)}may cause the total variation to diverge. An alternative solution

can be used to overcome this problem and has had significant impact in the physics

community. Namely, Gross and Vitells [2010] introduces a novel method to correct

for the so-called “look-elsewhere effect”, i.e., the reduction in significance that occurs
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when one “looks” at many tests in the search for a significant result. This method

has had a wide range of applications in various searches for new physics including in

the discovery of the Higgs boson [Della Negra et al., 2012, van Dyk, 2014, Chatrchyan

et al., 2012, Aad et al., 2012]. The approach of Gross and Vitells [2010] drastically

reduces the size of the simulation required for a Monte Carlo evaluation of the null

distribution of the LRT, and shows how a Monte Carlo estimate of E[NT
c ] can be

obtained using a more manageable simulation size. This is particularly advantageous

in searches in high energy physics for instance, where the significance necessary to

claim a discovery is in the order of at least 3σb (see Table 1.1), and the corresponding

significance threshold c is typically very large; hence, upcrossings of c are expected

to occur infrequently when simulating under H0. Gross and Vitells [2010] reduce

the computational effort by estimating the expected number of upcrossings for a

smaller threshold c0 << c, and adapt (1.11) by rewriting it in terms of E[NT
c0

],

P

(
sup
θ∈Θ
{T (θ)} > c

)
≤ P (T (L) > c) +

(
c

c0

) s−1
2

e−
c−c0

2 E[NT
c0

]. (1.13)

Gross and Vitells [2010] do not provide a formal argument to justify (1.13) and

limit their attention to the LRT case and the resulting χ2
s-process. In Chapter 3, we

formally derive (1.13), we extend it to a more general class of tests, and we discuss

efficient choices of c0. In Chapter 6 we further extend these results to the case of θ

being a multidimensional parameter.

In practical applications, H0 may lie on the boundary of the parameter space, i.e.,

condition B1 may fail. Consider for instance an astrophysical signal search where

the density of the events observed over the energy spectrum can be modelled as a

mixture, i.e.,

(1− η)f(y, φ) + ηg(y, θ) (1.14)

where f(y;φ) and g(y, θ) are the density functions of the background (known astro-

physics) and signal (what we want to discover) respectively, y is the detected energy,

φ and θ are nuisance parameters, and 0 ≤ η ≤ 1 is the proportion of signal counts.

bNotice that in physics the evidence in support of the new signal is often reported in terms
of σ-significance, i.e., the number of standard deviations from the mean of a standard normal
distribution that corresponds to the tail probability expressed by the one-sided p-value,

#σ = Φ−1(1− p-value),

where Φ is the standard normal cumulative function.
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A test of hypothesis to assess the presence of the signal can be specified as

H0 : η = 0 versus H1 : η > 0 (1.15)

and the LRT, for each θ fixed, can be written as in (1.16)

Tn(θ) = −2
n∑
i=1

{
log f(yi, φ̂0)− log

[
(1− η̂θ)f(yi, φ̂1θ) + η̂θg(yi, θ)

]}
(1.16)

where φ̂0 is the MLE of φ under H0, η̂θ and φ̂1θ are the MLEs of η and φ under

H1, respectively, with θ fixed. If the value of θ is known (i.e., C2 and B4 among

Conditions 1.1.1 hold), Chernoff [1954] shows that in this scenario the limiting null

distribution of Tn(θ) in (1.16) is not χ2
1, but is a 50:50 mixture of χ2

1 and zero, and

known in the literature as χ̄2
01 distribution [Lin and Lindsay, 1997, Takemura and

Kuriki, 1997]. In Chapter 2 we discuss how this result can be combined with the

solution of Gross and Vitells [2010] to tackle situations where H0 is on the boundary

of the parameter space, i.e., B1, B4 and C2 among Conditions 1.1.2 fail.

1.2 Volume-of-tube formulae

As an alternative to the upcrossings heuristic of Davies [1987] and Gross and Vitells

[2010], methods relying on the so-called volume-of-tube formulae (e.g., Hotelling

[1939], Pilla et al. [2005], Pilla and Loader [2005]) can be used to approximate the

tail probabilities of the supremum of Gaussian related random processes. The use

of the volume-of-tube formulae has received particular attention in recent physics

literature [Pilla et al., 2005] and is purported to be more powerful than the usual LRT

based approaches. Unfortunately, the mathematical implementation of the method

is not straightforward, which strongly limits its use within the physics community. In

this review, we outline this approach in the context of the signal detection problem

introduced at the end of Section 1.1.2; readers are directed to Pilla et al. [2005],

Pilla and Loader [2005], Adler [2000] and Adler and Taylor [2009] for further details

and extensions of this approach to the multidimensional setting.

In Pilla et al. [2005] and Pilla and Loader [2005], the sub-test statistic considered

is the normalized Score function. For the model in (1.14), when testing (1.15), this
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statistics specifies as

S?n(0, φ̂0, θ) =
n∑
i=1

[
g(yi,θ)

f(yi,φ̂0)
− 1

]
√
nρ?(θ, θ)

(1.17)

for all θ ∈ Θ, and ρ?(θ, θ†) is given by

ρ?(θ, θ†) = ρ§(θ, θ†)− ρ(θ|φ̂0)ρ(θ†|φ̂0)

I(φ̂0)
, (1.18)

where φ̂0 is the MLE of φ under H0, I(φ̂0) =
∫ ∂2 log f(y,φ)

∂2φ
|φ=φ̂0

∂y is the Fisher

information evaluated at φ̂0, ρ(θ|φ̂0) =
∫
g(y, θ)∂ log f(y,φ)

∂φ
|φ=φ̂0

∂y, and

ρ§(θ, θ†) =

∫
g(y, θ)g(y, θ†)

f(y, φ̂0)
∂y − 1 (1.19)

is the covariance function of the unnormalized Score function S(0, φ̂0, θ) = g(y,θ)

f(y,φ̂0)
−1,

and specifies

ρ§(θ, θ†) = cov

(
S(0, φ̂0, θ), S(0, φ̂0, θ

†)

)
.

The random process of interest is the normalized Score process {S?n(θ)} = {S?n(0, φ̂0, θ)}
and similarly to Section 1.4 the goal is to conveniently approximate the global p-

value in (1.20)

P

(
sup
θ∈Θ
{S?n(θ)} > c

)
. (1.20)

In order to guarantee validity of the results of Pilla et al. [2005] and Pilla and Loader

[2005] described below, we specify the following Conditions 1.2.1.

Conditions 1.2.1.

(i) Θ is a compact and convex subset of R;

(ii) ρ§(θ, θ) <∞ for all θ ∈ Θ;

(iii) Let Yf be the support of y when y has density function f(y,φ), and Yg be

the support of y when its density is given by g(y, θ). Then, for each θ ∈ Θ,

Yg ⊂ Yf .

(iv) For all y ∈ Yf , g(y, θ) is twice differentiable and

∫
[ ∂
∂θ
g(y, θ)]2

f(y, φ)
dy <∞

∫
[ ∂

2

∂2θ
g(y, θ)]2

f(y, φ)
dy <∞;
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(v) ρ§(θ, θ) is positive in θ and equivalent f(y, φ) 6= g(y, θ) for all θ ∈ Θ;

(vi) ρ?(θ, θ†) is continuous and 0 < ρ?(θ, θ) <∞ for all θ ∈ Θ.

Pilla and Loader [2005] show that, under (ii)-(vi) among Conditions 1.2.1,

lim
n→∞

P

(
sup
θ∈Θ
{S?n(θ)} > c

)
= P

(
sup
θ∈Θ
{Z(θ)} > c

)
(1.21)

where {Z(θ)} is a zero-mean Gaussian process with covariance function given by

ρZ(θ, θ†) =
ρ?(θ, θ†)√

ρ?(θ, θ)ρ?(θ†, θ†)
. (1.22)

The problem of approximating P (supθ∈Θ{Z(θ)} > c) is then converted into one of

determining the volume of a manifold as described below.

Consider the uniformly convergent Karhunen-Loève expansion (e.g., Adler [1981])

of {Z(θ)} in (1.23), up to the J th term

{ZJ(θ)} =

{ J∑
k=1

wk(θ)Zk

}
(1.23)

where Zk, k = 1, . . . , J are independent and identically distributed standard Gaus-

sian random variables, {wk(θ)}Jk=1 is a sequence of twice continuously differentiable

functions such that
∑J

k=1 w
2
k(θ) = 1, and J is large enough to guarantee that {Z(θ)}

is well approximated by {ZJ(θ)}. We can then write

P

(
sup
θ∈Θ
{Z(θ)} > c

)
≈ P

(
sup
θ∈Θ

{ J∑
k=1

wk(θ)Zk

}
> c

)
(1.24)

= P

(
sup
θ∈Θ

{
J∑
k=1

Zkwk(θ)√∑J
k=1 Z

2
k

}
>

c√∑J
k=1 Z

2
k

)
(1.25)

=

∫ ∞
c2

P

(
sup
θ∈Θ

{ J∑
k=1

wk(θ)Uk

}
>

c√
x

)
hχJ (x)∂x (1.26)

where (U1, . . . , UJ) =

(
Z1√∑J
k=1 Z

2
k

, . . . , ZJ√∑J
k=1 Z

2
k

)
is a uniform random vector,w(θ) =

(w1(θ), . . . , wJ(θ)) is a curve over the unit sphere SJ−1 embedded in RJ , and hχJ (x)

is the probability density function of a χ2
J random variable. Notice that by Cauchy-
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Schwartz inequality

∣∣∣∣ J∑
k=1

wk(θ)Uk

∣∣∣∣≤
√√√√ J∑

k=1

w2
k(θ)

√√√√ J∑
k=1

U2
k ≤ 1

and consequently c√
x
≤ 1 and c2 < x <∞. Finally, we have

J∑
k=1

(Uk − wk(θ))2 = 2

(
1−

J∑
k=1

Ukwk(θ)

)

and thus for any cU such that
∑J

k=1 Ukwk(θ) ≥ cU we write
√∑J

k=1(Uk − wk(θ))2 ≤√
2(1− cU). Therefore,

P

(
sup
θ∈Θ

{ J∑
k=1

wk(θ)Uk

}
≥ cU

)
=P

(
inf
θ∈Θ

{√√√√ J∑
k=1

(Uk − wk(θ))2

}
≤
√

2(1− cU)

)
(1.27)

=
V
(√

2(1− cU),M
)

2π
J
2 /Γ(J

2
)

(1.28)

where V
(√

2(1− cU),M
)

is the volume of the tube of radius
√

2(1− cU) around

the curve M = {w(θ) : θ ∈ Θ} and the denominator in the right hand side of

(1.27) corresponds to the volume of SJ−1. Thus, (1.28) follows from (1.27) since

(U1, . . . , UJ) is uniformly distributed over SJ−1.

Several authors have derived expressions for V
(√

2(1− cU),M
)

under suitable reg-

ularity conditions [e.g., Hotelling, 1939, Weyl, 1939, Knowles and Siegmund, 1989,

Sun, 1993], and these expressions typically involve geometric constants depending

of the geometry of M. Under (ii)-(vi) among Conditions 1.2.1, Pilla and Loader

[2005] specify explicit closed-form expressions for the geometric constants involved

and write

P

(
sup
θ∈Θ
{Z(θ)} > c

)
=
κ0

2π
P (χ2

2 ≥ c2) +
P (χ2

1 ≥ c2)

2
+ o

(
e−

c2

2

c

)
(1.29)

where

κ0 =

∫ √
∂2

∂θ∂θ†
ρZ(θ, θ†)

∣∣∣∣
θ†=θ

∂θ. (1.30)

Thus, the global p-value is computed via (1.29) and, given the complexity of (1.22),
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(1.30) is typically calculated via numerical integration.

Notice that the tests statistic proposed by Pilla et al. [2005] and Pilla and Loader

[2005] and the one proposed by Gross and Vitells [2010] are asymptotically equiva-

lent for large sample sizes. Similarly, approximating excursion probabilities via the

volume-of-tube method or the upcrossings heuristic lead to the same result when c

is sufficiently large. In Chapter 5, we further investigate these aspects by comparing

the two approaches in terms of power and false discovery rate when dealing with

small sample sizes, and we illustrate the difficulties associated with their implemen-

tation.

1.3 Detecting signals via Multiple Hypothesis Testing

In scenarios where we expect at most one signal or one structural change to be

observed, Multiple Hypothesis Testing (MHT) can also be performed. In MHT

several tests are conducted simultaneously, any of which can result in a false detec-

tion. While the individual tests are designed to control their specific false detection

rate, namely α, the overall probability of having at least one false detection, i.e.,

the family-wise type I error, namely αF , increases as the number of tests increases,

leading to a higher rate of false discoveries than the one observed in each individual

test.

In the framework introduced in Section 1.1.2, where a signal search is conducted

over a region Θ, MHT is performed by fixing a set of values ΘR = {θ1, . . . , θR} over

Θ and for each θr ∈ ΘR a test of hypothesis is performed. Consider for instance

using the LRT in (1.16) as the test statistic to test (1.15), an ensemble of R local

p-values of the form P (T (θr) > t(θr)) is produced, where t(θr) is the observed value

of T (θr), and the smallest p-value, i.e.,

pL = min
θr∈ΘR

P (T (L) ≥ t(θr)) (1.31)

is selected and corrected afterwards in order to guarantee the desired family-wise

type I error rate (e.g., Efron [2012]).

If the R tests are independent under H0, e.g., if detecting a signal in a given c

location does not depend on detections (or non-detections) in other locations, it can

be easily shown that a global p-value, namely pG, can be obtained via (1.32) (e.g.,
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Kuehl [1994])

pG = 1− (1− pL)R. (1.32)

Consider a toy example in which we have 50 grid points over the search range Θ and

50 independent tests are conducted at the 5σ significance level, i.e., α = 1−Φ(5) =

2.87 · 10−7 for each test. The chance of having at least one false detection among

the 50 tests, i.e., the family-wise type I error rate, namely αF , is

αF = 1− (1− α)R = 1.4 · 10−5 (1.33)

which corresponds to 4.18σ significance. This is approximately 50 times larger than

the established probability of type I error associated with 5σ for each individual

test, hence the need of correcting pL according to (1.32).

Conversely, if the R tests are not independent of one another, controlling for the false

detection rate is more difficult. In this scenario, the specific dependence structure

among the R tests varies on a case-by-case basis and thus, contrary to (1.33), an

exact general relationship between α and αF, cannot be established. However, by

means of Boole’s inequality [e.g., Bonferroni, 1936] we have that

αF ≤ R · α. (1.34)

The adjusted global p-value corresponding to (1.34) is known as the Bonferroni’s

correction [Bonferroni, 1935, 1936] and specifies

pBF = R · pL (1.35)

which bounds pG in (1.32) in that pG ≤ pBF. In particular, pBF is a first order

approximation of pG, i.e., expanding pG via Taylor around zero we obtain

1− (1− pL)R = R · pL +O(p2
L).

Thus pG and pBF are equivalent when dealing with strong signals, i.e., when pL →
0. This is reflected in the toy example above, where pBF is equal to pG and also

leads to 4.18σ significance. (Recall αF

αL
≈ 50 in the toy example.) Despite their

easy implementation, the Bonferroni procedure is often dismissed by practitioners

because, in addition to the stringent requirements to control for the overall false

detection rate, it artificially depends on the number of tests R. This is particularly

troublesome given the typically arbitrary nature of setting R when discretizing the
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search region Θ.

Notice that the level at which the optimization and the correction occur differs

between MHT and the methods in (1.13) and (1.29). Specifically, in pBF the op-

timization is over the local p-values. In (1.13) and (1.29), on the other hand, the

optimization is over the sub-test statistics, and an overall correction for the type I

error is generated intrinsically by using the topology of underlying stochastic pro-

cess to approximate the global p-value. We discuss in Chapter 4, however, practical

situations in which pBF approximates (1.13), and thus can be used without being

overly conservative. In Chapter 5 we outline a simple sequential approach to select

between TOHM and MHT while maintaining the desired statistical properties.
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2
Testing non-nested models via

the Likelihood Ratio Test

The methods reviewed in Section 1.1.2 allow us to extend the LRT to test hypotheses

conducted on the boundary of the parameter space and when a nuisance parameter

is present only under the alternative. The goal of this chapter is to show how these

solutions can be combined to select between non-nested models, a problem of crucial

importance in physical discoveries and which received particular attention in the

search for dark matter. Since the latter offers the main motivation of the approach

discussed in this chapter, we briefly introduce the physics problem in Section 2.1.

Applications to dark matter searches are discussed in Section 2.3.

2.1 Non-nested models comparison in dark matter searches

Dark matter was postulated in the 1930s by Jan Oort and Fritz Zwicky [Oort, 1932,

Zwicky, 1933, 1937] to account for the orbital velocities of the stars within galaxies

and to explain evidence of missing mass in the universe. Along with dark energy,

it is hypothesized to constitute 95% of the universe. Understanding its nature and

proving experimentally its existence is one of the most investigated problems in

particle physics and astronomy.

Astrophysical searches for dark matter can be conducted via indirect detection,

direct detection or colliders. In indirect detection, the search for dark matter is
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Figure 2.1: From Kavanagh [2018]. The graphs above summarize the interactions of dark matter
particles (DM) and elementary particles in the Standard Model (SM) which researchers aim to measure
via direct detection, indirect detection and colliders. In direct detection the detector measures the recoil
of DM particles with nuclei of SM particles. In indirect detection telescopes measure excesses of SM
particles due to the annihilation of DM particles. Finally, colliders aim to produce DM particles via the
collision of SM particles.

conducted by means of telescopes which aim to measure the products of dark matter

particles annihilation, such as excesses of photons from dwarf galaxies and galaxy

clusters, or emissions of charged particles (i.e., protons or electons) from the Galactic

center. Conversely, when conducting direct detection, the search for dark matter is

done in underground mines with the attempt to measure the interaction of dark

matter particles with nuclei of elementary particles. Finally, searches via colliders

aim to produce dark matter particles via collisions of Standard Model particlesa

[Conrad, 2015, Kavanagh, 2018] (see Figure 2.1).

The data analyses proposed in this thesis mainly involve realistic simulated data

of the Fermi Large Area Telescope (LAT). The Fermi LAT [Atwood et al., 2009] is

a pair-conversion γ-ray telescope on board the Fermi satellite orbiting earth since

2008, and it produces images and measures energies associated to γ-rays between

about a 100 MeV and several TeV.

In indirect searches, γ-rays are considered to be the “gold channel” in the discovery of

dark matter, and a crucial step is to properly distinguish γ-rays emissions caused by

conventional, known astrophysical sources and those originating from dark matter

aThe Standard Model for particle physics is the model which describes all the fundamental
particles and forces known today, as well as their interactions [e.g. Ellis et al., 2012].
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annihiliations. In this setting, the goal is not limited to assessing the presence

of a signal in addition to the astrophysical background, but it also requires the

ability to discriminate between γ-rays excesses due to dark matter emissions and

those caused by conventional astrophysical sources mimicking them. In statistical

terms, assessing the presence of a new emission translates into a signal detection

problem (e.g., “bump-hunting”, change-point detection); whereas characterizing the

astrophysical nature of the observed excess requires the ability of adequately select

between non-nested models. Hence the need of suitable statistical procedures to

address these tasks.

2.2 Statistical comparison of non-nested models

The asymptotic χ2 distribution of the LRT requires the models specified under H0

and H1 to be nested, that is the two densities to be compared are special cases of a

full model and share the same parameter space. If they are not, C3 and B5, among

Conditions 1.1.2, fail. For instance, let the models in (1.14), i.e., f(y, φ) and g(y, θ),

being non-nested. The problem occurs when testing

H0 : f(y, φ) versus H1 : g(y, θ). (2.1)

Notice that φ and θ are unknown parameters and thus the problem cannot be re-

duced to a test for simple hypotheses as in Cousins et al. [2005]. Specifically, Cousins

et al. [2005] considers the case where f(y, φ) and g(y, θ) are fully specified and no

unknown parameters are present. Thus, the LRT for the test in (2.1) reduces to a

sum of independent and identically distributed random variables, and its asymptotic

normality follows by the Central Limit Theorem (see Cox [1961] for more details).

In this chapter, we limit our attention to the case where the unknown parameters

φ and θ are one-dimensional; generalization to the multidimensional setting will be

covered in Chapter 6.

Although f(y, φ) and g(y, θ) are non-nested, as shown in Algeri et al. [2016a], the

framework of Section 1.1.2 can be extended to compare them by reformulating the

comparison as a test of hypothesis with H0 on the boundary, and in which a nuisance

parameter is identified only under H1. Specifically, following the intuition of Cox

[1962] and Atkinson [1970], we specify a comprehensive model that embeds f(y, φ)

and g(y, θ). There are two reasonable formulations. We encountered the first in
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(1.14); whereas the second one is

{f(y, φ)}1−η{g(y, θ)}η∫
{f(y, φ)}1−η{g(y, θ)}η∂y , (2.2)

As discussed in Cox [1962, 2013], Atkinson [1970] and Quandt [1974], there are

advantages and disadvantages to both. The additive form in (1.14) has the advan-

tage of more appealing mathematical properties. Specifically, since no normalizing

constant is involved, the maximization of the log-likelihood reduces to numerical

optimization. Whereas (2.2) does not require η to be restricted to 0 ≤ η ≤ 1 in

order to obtain a valid probability density. In virtue of its computational efficiency,

hereafter we focus on the formulation in (1.14). Similar results can be obtained

when considering (2.2).

It is important to point out that in contrast to the test discussed in Section 1.1.2,

here the model in (1.14) is not viewed as a mixture of astrophysical models in which

a certain proportion of events, η, originates a process (e.g., the signal) represented

by one model, and the remaining proportion, 1− η, originates from the competing

process (e.g., the background) represented by the other model. Instead, here (1.14)

is a mathematical formalization used to embed the densities f(y, φ) and g(y, θ)

and η has no physical interpretation. Rather, as in Quandt [1974], η represents an

auxiliary parameter which allows us to exploit the normality of its MLE to apply

well-know asymptotic results. Specifically, this reduces the problem to a nested

model comparison where the test of hypothesis is expressed as in (1.15).

Perhaps a more natural formulation of (1.2) would be H0 : η = 0 versus H1 : η = 1.

Unfortunately, neither Wilks’s or Chernoff’s theorems apply to this formulation since

they rely on the asymptotic normality of the MLE under H0, which can only hold

if there is a continuum of possible values of η under H1, with η = 0 in its interior,

and thus all of Conditions 1.1.1 and 1.1.2 fail. However, in addition to (1.15), as

suggested in Cox [1962, 2013], the hypotheses

H0 : η = 1 versus H1 : η < 1 (2.3)

should also be tested in order to exclude situations where η is within the (0, 1) inter-

val, leading to uninterpretable/uninformative results. In a similar spirit, Atkinson

[1970] proposes to also test intermediate situations such as H0 : η = 0.5 versus

H1 : η 6= 0.5.

The informative scenarios arising from (1.15) and (2.3) are the following:

23



• if H0 in (1.15) is rejected and H0 in (2.3) is not, g(y, θ) is selected,

• if H0 in (2.3) is rejected and H0 in (1.15) is not, f(y, φ) is selected.

In all other cases (1.15) and (2.3) are insufficient or inappropriate to select between

the models being compared. Testing both (1.15) and (2.3) is particularly suited

to particle physics searches where researchers assign different degrees of belief to

the models being tested. Specifically, f(y, φ) typically corresponds to the physical

background, i.e., everything which is already known and described in the Standard

Model, whereas g(y, θ) is the density of the new emission, and main object of focus.

As discussed in van Dyk [2014], the most stringent significance requirements (e.g.,

Table 1.1) are typically used only in the detection stage, i.e., when testing (1.15) to

assess the presence of a new signal. Conversely, in the exclusion stage, i.e., when

testing (2.3) to exclude the hypothesis of a signal being present, a significance level

of 0.05 is typically sufficient.

Notice that for the model in (1.14) both the tests in (1.15) and (2.3) are conducted

on the boundary of the parameter space of η. Additionally, in (1.15) θ is not

identifiable under H0, and similarly φ is not identifiable when H0 is true in (2.3),

hence both C2 and B1 among Conditions 1.1.1 fail in this setting. However, we can

combine the result of Chernoff [1954] and the results of Section 1.1.2 to overcome

these difficulties. For simplicity, we now focus on the test (1.15); the same approach

can be used when testing (2.3).

We consider the LRT-process, {Tn(θ)}, introduced in Section 1.1.2. Under H0

in (1.15), if Conditions B2-B4 among Conditions 1.1.1 and Conditions 1.1.3 hold,

{Tn(θ)} converges in distribution, as n → ∞, to a χ̄2
01-process, whose components

are distributed as a mixture of χ2
0 and χ2

1 with weights 0.5 [Taylor and Worsley, 2013],

and denoted by {K(θ)}. In this setting, the global p-value, P (supθ∈Θ{K(θ)} > c),

can be written as

P

(
sup
θ∈Θ
{K(θ)} > c

)
≤ P (K(L) > c) + e−

c−c0
2 E[NK

c0
]. (2.4)

where, given that each component of {K(θ)} is χ̄2
01 distributed, P (K(L) > c) corre-

sponds to the probability that a χ2
1 random variable is greater than c divided by 2.

The correction term multiplying E[NK
c0

] is equivalent to the one in (1.13) with s = 1.

This is not surprising since, for c > 0, {K(θ)} can only cross c when it assumes χ2
1

character; however, we postpone the formal argument regarding the formal deriva-

tion of (2.4) to Chapter 3. The right hand side of (2.4) to bound/approximate the
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global p-value of both tests in (1.15) and (2.3).

2.3 Validation on dark matter models and application

to simulated data from the Fermi-LAT

We illustrate the reliability of the method discussed in Section 2.2 for testing non-

nested models using two examples relative to searches for dark matter.

Example 2.1. We let

f(y, φ) ∝ y−(φ+1) (2.5)

be the probability density function of the γ-rays energies, denoted by y, originating

from known cosmic sources mimicking dark matter emissions. Whereas the den-

sity function of the γ-ray energies associated with the true dark matter emission

[Bergström et al., 1998] is given by

g(y, θ) ∝ 0.73

(
y

θ

)−1.5

exp

{
−7.8

y

θ

}
(2.6)

with φ > 0, y ∈ [1, 100] and θ ∈ [1, 100]. The goal is to decide which model between

f(y, φ) and g(y, θ) provides a better fit.

Example 2.2. We make the same comparison of Example 2.1 but in the presence

of power-law (Pareto Type I) distributed background. In this case, for the test in

(2.1) H0 specifies as

f(y, ζ, λ, φ) = (1− λ)
1

kζyζ+1
+ λ

1

kφyφ+1
(2.7)

and H1 specifies

g(y, ζ, λ, θ) = (1− λ)
1

kζyζ+1
+ λ

e−7.8 y
θ

y1.5kθ
; (2.8)

where kφ, kζ and kθ are the normalizing constants for each density, 0 < λ < 1,

ζ > 0, φ > 0, y ∈ [1, 100] and θ ∈ [1, 100]. Note the hierarchical nature of the model

in (2.9) to be tested via (1.15) and (2.3)

(1− η)f(y, ζ, λ, φ) + ηg(y, ζ, λ, θ). (2.9)

First, in both f(y, ζ, λ, φ) and g(y, ζ, λ, θ) the parameter λ, is used to specify the

signal existence over a (relatively well known) background. Second, in (2.9) the
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Figure 2.2: Comparing the bound/approximation in (2.4) (solid blue lines) with Monte Carlo estimates
of P (supθ∈Θ{K(θ)} > c) (red dashed lines), for Example 2.1 (left panel) and Example 2.2 (right panel).
Approximations corresponding to (1.13) without the Chernoff correction (blue dashed lines), the χ2 ap-

proximation P (χ2
1 > c) (light blue dash-dotted lines) and the Chernoff-adjusted approximation

P (χ2
1>c)
2

(light blue dotted lines) are also reported. Monte Carlo p-values were obtained by simulating 10,000
datasets under H0, each of size 10,000 for both simulations. For each simulated dataset supθ∈Θ{K(θ)}
was computed over a grid of size 100 on Θ ≡ [1; 100] for Example 2.1 and size 400 for Example 2.2.
Monte Carlo errors of the estimates of P (supθ∈Θ{K(θ)} > c) are plotted in pink, whereas Monte Carlo
errors associated with the Monte Carlo estimates of E[NK

c0 ] in (2.4) are plotted in grey, but are too
small to be visible.

parameter η is used as a merely mathematical tool to treat the non-nested case (as

described in Section 2.2).

In both examples, we estimated the expected number of uprcrossings E[NK
c0

] us-

ing 1,000 Monte Carlo replicates. The approximation to P (supθ∈Θ{K(θ)} > c) is

calculated using (2.4) on a grid of values of c. The results are compared with the

respective Monte Carlo p-values in Figure 2.2 along with the nominal χ2 and Cher-

noff corrections one might compute ignoring the failure of Conditions C2 and B4,

among Conditions 1.1.1.

As expected, when c is small, the bound in (2.4) (blue solid lines) is greater than

its Monte Carlo counterpart (red dashed lines). As c increases, however, the bound

becomes sharp and converges to the Monte Carlo estimates for a good approximation

of P (supθ∈Θ{K(θ)} > c). When the failure of C2 and B4 among Conditions 1.1.1 is

ignored, the p-values are computed assuming χ2 or χ̄2
01 distribution of the LRT (blue

dotted-dashed lines and light blue dotted lines respectively). This approach leads
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Figure 2.3: Simulated type I errors (left panel) and power functions (right panel) for Example 2.1 with
at 3σ significance. Shaded areas indicate regions expected to contain 68% (dark gray) and 95% (light
gray) of the symbols if the nominal type I error of 0.0013 holds. For both the type I error and power
curves 10000 Monte Carlo simulations were used.

to over optimistic results, i.e., the p-values are always lower than those obtained via

Monte Carlo. Finally, we compare the bound in (1.13), which ignores the failure

of condition B1 among Conditions 1.1.1, with the bound in (2.4) which accounts

for the fact that (1.15) is conducted on the boundary of the parameter space of η

(blue dashed lines and blue solid line respectively). The two bounds lead to similar

results. This is not surprising for two main reasons. First of all, the first terms in

the right hand sides of (1.13) and (2.4) tend to zero as c→∞ and thus both bounds

are dominated by the expected number of upcrossings of the process. Second, in

the practical implementation of (1.13) and (2.4), an estimate for expected number

of upcrossings is obtained via a Monte Carlo simulation of {Tn(θ)} under H0. The

latter converges, for large sample sizes, to {K(θ)} and thus, even when ignoring

that the test is conducted on the boundary, an estimate for E[NK
c0

] is automatically

generated.

It is not uncommon in practice, and specifically in astrophysics, for the number of

event counts to be considerably smaller than the 10,000 used in Figure 2.2. Thus, we

conduct a simulation study to verify the type I error (i.e., the rate of false rejections

of H0) of the method with smaller samples and verify that the approximate p-value

in (2.4) holds. The left panel of Figure 2.3 reports the simulated type I errors with
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Example H0 n η̂ c Significance

Example 2.1 η = 0 200 0.971 21.018 4.038σ

η = 1 200 p-value = 0.528

Example 2.2 η = 0 2726 0.999 12.096 2.673σ

η = 1 2726 p-value > 1

Table 2.1: Summary of the analysis on the Fermi LAT simulation comparing the models in Example
2.1 and Example 2.2. Estimates and significances refer to the tests H0 : η = 0 versus H1 : η > 0.
P-values refer to the tests H0 : η = 1 versus H1 : η < 1.

a detection threshold on the p-value of 0.0013 (3σ) for different sample sizes for

the models in Example 2.1. When the sample size is at least 100, the Monte Carlo

results are consistent with the numerical 3σ error rate. The right panel of Figure 2.3

shows the power (probability of detection) curves at 3σ of the same test for different

sample sizes. For all the values of θ considered (reported on the x-axis), a sample

size of 500 is sufficient to achieve a power of nearly 1.

After having assessed that (2.4) provides a good approximation of the global p-

value as c increases, we can now proceed with the application of our method to

astrophysical data. Specifically, we consider simulated data from the Fermi Large

Area Telescope (LAT) obtained with the gtobssim packageb, which include realistic

representations of the effects of the detector and present backgrounds. We focus

on a 5 years observation of dwarf galaxies and we introduce a putative dark matter

emission at mass of θ=35 GeV. This assumption is consistent with the most generic

and popular models for dark matter, which assumes the latter to be made in large

part made of Weakly Interacting Massive Particles (WIMP) [Conrad, 2015].

In Example 2.1, we assume that the astrophysical background, for example γ-rays

introduced by our own Galaxy, was completely removed. Our simulation leads to

about 200 events associated to the dark matter signal and detected by the Fermi

LAT. In order to assess which model among (2.5) and (2.6) provides a better fit for

the data, we perform both tests (1.15) and (2.3). As shown in Table 2.1, we find a

4.038σ significance in favor of the dark matter model.

Conversely, in Example 2.2, we consider the case where the background could not

bhttp://fermi.gsfc.nasa.gov/ssc/data/analysis/software
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be removed and thus we properly replace the models in (2.5) and (2.6) with those

in (2.7) and (2.8) respectively, to account for this additional level of complexity.

We then considered 2176 counts from a power-law distributed background source,

and about 550 dark matter events. For simplicity, the mixture parameter λ is fixed

at 0.2. In this case, we find 2.673σ significance in favor of the model in (2.8). As

expected, introducing background significantly reduces the power for distinguishing

a dark matter source from a conventional source. It should be noted however that

(unlike in a full analysis) we do not attempt to remove the background by taking

γ-ray directions into account.

The R package NONnest [Algeri, 2015] provides a software solution to implement

the method described in this chapter and can be downloaded from http://wwwf.

imperial.ac.uk/~sa2514/Research.html.
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3
Testing One Hypothesis Multiple

Times: the one-dimensional case

The results of Davies [1987] reviewed in Chapter 2 provide a theoretical framework

to conveniently bound/approximate the distribution of the supremum of χ2 pro-

cesses. Additionally, Gross and Vitells [2010] propose a computationally efficient

procedure to compute the quantities involved when performing tests of hypothesis

via the LRT and the underlying χ2-process. In this Chapter, we provide a formal

justification for the testing procedure of Gross and Vitells [2010] and we generalize it

beyond the LRT and the χ2 case. This allows us to establish a generalized method-

ological framework to efficiently bound/approximate global p-values. As additional

advantage, the resulting method only depends on the marginal distribution of the

underlying process and thus generalizes beyond Conditions 1.1.3.

3.1 Definition and formalization

Recall that θ ∈ Θ ≡ [L;U] is the nuisance parameter which is defined only under

H1. In order to generalize the notation of Chapter 2, we let {W (θ)} be a generic

stochastic process indexed by θ ∈ Θ with covariance function ρ(θ, θ†), and we let Nc

be the process of upcrossings of a threshold c ∈ R by {W (θ)} over Θ. As in Davies

[1987], we require {W (θ)} to be sufficiently smooth to guarantee that expected

number of upcrossings E[Nc] does not diverge. Hence, we stipulate Conditions 3.1.1.

30



Conditions 3.1.1.

(i) {W (θ)} has continuous sample paths;

(ii) {W (θ)} has continuous first derivative, except possibly for a finite number of

jumps;

(iii) the components W (θ) of {W (θ)} are identically distributed for all θ ∈ Θ.

Since (1.10) and (1.11) hold for any stochastic process [Cramér and Leadbetter,

2013, p. 272], we rewrite them more generally in (3.1), (3.2) and (3.3).

P

(
sup
θ∈Θ
{W (θ)} > c

)
= P ({W (L) > c} ∪ {Nc ≥ 1}) (3.1)

≤ P (W (L) > c) + P (Nc ≥ 1) (3.2)

where P (W (L) > c) is the probability that the process {W (θ)} exceedes c at the

lower bound of Θ; whereas, as in (1.11), (3.3) follows from (3.2) by Markov’s in-

equality

P

(
sup
θ∈Θ
{W (θ)} > c

)
≤ P (W (L) > c) + E[Nc] (3.3)

Our goal is to find a convenient way to estimate E[Nc] and bound/approximate

P (supθ∈Θ{W (θ)} > c). Result 3.1.2 and Result 3.1.3 below are sufficient to achieve

this goal.

Result 3.1.2. Let c ∈ R be an arbitrary threshold, let a(c) be a function which

depends on c but not on θ, and b(Θ) be a function which does not depend on c, and

to be calculated over the search region Θ. If E[Nc] can be decomposed as

E[Nc] = a(c)b(Θ) (3.4)

then,

E[Nc] =
a(c)

a(c0)
E[Nc0 ] ∀c0 ≤ c, c0 ∈ R. (3.5)

Proof. The proof is straightforward because the decomposition in (3.4) holds for any

c ∈ R, and thus also holds for any 0 < c0 < c, with c0 ∈ R. Consequently, (3.5) is

obtained by solving the following system of linear equationsE[Nc] = a(c)b(Θ)

E[Nc0 ] = a(c0)b(Θ).
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In general, the derivation of a closed-form expression of b(Θ) in (3.4) may be chal-

lenging, and it typically requires knowledge of ρ(θ, θ†). Therefore, (3.5) offers a

significant advantage in computing E[Nc], provided that, as discussed in Section

3.2, E[Nc0 ] can be estimated accurately.

The following result follows from (3.3), (3.4), and (3.5).

Result 3.1.3. Under Conditions 3.1.1, the tail probability P (supθ∈Θ{W (θ)} > c)

can be bounded by

P

(
sup
θ∈Θ
{W (θ)} > c

)
≤ P (W (L) > c) +

a(c)

a(c0)
E[Nc0 ] ∀c0 ≤ c, c0 ∈ R. (3.6)

If additionally, Condition 1.1.4 holds, the bound in (3.6) approaches equality as

c→∞.

Proof. Equation (3.6) follows from (3.3), (3.4), and (3.5). Additionally, under Con-

ditions 3.1.1 and Condition 1.1.4, we expect Nc to assume Poisson character as

c→∞ [Leadbetter et al., 1983, Davies, 1977], and thus

P (Nc > 1) ≈ 1− e−E[Nc]. (3.7)

Consequently the right hand side of (3.7) is well approximated by E[Nc] as c→∞,

and thus the right hand side of (3.3) is a sharp bound for (3.2). Finally, since the

probability of the event {W (L) > c} ∩ {Nc ≥ 1} is dominated by P (Nc > 1), the

bound in (3.2) also approaches equality.

3.1.1 TOHM bounds for Gaussian-related processes

We now derive explicit forms of (3.3) for several Gaussian related processes including

Gaussian, χ2
s, χ̄

2
01, F and t-processes.

Gaussian process. Let {Z(θ)} be a mean zero and variance one Gaussian pro-

cess, such that Z(θ) ∼ N(0, 1) for all θ ∈ Θ, and let NZ
c be the process of upcrossings

of c by {Z(θ)} over Θ ≡ [L;U]. Following Leadbetter et al. [1983, p. 150], we can

write

E[NZ
c ] = E

[
∂{Z(θ)}
∂θ

1 ∂{Z(θ)}
∂θ

>0

∣∣∣∣{Z(θ)} = c

]
fz(c). (3.8)
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where fz(c) is the density function of a standard normal evaluated at c. Equation

(3.8) implies that the expected number of upcrossings is given by the average of

positive slopes of the sample functions of {Z(θ)} at c, multiplied by the density of

Z(θ) at c. Thus, condition (3.4) is verified for the Gaussian case with

a(c) = e−
c2

2 and b(Θ) ∝ E

[
∂{Z(θ)}
∂θ

1 ∂{Z(θ)}
∂θ

>0

∣∣∣∣{Z(θ)} = c

]
. (3.9)

The bound in (3.10) follows from Results 3.1.2 and 3.1.3

P

(
sup
θ∈Θ
{Z(θ)} > c

)
≤ Φ(−c) + e−

c2−c20
2 E[NZ

c0
]. (3.10)

where Φ(−c) is the cumulative density function of a standard normal evaluated at

−c and the correction term e−
c2−c20

2 is given by the ratio a(c)
a(c0)

, with a(c) calculated

as in (3.9). For the stationary case, the same result can be obtained by expressing

E[NZ
c ] considering Rice’s formula [Rice, 1944] i.e.,

E[NZ
c ] =

|L− U|
2π

√
ρ′′(θ, θ)e−

c2

2

where ρ′′(θ, θ) = ∂θ
∂θ∂θ†

ρ(θ, θ†)
∣∣
θ=θ†

is the second spectral moment of {Z(θ)} and is

assumed to be finite, whereas |L−U| is the length of Θ. As discussed in Davies [1987],

for a two-sided test, the excursion probability of interest is P (supθ∈Θ |{Z(θ)}| > c);

the bound of which is twice the right hand side of (3.10).

χ2-process. As in Chapter 2, let {T (θ)} be a χ2
s-process with s degrees of freedom

and such that T (θ) ∼ χ2
s for all θ ∈ Θ. Let E[NT

c ] be the expected number of

upcrossings of c by {T (θ)} over Θ. On the basis of Sharpe [1978, p. 375], we can

express E[NT
c ] in the form

E[NT
c ] = E

[
∂{T (θ)}
∂θ

1 ∂{T (θ)}
∂θ

>0

∣∣∣∣{T (θ)} = c

]
fχ2

s
(c). (3.11)

Thus, condition (3.4) is verified for the χ2
s case with

a(c) = c
s−1
2 e−

c
2 and b(Θ) ∝ E

[
∂{T (θ)}
∂θ

1 ∂{T (θ)}
∂θ

>0

∣∣∣∣{T (θ)} = c

]
,

hence (1.13) follows from (3.5), with P (T (L) > c) in (1.13) being the probability

that a χ2
s is greater than c.
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χ̄2
01- process. Let {K(θ)} be the χ̄2

01 process introduced in Chapter 2 and such

that K(θ) ∼ χ̄2
01 for all θ ∈ Θ. Let NK

c be the process of upcrossings of a threshold

c by {K(θ)} over Θ. As in (3.11) we write

E[NK
c ] = E

[
∂{K(θ)}

∂θ
1 ∂{K(θ)}

∂θ
>0

∣∣∣∣{K(θ)} = c

]
fχ2

1
(c)

2
(3.12)

with c typically non-negative and where fχ2
1
(c) is the density function of a χ2

1 random

variable evaluated at c. Thus

a(c) =
e−

c
2

2
3
2
√
π

and b(Θ) = E

[
∂{K(θ)}

∂θ
1 ∂{K(θ)}

∂θ
>0

∣∣∣∣{K(θ)} = c

]
from which (2.4) follows.

The rate of convergence of the difference between the right and left hand side of

(1.13), (2.4), and (3.10) are discussed in Section A.1 of the Appendix A. We will

further study the sharpness of the bounds in (1.13), (2.4) and (3.10), as c → ∞ in

Section 3.2 via a suite of simulation studies.

The bounds in (1.13), (2.4), (3.10), and the analogous for other Gaussian related

processes such as F and t-processes, can also be derived on the basis of random fields

theory. This, along with the multidimensional version of our bound for TOHM is

the subject of Chapter 6 where, following [Algeri and van Dyk, 2018], it is shown

that a(c) in (3.6) is proportional to the Euler characteristic density of first order

of the respective stochastic process evaluated at c (to be introduced in Chapter 6).

As a result, the function a(c) in (3.6) only depends on the marginal disstribution

of the components of the process {W (θ)}. This introduces an additional advantage

of using (3.6) to bound P
(
supθ∈Θ{W (θ)} > c

)
. Specifically, since (3.6) only require

knowledge of the marginal distribution of the components of {W (θ)}, the uniformity

Conditions 1.1.3 are no longer needed to guarantee uniform convergence of {Tn(θ)}
to {T (θ)} (or {K(θ)}).

Explicit closed-form expressions for the Euler characteristic densities are well-known

in random field theory for Gaussian-related processes [Worsley, 1994, Taylor and

Worsley, 2008]. On the basis of these results, we report explicit forms of (3.6) for

F and t processes below.

F -process. Consider a F -process {F (θ)} with s and v degrees of freedom and such

that F (θ) ∼ Fs,v for all θ ∈ Θ. Let E[NF
c0

] be the expected number of upcrossings
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of c by {F (θ)}, then the TOHM bound in equation (3.6) specifies as

P

(
sup
θ∈Θ
{F (θ)} > c

)
≤ P (F (L) > c) +

(
c

c0

) s−1
2
(
v + s · c
v + s · c0

)− s+v−2
2

E[NF
c0

] (3.13)

for all c0 ≤ c, c0 ∈ R, and with a(c) = c
s−1
2 (v + s · c)− s+v−2

2 .

t-process. Consider a t-process {V (θ)} with s degrees of freedom and such that

V (L) ∼ ts. Let E[NV
c0

] be the expected number of upcrossings of c by {V (θ)}, then

the TOHM bound in equation (3.6) specifies as

P

(
sup
θ∈Θ
{V (θ)} > c

)
≤ P (V (L) > c) +

(
1 + c2

1 + c2
0

)− s−1
2

E[NV
c0

] (3.14)

for all c0 ≤ c, c0 ∈ R, and with a(c) = (1 + c2)−
s−1
2 .

The reader is referred to Chapter 6 and Algeri and van Dyk [2018] for more details

on this approach.

3.1.2 Testing One Hypothesis Multiple times in practice

In practice, we consider a sub-test statistic, Wn(θ), whose asymptotic or exact dis-

tribution under H0 is known to be the same as a random variable W (θ), for all

θ ∈ Θ, and we evaluate the stochastic process {W (θ)} on a finite set of values of

θ. Specifically, let ΘR represent a fine grid of evaluation points for {W (θ)}, with R

being the, typically large, resolution of ΘR so that ΘR = {θ1, . . . , θr, . . . , θR} ⊆ Θ.

Let {W (θr)} be the random sequence which coincides with {W (θ)} at each grid

point θr and {w(θr)} be the observed value of {W (θr)} at θr. We approximate the

global test statistics supθ∈Θ{W (θ)} with its discrete counterpart maxθr∈ΘR{W (θr)},
and its observed value is given by

cR = max
θr∈ΘR

{w(θr)} (3.15)

and it is such that c = limR→∞ cR. We let the upcrossings of cR by {W (θr)} over

ΘR, namely ÑcR , be events of the type {W (θr−1) ≤ cR,W (θr) > cR}. In order to

ensure that ΘR is sufficiently dense to guarantee that the process of upcrossings and

the supremum of {W (θ)} are well approximated by the process of upcrossings and

the maximum of {W (θr)}, we require
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Figure 3.1: Left panel: histogram of the Fermi-LAT realistic data simulation for Example 2.1 (log-

scale), null model (blue dashed curve) fitted as a power-law distributed cosmic source (φ̂0 = 1.395)

and fitted alternative model (red solid curve) with η̂θ̃ = 0.971, φ̂1θ̃ = 0.745 and θ̃ = 27.265. Central
panel: histogram of the Fermi-LAT realistic data simulation for Example 3.1 (on log-scale), null model

(blue dashed curve) fitted under the assumption of background only counts (φ̂0 = 1.350), and fitted

alternative model (red solid curve) with η̂θ̃ = 0.045, φ̂1θ̃ = 1.406. The green dotted vertical line

indicates the location of the observed Gaussian bump, i.e., θ̃ = 3.404. Right panel: Down syndrome
data and fitted regression model (red piecewise-linear solid lines), with break-point (green triangle) at
θ̃ = 31.266.

Conditions 3.1.4. As R→∞

max
θr∈ΘR

{W (θr)} d−→ sup
θ∈Θ
{W (θ)}; (3.16)

ÑcR
a.s.−−→ NcR . (3.17)

By dominated convergence, it follows from (3.17) that

E[ÑcR ]→ E[NcR ] as R→∞.

Cramér and Leadbetter [2013, p. 63 and 195] prove that (3.16) and (3.17) hold

when, given any sequence {qR} such that qR → 0 as R→∞, the grid points in ΘR

are of the form rqR, with (r − 1)qR ∈ Θ and rqR ∈ Θ, for r = 1, 2, . . . , R. However,

since in practice ΘR may be determined by the experiment, in Section 3.2 we discuss

simple graphical tools to assess Conditions 3.1.4 in applied settings.

The right hand side of (3.6) can therefore be approximated, as R→∞, by

P (W (L) > cR) +
a(cR)

a(c0)
E[Ñc0 ] ∀c0 ≤ cR, c0 ∈ R. (3.18)
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and thus, under Condition 1.1.4, for large R and cR, (3.18) is an asymptotically

sharp bound for P (supθ∈Θ{W (θ)} > cR); whereas, E[Ñc0 ] can be replaced by its

Monte Carlo estimate, namely Ê[Ñc0 ] (see Section 3.2).

Thus, the problem of testing (1.15) is reduced to testing H0 versus R sub-alternative

hypotheses, namely H1r, i.e., Testing One Hypothesis Multiple Times. For the R sub-

tests, H0 versus H1r, the observed sub-test statistics {w(θ1), . . . , w(θR)}, realizations

of {W (θ)}, are combined into the global test statistic cR and a bound/approximation

for the global p-value is computed via (3.18).

3.2 Practical matters

3.2.1 Case studies: description

We now discuss in details the implementation of TOHM in the context of three

case studies: the non-nested models comparison proposed in Example 2.1, a “bump

hunting” problem, and a logistic model with a break point; hereafter, we refer to

the last two as Examples 3.1 and 3.2, respectively. As for Example 2.1, data in

Example 3.1 were generated using realistic simulations of the Fermi Large Area

Telescope (LAT).

The set up for Example 2.1 is the same described in Chapter 2 and the goal is to

distinguish between a a dark matter emission and a cosmic source mimicking it. The

comprehensive model in (1.14), which facilitates the non-nested model comparison,

specifies

(1− η)
1

kφyφ+1
+ η

y−1.5

kθ
exp

{
−7.8

y

θ

}
(3.19)

with 0 ≤ η ≤ 1, and we test both (1.15) and (2.3).

Example 3.1. Conversely from Example 2.1, here we aim to properly distinguish

between γ-ray signals induced by dark matter annihilations and those induced by

the astrophysical background. In this setting intermediate values of η correspond to

the intensity of the dark matter signal. Under the model in (3.20), events induced

by dark matter are modeled as a narrow Gaussian bump with mean energy θ and

the astrophysical background is distributed as a power-law with index φ,

(1− η)
1

kφyφ+1
+

η

kθ
exp

{
−(y − θ)2

0.02θ2

}
for y ≥ 1, (3.20)

37



where kφ and kθ are normalizing constants, y ≥ 1, φ > 0, and θ ≥ 1. In our

simulation, we set θ = 3.5GeV, φ = 1.4, and we consider the energy band y ∈ [1; 35].

This setup resulted in 64 dark matter events and 2274 background events. For more

physics details, see Algeri et al. [2016b]. Fermi-LAT datasets for Examples 2.1 and

3.1 are plotted in the first two panels of Figure 3.1.

Example 3.2. We consider a simple logistic-regression model where the logit is

modelled as

log

(
πi

1− πi

)
= φ1 + φ2xi + ξ(xi − θ)1{xi≥θ} ∀i = 1, . . . , n (3.21)

with πi = P (yi = 1|xi), xi ∈ R is the covariate of interest, θ ∈ R is the location of

the unknown break-point, and 1{·} is the indicator function. The model in (3.21)

is applied to the Down Syndrome dataset available in the R package segmented

[Muggeo et al., 2008]. The dataset records whether babies born to 354,880 women

are affected by Down Syndrome. We use (3.21) to model the probability, πi, that a

woman of age xi has a baby with down syndrome, where xi ∈ [17; 47], and we let

θ ∈ [20; 44]. The logit of the ratio between the number of down syndrome cases and

number of births by age group is plotted in the right panel of Figure 3.1.

In Example 2.1 and 3.1 we use the LRT statistic, Tn(θ), introduced in (1.4) as the

sub-test statistic. Since both tests are either of the form in (1.15) or in (2.3), we test

on the boundary of the parameter space of η and thus the asymptotic distribution

of Tn(θ) under H0 is χ̄2
01 for each θ ∈ Θ fixed. In Example 3.2, we test

H0 : ξ = 0 versus H1 : ξ 6= 0 (3.22)

via the signed-root of the LRT which specifies, for all θ ∈ Θ,

Qn(θ) = sign(ξ̂θ)
√
Tn(θ) (3.23)

where ξ̂θ is the MLE of ξ under H1 at θ fixed. Hence the sub-tests statistics are

asymptotically normally distributed under H0 [e.g., Davies, 1977].

3.2.2 The choices of c0 and R

As described in Section 3.1.2, in the practical implementation of TOHM we specify a

grid ΘR over the parameter space Θ, with R being the number of times H0 is tested

versus the ensemble of sub-alternatives H11, . . . , H1R, one for each value θr in ΘR. In
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Figure 3.2: Left panel: simulated sample paths of the LRT process under H0 in Example 3.1. Both
plots consider different scaling factors of the width of the Gaussian bump, i.e., we set σ = 0.1θ, 0.5θ and
θ. Right panel: upcrossings plot showing Monte Carlo estimates of the expected number of upcrossings
of c0 = 0.1 by the LRT process under H0 true, for Example 3.1, and evaluated over grids of resolutions
R = 15, 30, 50, 100, 200, 500.

practice, R must either be chosen arbitrarily by the researcher or determined by the

nature of the experiment. In either case, R must be sufficiently large to guarantee

robustness of the results, yet small enough to ensure computational efficiency when

calculating (3.18).

One possibility is to choose R large enough so that, for a given c0, the expected

number of upcrossings of c0 by {W (θr)}, E[Ñc0 ], converges to a finite limit, which

we expect, by Conditions 3.1.4, to correspond to the expected number of upcrossings

of c0 by the underling null continuous stochastic process {W (θ)}, i.e., E[Nc0 ]. This

strategy requires us to set c0 before setting R.

In Gross and Vitells [2010], c0 is chosen to minimizes the coefficent of variation
σc0

E[Nc0 ]
, where σc0 is the standard deviation of Nc0 . Under the assumption that the

coefficient of variation decreases with increasing E[Nc0 ], the problem reduces to

maximizing E[Nc0 ]. From (3.4) it follows that E[Nc0 ] = a(c0)b(Θ), and thus we

write

c0 = argmaxc∈Ra(c). (3.24)

For instance, for the χ2
s process {T (θ)}, ĉ0 = s − 1 when s > 1. However, to cover

cases where c0 = 0, when the global maximum in (3.24) is not defined, or simply, as

an alternative to (3.24), one can carry out a sensitivity analysis based on a Monte
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Figure 3.3: Left panels: simulated sample paths of the LRT process for Example 2.1 (upper left)
and of the signed-root-LRT process for Example 3.2 (bottom left) considering three different random
samples under H0. Right panels: upcrossings plots showing Monte Carlo estimates of the expected
number of upcrossings under H0 of c0 = 0.3 (upper right) by the LRT process for Example 2.1 and of
c0 = 0 (bottom right) by the signed-root-LRT process for Example 3.2. In both cases we use grids of
resolutions R = 15, 30, 50, 100, 200, 500.

Carlo simulation of the underlying processes under H0. This can be done as in

the left panel of Figure 3.2 for Example 3.1, and the analogous for Examples 2.1

and 3.2 in the left panels of Figure 3.3. Looking at these plots, we choose c0 to

be the level (on the y-axis) with respect to which the process oscillates more often,

and thus, with respect to which the upcrossings occur with higher frequency. This

leads to values c0 equal to 0.3, 0.1 and 0 for Examples 2.1, 3.1 and 3.2, respectively.

Inspecting the smoothness of the trace plots in the left panels of Figures 3.2 and 3.3
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also allows us to qualitatively assess Conditions 3.1.1 and 3.1.4, which are necessary

for the validity of the results of Sections 3.1.

The upcrossing plot in the right panel of Figure 3.2 is a simple graphical tool that

helps us to identify the value of R that best negotiates the trade-off between accuracy

and computational efficiency discussed at the beginning of this section. This plot

displays Monte Carlo estimates Ê[Ñc0 ] for the LRT in Example 3.1, under H0, as

a function of R, evaluated at R = 15, 30, 50, 100, 200, 500, 1000 equally spaced grid

points over Θ. Analogous plots for Example 2.1 and 3.2 are reported in Figure 3.3.

For each resolution we computed 100 Monte Carlo simulations. The sample size of

each replicate must be reasonably large to guarantee the asymptotic distribution

of the sub-test statistics, hence we choose a size of 1000 for each Monte Carlo

replicate. In all our examples, 100 simulations are sufficient to achieve small Monte

Carlo errors. If the number of upcrossings increases with R without converging, it

means that the resolution is not sufficiently high to catch all the crossings or, the

underlying process is not sufficiently smooth to guarantee E[Nc0 ] <∞. Conversely,

if the number of upcrossings converges, as in the well-known scree-plot used for

Principal Component Analysis (PCA) (e.g., James et al. [2013, p. 383]), we look for

an “elbow” in the plot of Ê[Ñc0 ]. The value of R corresponding to the elbow is the

smallest value for which Ê[Ñc0 ] converges, by Conditions 3.1.4, to its limit E[Nc0 ]

up to Monte Carlo error.

In the upcrossings plot in Figure 3.2 (right panel), we also investigate the relationship

between the width of the signal in the bump-hunting example and the grid resolution.

In particular, we replicate the simulation for three choices of the Gaussian width,

namely σ = 0.1θ, σ = 0.5θ and σ = θ. (In our actual analysis σ = 0.1θ.) The left

panel in Figure 3.2 illustrates how the width of the signal affects the smoothness of

the underlying processes. Note surprisingly, wider signals lead to smoother processes

and consequently, Ê[Ñc0 ] converges faster to its limit (right panel of Figure 3.2) and

a lower grid resolution is often sufficient to identify all the upcrossings.

In general, the choice of R not only impacts the upper bound/approximation for

the global p-value in (3.6), but also impacts the observed value of the test statistics,

cR, which we assume converges to c, as R → ∞, see (3.15). Specifically, if the

gap between θr and θr+1 is wider than the signal width, cR may underestimate c,

and the signal may be missed. Thus, for signal identification problems where the

signal is typically localized over a small region of the search interval [L,U], a higher

resolution is required not only to increase the accuracy of the estimate in (3.18), but

41



0 5 10 15
c

lo
g 1

0(p
.v

al
ue

s)
0.

00
01

0.
01

0.
1

1

3σ

0 5 10 15
c

lo
g 1

0(p
.v

al
ue

s)
0.

00
01

0.
01

0.
1

1

3σ

0 1 2 3 4
c

lo
g 1

0(p
.v

al
ue

s)
0.

00
01

0.
01

0.
1

1

3σ

Figure 3.4: Estimated bound/approximation in (3.18) (blue solid line), simulated global p-values (on
log10-scale), Monte Carlo estimates of P (supθ∈Θ{W (θ)} > c) (red dashed line), and Monte Carlo
Errors (pink areas) for increasing values of the threshold c, for Example 2.1 (left panel), Example 3.1

(central panel) and Example 3.2 (right panel). Monte Carlo errors associated with Ê[Ñc0 ] on the bound
in (3.18) are plotted in grey, but are too small to be visible.

also to avoid false negatives, which would in turn adversely affect the power of the

test.

Conversely, in Examples 2.1 and 3.2, the signal is spread either over the whole

parameter space or over a large portion of it. Thus, as shown in the right panels

of Figure 3.3, convergence is achieved quickly because the underlying processes are

characterized by smooth sample paths (left panels). In these cases the choice of R

should be based on the level of accuracy of cR as an estimate for the maximum of

the underlying process, and its location over the search range, i.e.,

θ̃ = argmaxθr∈ΘR
{W (θr)}. (3.25)

Finally, based on the elbow in the upcrossings plots, the values of R we select are

R = 50 in Example 2.1, R = 100 in Example 3.1 (with σ = 0.1θ as in (3.20)), and

R = 30 in Example 3.2. However, in order to guarantee accuracy of at least 0.5 for

the selected location of the break-point, θ̃, we set R = 50 in Example 3.2.

For each of the models considered, we computed (3.18) using the R and c0 selected

above. The results obtained are compared in Figure 3.4 with the Monte Carlo

estimates of the global p-value, P (supθ∈Θ{W (θ)} > c), for increasing values of c,

obtained using 100,000 simulations, each of size 10,000. The pink areas correspond

to the respective Monte Carlo errors. The Monte Carlo errors associated to the

estimate Ê[Ñc0 ] for E[Ñc0 ] in (3.18) (and displayed on a lower scale in the upcrossings
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plots) are also incorporated in Figure 3.4, but they are too small to be visible. As

expected, the estimated TOHM bounds approach the “truth” (i.e., the the Monte

Carlo estimate of P (supθ∈Θ{W (θ)} > c)) as c → ∞. Convergence appears to be

slower for Example 3.1. The plots, however, are presented on log10-scale, and thus

in all cases we obtain a good approximations of the global p-values.
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4
Testing One Hypothesis

Multiple Times and Multiple

Hypothesis Testing: two sides of

the same coin

The goal of this chapter is to highlight the connection between TOHM and Multiple

Hypothesis Testing (MHT). Specifically, we use classical EVT results for random

sequences to identify sufficient conditions under which, despite their difference in

implementation, the classical Bonferroni’s correction introduced in Section 1.3 can

be used as reasonable approximation of the global p-value in (3.18), without be-

ing overly conservative. We also propose a simple graphical tool to assess these

conditions in practical applications.

4.1 Review on main results on point processes of up-

crossings and exceedances

First of all, we introduce the distinction between upcrossings and exceedances of the

sequence {W (θr)}. Recall that the upcrossings of cR by {W (θr)} over ΘR are events

of the type {W (θr−1) ≤ cR,W (θr) > cR}; whereas we say that an exceedance of cR

by {W (θr)} occurs at θr if {W (θr) > cR}. An illustration of the difference between
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Figure 4.1: Upper panel: upcrossings (red crosses) of the threshold c by {W (θr)}. Bottom panel:
exceedances (red circles) of the threshold c by {W (θr)}.

upcrossings and exceedances is given in Figure 4.1.

In order to characterize the behavior of {W (θr)}, Conditions 3.1.1 and Condition

1.1.4, are replaced by the classical mixing conditions D,D∗ and D′ reported below,

and further formalized in Hüsler [1983] and Falk et al. [2010, Ch. 9].

Condition 4.1.1 (Condition D). Let F (·) be the cumulative density function of each

component of {W (θr)} and let 1 ≤ r1 < · · · < rp < r′1 < r′2 < · · · < r′q ≤ R be any

set of integers such that r′1 − rp ≥ d, J = {rj, j = 1, . . . , p}, J ′ = {r′j, j = 1, . . . , q},
B(J) = {W (θr) ≤ cR, r ∈ J}, B(J ′) = {W (θr′) ≤ cR, r

′ ∈ J ′}. Then we assume

that

sup
J,J ′
|P (B(J) ∩B(J ′))− P (B(J))P (B(J ′))| ≤ vR,d (4.1)

where vR,d∗R → 0 for some sequence d∗R such that d∗R(1− F (cR))→ 0 as R→∞.

Condition 4.1.2 (Condition D∗). Let J∗ be an ordered subset {r1 ≤ r ≤ r2} of

{1, . . . , R} such that

∑
r∈J

P (W (θr) > cR) ≤
∑
r≤R

P (W (θr) > cR)

R′
,
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for any integer R′. Let

max
J

min
J∗⊂J

∑
r<r′<r′+1∈J∗

P (W (θr) > cR,W (θr′) ≤ cR,W (θr′+1) > cR) ≤ v∗R,R′ (4.2)

and

lim
R′→∞

lim
R→∞

supR′v∗R,R′ = 0 (4.3)

with J∗ ⊂ J , such that
∑

r∈J\J∗ P (W (θr) > cR) ≤ t(R′)/R′, for all functions such

that t(R′)→ 0 as R′ →∞.

Condition 4.1.3 (Condition D′). Let J be a ordered subset {r1 ≤ r ≤ r2} of

{1, . . . , R} such that

∑
r∈J

P (W (θr) > cR) ≤
∑
r≤R

P (W (θr) > cR)

R′
,

for any integer R′. Let

max
J

min
J∗⊂J

∑
r<r′∈J∗

P (W (θr) > cR,W (θr′) > cR) ≤ v∗R,R′ (4.4)

and

lim
R′→∞

lim
R→∞

supR′v∗R,R′ = 0 (4.5)

with J∗ ⊂ J , such that
∑

r∈J\J∗ P (W (θr) > cR) ≤ t(R′)/R′, for all functions such

that t(R′)→ 0 as R′ →∞.

Heuristically, Condition D, also known as long-range independence mixing condition,

implies that independence is achieved for distant components of {W (θr)}. Condition

D∗, also known as local independence, prevents {W (θr)} from oscillating rapidly

around the threshold cR and thus does not allow the upcrossings of cR to cluster over

small intervals. Finally, ConditionD′ bounds the probability of multiple exceedances

of cR over small intervals. Notice that D′ is simply a stronger version of Condition

D∗ and indeed, D′ implies D∗. The long-range and local independence conditions

are crucial to guarantee the Poisson nature of both the of upcrossing and exceedance

processes of {W (θr)}.

We denote with ṄcR and ÑcR the process of exceedances and the process of up-

crossings of cR by {W (θr)}, respectively. We require the following conditions to

hold.
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Conditions 4.1.4. We assume that on [L;U], as R→∞ and cR →∞

E[ṄcR ] =
R∑
r=1

P (W (θr) ≥ cR)→ µ̇ ≤ ∞ (4.6)

E[ÑcR ] =
R−1∑
r=1

P (W (θr) ≤ cR,W (θr+1) > cR)→ µ̃ ≥ 0 (4.7)

where clearly, 0 ≤ µ̃ ≤ µ̇ ≤ ∞.

Results 4.1.5 and 4.1.6 can be found in Hüsler [1983, 1986] and Falk et al. [2010,

Ch. 9].

Result 4.1.5. Under Conditions 4.1.4, D and D∗, both ṄcR and ÑcR converge in

distribution to Poisson processes with means µ̇ and µ̃, respectively, on [L;U], as

R→∞ and cR →∞.

Result 4.1.6. Under Conditions 4.1.4, D and D′, both ṄcR and ÑcR converge in

distribution to the same Poisson process with mean µ̇ = µ̃ on [L;U], as R→∞ and

cR →∞.

4.2 TOHM via Bonferroni’s correction

We now turn to the practical implications of Results 4.1.5 and 4.1.6 reviewed in

Section 4.1. First, we rewrite the expected number of exceedances in (4.6) in a form

more familiar to practictioners

E[ṄcR ] =
R∑
r=1

P (W (θr) ≥ cR) =
R∑
r=1

P

(
W (θr) ≥ max

θr∈ΘR
{w(θr)}

)
= R min

θr∈ΘR
P (W (L) ≥ w(θr))

(4.8)

The second line of (4.8) follows from the identical distribution of each component of

the sequence {W (θr)}, i.e., Condition (iii) among Conditions 3.1.1. Let W (L) be a

random variable whose distribution is, exactly or asymptotically, the same of a test

statistics Wn(θr) for each θr ∈ ΘR. Then, the last line of (4.8) corresponds to the

Bonferroni’s correction introduced in (1.35), and more generally we write

pBF = R min
θr∈ΘR

P (W (L) ≥ w(θr)) (4.9)
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This implies that, since Bonferroni’s correction corresponds to the average number

of exceedances of {W (θr)}, and the second term in the right hand side of (3.18)

gives the expected number of upcrossings of {W (θr)}, we expect (3.18) and (4.9) to

be asymptotically equivalent when E[ṄcR ] and E[ÑcR ] converge to the same limit.

This can be shown by combining Results 4.1.5 and 4.1.6 with equations (4.6), (4.7)

and (4.8).

Specifically, we have that, under Conditions D and D′, and as R→∞ and cR →∞,

by (4.7) E[ÑcR ]→ µ̃ (4.10)

by (4.6) and (4.8) E[ṄcR ] = pBF → µ̇ (4.11)

by Result 4.1.6 µ̃ = µ̇. (4.12)

These observations establish the following relationship between the global p-value

and pBF .

Theorem 4.2.1. Let cR and pBF be defined as in (3.15) and (4.9), respectively, then

P

(
sup
θr∈ΘR

{W (θr)} > cR

)
≤ P (W (L) > cR) + pBF . (4.13)

Under Condition 4.1.4, D and D′, (4.13) is asymptotically sharp, as cR → ∞.

Further, if Condition 3.1.4 hold, the global p-value P (supθ∈Θ{W (θ)} > c) is well

approximated by pBF .

Proof. Consider the sequence {W (θr)}, and its process of upcrossings ÑcR . Because

E[ÑcR ] ≤ E[ṄcR ] = pBF we can write

P

(
sup
θr∈ΘR

{W (θr)} > cR

)
≤ P (W (L) > cR) + E[ÑcR ] (4.14)

≤ P (W (L) > cR) + pBF , (4.15)

where (4.14) follows from the same argument used to obtain (3.3) in Section 3.1.

By Result 4.1.5, the Poisson nature of ÑcR guarantees that the right hand side of

(4.14) is asymptotically equivalent to the left hand side as cR → ∞. By (4.12), D

and D′, the right hand side of (4.14) and (4.15) are asymptotically equivalent, as

R → ∞ and cR → ∞. Thus (4.15) is also a sharp bound for the left hand side of

(4.14). It follows that, if Condition 3.1.4 hold, both the right hand side of (4.14)

and (4.15) are good approximations for P (supθ∈Θ{W (θ)} > c) for large c (and cR).
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By the identical distribution of the components of {W (θr)} and following (4.8), we

have

P (W (L) > cR) = min
θr∈ΘR

P (W (L) ≥ w(θr)) =
pBF

R
(4.16)

Substituting (4.16) into (4.13), we obtain

P

(
sup
θ∈Θ
{W (θ)} > c

)
≈ R + 1

R
pBF ≈ pBF as R→∞. (4.17)

It would be informative to quantify the rate at which |pBF − E[ÑcR ]| → 0, and

for which (4.14) and (4.15) are exchangeable. In Section A.2 of Appendix A we

discuss a way to do this by considering the variational distance between the process

of exceedances ṄcR and the Poisson process with mean E[ÑcR ] on [L;U], under the

conditions of Theorem 4.2.1.

4.2.1 Assessing D and D′ for Gaussian and related sequences

In this section, we focus our attention to the Gaussian, χ2
s and χ̄2

01 cases and studied

in more details for Examples 2.1, 3.1 and 3.2 in Section 4.3. Similar results can be

obtained for other Gaussian related stochastic processes.

Owing to their technical nature, it may appear that there is little hope for assessing

the appropriateness of D, D∗ and D′ in practice. However, Hüsler [1983] and Raab

[1997, Section 2.3.2] show, for Gaussian and χ2
s sequences, respectively, that if the

so-called Berman’s condition [Berman, 1964] in (4.18),

sup
|θr−θr′ |>τ

|ρ(θr, θr′)| log(τ)→ 0 as τ → +∞. (4.18)

holds, then D and D′ also hold. Here, ρ(θr, θr′) represents the covariance function

of the zero-mean and unit variance Gaussian sequence {Z(θr)} and, for {T (θr)},
represents the covariance function of the underlying zero-mean and unit variance

Gaussian sequences {Z1(θr)}, . . . , {Zs(θr)}, such that {T (θr)} =
∑s

j=1{Zj(θr)}2.

Using (4.18), we can establish the following corollaries of Theorem 4.2.1

Corollary 4.2.2. If (4.18) holds for the covariance function of {Z(θr)}, then the

results of Theorem 4.2.1 holds on {Z(θ)}, as R→∞.
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Corollary 4.2.3. If (4.18) holds for the covariance function of each element of

the Gaussian sequences {Z1(θr)}, . . . , {Zs(θr)} such that {T (θr)} =
∑s

j=1{Zj(θr)}2,

then the results of Theorem 4.2.1 holds on {T (θ)}, as R→∞.

Analogously, Corollary 4.2.4 follows for the χ̄2
01 case. Suppose {K(θr)} can be

rewritten as {K(θr)} = {Z(θr)}2
1{Z(θr)}≥0, for some {Z(θr)}.

Corollary 4.2.4. If (4.18) holds for the covariance function of the Gaussian se-

quences {Z(θr)} such that {K(θr)} = {Z(θr)}2
1{Z(θr)}≥0, then the results of Theo-

rem 4.2.1 holds on {K(θ)}, as R→∞.

For Corollaries 4.2.2, 4.2.3 and 4.2.4 to be useful in practice, we must consider the

appropriate Gaussian sequence for the evaluation of (4.18). Consider, for example,

the LRT-process, {Tn(θ)}, and the associated sequence of sub-test statistics {Tn(θr)}
for the test in (1.2). For simplicity we let η = η be one-dimensionala, i.e., s = 1.

The χ2
1 or χ̄2

01 asymptotic behavior of {Tn(θr)} under H0 can be derived from the

normalized score sequence

{S?n(η0, φ̂0, θr)} =

{
∂
∂η

log Ln(η0, φ̂0, θr)√
I∗n(η0, φ̂0, θr)

}
(4.19)

where Ln(η0, φ̂0, θr) is the profile-likelihood of h(y, η, φ, θr), evaluated at φ̂0, i.e., the

MLE of φ under H0, η0 is the value of η under H0 and θ is fixed at θr. Whereas

I∗n(η0, φ̂0, θr) = I11 − I12I
−1
22 I21, with

In(η0, φ̂0, θr) =

[
I11 I12

I21 I22

]
(4.20)

being the Fisher information evaluated at η0 and φ̂0, with θ fixed at θr.

From Davies [1977] it follows that, under suitable conditions, the normalized score

sequence {S?n(η0, φ̂0, θr)} with covariance function ρ?n(θr, θr′) is such that, as n→∞,

{S?n(η0, φ̂0, θr)} d−→ {S?η0(θr)}. Where {S?η0(θr)} is a zero-mean unit variance Gaussian

sequence with covariance function ρ?(θr, θr′) = limn→∞ ρ
?
n(θr, θr′). Whether {Tn(θr)}

aHere, we restrict η to be univariate because applying Corollary 4.2.3 to multivariate η requires
each of the components of the score vector S(η0, φ̂0, θr) to be independent and the associated
normalized sequences to have the same covariance function [Lindgren, 1980]. Unfortunately, this
restrictive requirement limits the applicability of Corollary 4.2.3 when η is multivariate.
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behaves asymptotically as {T (θ)} or {K(θ)} can be derived from {S?n(η0, φ̂0, θ)}b,

and as in Corollaries 4.2.3 and 4.2.4, if (4.18) holds for ρ?n(θr, θr′) the result of

Theorem 4.2.1 holds, as n→∞.

Notice that, when considering the signed-root-LRT process, {Qn(θ)}, given its

asymptotic Gaussian nature, we can directly assess (4.18) on the associated se-

quence {Qn(θr)}, for large samples. Alternatively, we can refer to {S?η0(θr)} also in

this case. In applied settings, the assessment of (4.18), can be conducted with a

simple graphical tool which we discuss in Section 4.3 and implement for Examples

2.1, 3.1 and 3.2.

4.3 TOHM, Bonferroni and Berman’s condition

Section 4.2 discusses the relationship between TOHM and MHT conducted via Bon-

ferroni’s correction. In this framework, in addition to stringent significance require-

ment and large resolutions R, a crucial role is played by Berman’s condition in

(4.18). Specifically, if verified, this condition implies approximate equivalence be-

tween (3.18) and pBF .

In practical applications the search range [L;U] is bounded, in contrast to the the-

oretical assumption that R → ∞, the number of grid points R is fixed, and conse-

quently, τ in (4.18) is bounded by the length of the search window. Thus, it is useful

to assess the validity of (4.18) under these circumstances on a case-by-case basis. A

simple way to do this is to evaluate (4.18) using the covariance function ρ?n(θr, θr′)

of the normalized score sequence, {S?n(η0, φ̂0, θr)}, introduced in Section 4.2.1, over

the specified grid ΘR, with R selected as in Section 3.2.2.

In the first row of Figure 4.2 we assess (4.18) graphically for Examples 2.1, 3.1

and 3.2, using equally spaced grid points over the search ranges [L;U] specified in

Section 3.2.1, with R = 50, R = 100 and R = 50 respectively. In Example 3.1, the

limit in (4.18) approaches zero over the range [1; 35], thus we expect TOHM and

MHT via Bonferroni to provide similar results. Conversely, in Examples 2.1 and

3.2, (4.18) does not hold over the respective search ranges.

In the second row of Figure 4.2, we compare the TOHM estimated bound in (3.18)

and Bonferroni’s bound for the three examples. Because the signed-root LRT,

{Qn(θ)}, is used in Example 3.2 rather than the LRT, smaller values of c corre-

bAs described in Davison [2003, p. 142], when testing on the boundary of the parameter space

P (S?n(η0, φ̂0, θ) ≥ 0) = 1
2 and thus Tn(θ)→ K(θ), for each θ fixed.
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Figure 4.2: Top row: assessment of Berman’s condition in (4.18) over the specified search ranges,
with R = 50, 100 and 50, for Example 2.1, 3.1 and 3.2, respectively. Bottom row: ratio of Bonferroni’s
bound and the bound in (3.18) at increasing values of c (and corresponding significance for TOHM),
and considering different resolutions (grey curves). The first, second and third columns correspond to
Example 2.1, 3.1 and 3.2, respectively.

spond to equally significant results. Thus, the statistical significance of TOHM is

also reported (in σ) in the horizontal axes in the second row of Figure 4.2. Specifi-

cally, we plot the ratio of the two bounds for increasing values of c, using different

grid sizes, R. As suggested by the Berman plots in the first row, for Example 3.1

(second column) the ratio of the bounds approaches one reasonably quickly, even

for larger values of R. Interestingly, for lower resolutions Bonferroni is often less

conservative than the TOHM bound. In Examples 2.1 and 3.2, however, Bonferroni

is always more conservative than (3.18) when at least 30 tests are performed. All

these plots suggest that the TOHM bound is preferable to Bonferroni with very high

resolutions, i.e. R ≥ 500.
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Example Test Method R cR θ̃ P-value
(Significance)

Example 2.1

H0 : η = 0 Bonferroni
50 21.021 27.265

1.14 · 10−4 (3.69σ)
H1 : η > 0 TOHM 2.51 · 10−5 (4.06σ)

H0 : η = 1 Bonferroni
50 0.606 27.890

> 1 (0.00σ )
H1 : η < 1 TOHM 7.201 · 10−1 (0.58σ)

Example 3.1
H0 : η = 0 Bonferroni

100 38.326 3.404
2.99 · 10−8 (5.42σ)

H1 : η > 0 TOHM 2.11 · 10−8 (5.48σ)

Example 3.2
H0 : ξ = 0 Bonferroni

50 11.826 31.266
1.43 · 10−30 (11.43σ)

H1 : ξ 6= 0 TOHM 5.06 · 10−31 (11.52σ)

Table 4.1: Summary of the results of TOHM and MHT via Bonferroni on real data for Examples 2.1,
3.1 and 3.2.

4.3.1 Data analyses

In this section we perform both TOHM and MHT via Bonferroni for Examples 2.1,

3.1 and 3.2. The results are summarized in Table 4.1, where evidence in favor of H1

is reported in terms of p-value and respective σ-significance.

Not surprisingly, given the results of Section 4.3, for the dark matter search in

Example 2.1 TOHM appears to be less conservative (4.06σ significance) than MHT

via Bonferroni (3.69σ significance) in rejecting the hypothesis that the observed

emission is due to a power-law distributed cosmic source. Because this example

involves a non-nested models comparison, we invert the null of the hypotheses in

order to avoid meaningless results (see Section 2.2 for more details). In the inverted

test, the power-law model cannot be rejected with either TOHM (0.58σ) or MHT;

given the low significance of the minimum of the local p-values (0.218, result not

shown), the Bonferroni’s bound for the p-value exceeds one (with R = 100). Both

the fitted dark matter model and the fitted power-law cosmic source model are

displayed in the central panel of Figure 3.1. In Example 2.1, the value of θ (i.e.,

the signal annihilation of the dark matter model) selected by both TOHM and

Bonferroni is θ̃ = 27.265GeV. This is somewhat off from the true value used to

simulate the data (θ = 35GeV), perhaps because our analysis does not account for

instrumental errors. Our analysis also only uses the spectral energy of the γ-ray
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signals, whereas in practice the directions of the γ-ray would also be used, thus

increasing the statistical power.

As expected, in the dark matter search problem of Example 3.1, we obtained a

significance in favor of the presence of a dark matter emission of about 5.4σ using

both TOHM and MHT. The signal location selected is close to the truth (3.5GeV),

and the estimated model is plotted as a solid red line in the left panel of Figure 3.1;

the signal location selected, θ̃ = 3.404, is indicated by the green dotted vertical line.

Finally, for the break-point regression model in Example 3.2, both TOHM and

MHT give similar inferences (11.52σ and 11.43σ respectively) when rejecting the

hypothesis of a linear model with no break-point. The similarity of the results is

likely due to their extremely high statistical significance, i.e., we expect the bounds

to coincide in the limit as c→∞. Comparing these results with those in the bottom

right panel of Figure 4.2, even when performing 30 tests with 9.6σ significance

(c = 10), Bonferroni is twice as conservative as the TOHM bound in (3.18). The

fitted model is displayed in Figure 3.1 where the green triangle corresponds to the

optimal break-point location, i.e., the maximum of the signed-root LRT process

occurs at a mother’s age of 31.266 years.
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5
Practical guidelines to select

among different inferential

procedures

In Chapter 4 we identify scenarios where, despite their difference in implementa-

tion, TOHM and MHT lead to the same inference. However, if Conditions 4.1.4 are

not verified, (4.11) does not hold and thus Bonferroni’s bound may easily diverge

when the number of tests conducted, R, increases. Conversely, as discussed in Sec-

tion 4.2.1, when R is relatively small, pBF is often less conservative than the bound in

(3.18) obtained by TOHM. Additionally, as alternative to the upcrossings heuristic

of Chapter 3, the methods relying on volume-of-tube formulae, and introduced in

Section 1.2, can be also be used to approximate excursion probabilities. Given the

panacea of methods available, several factors must be taken in account in order to

select the most convient tool to be used in practical applications. The goal of this

chapter is to provide general guidelines to practictioners for navigating the tradeoffs

between statistical and computational efficiency when selecting a statistical proce-

dure for signal detection. An exhaustive summary of the methods under comparison

and the selection procedure described in this chapter can be found in Algeri et al.

[2016b].
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Figure 5.1: Left panel: probability density functions for Example 3.1 under H0 (blue line) with
φ = 1.4 and H1 (orange lines) with η = 0.2 and θ = 1.5, 3, 4.5, 6, 7.5, 9. Right panel: probability
density functions for Example 5.1 under H0 (blue line) and H1 (orange lines) with η = 0.2 and
γ = 0.1, 0.4, 0.7, 1, 1.3, 1.6, 1.9.

5.1 Choice of the test statistics and statistical proper-

ties

A fundamental result in probability theory states that the Score test and the LRT

are asymptotically equivalent when the number of events, n, is large (i.e., for large

sample sizes). As shown in Pilla et al. [2005], the same can be proven for the

LRT and the normalized Score processes, {Tn(θ)} and {S?n(θ)} with components

(1.4) and (1.17), respectively. Additionally, Takemura and Kuriki [2002] discuss

asymptotic equivalence, for large c, of the approximations of excursion probabilities

based on tube formulas, and those based on the expected number of upcrossings

(or the expected Euler characteristic in multiple dimensions, see Chapter 6). As

a consequence, we expect the methods of Gross and Vitells [2010] (hereafter GV)

and Pilla et al. [2005], Pilla and Loader [2005] (hereafter PL) to be asymptotically

equivalent for large n and large c.

However, differences may arise for small sample sizes and for only moderately large

values of c; in order to investigate this scenario, we consider two examples. As first

example we refer to Example 3.1 introduced in Chapter 3, where the search involves

a Gaussian signal on top of a power-law (Pareto type I) distributed background with

unknown parameter φ. In our simulation studies , in order to ease the computation
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involved in (1.18), we consider y ∈ [1, 10], hence, the search region is also restricted

to Θ ∈ [1, 10]. As second example, we consider Example 5.1 introduced below.

Example 5.1. We consider the toy model in Pilla et al. [2005] where a Breit-Wigner

emission, i.e., a Cauchy distributed signal, is superimposed on a linear background.

The full model is

(1− η)
1 + 0.3y

2.6
+ η

0.1

kγπ(0.01 + (y − γ)2)
(5.1)

where kγ is a normalizing constant, y ∈ [0; 2] and γ ∈ (0; 2].

The probability density functions used in Examples 3.1 and 5.1 are plotted in Fig-

ure 5.1 considering dirrefent values of θ and γ. For both examples, we evaluate the

probability of type I error (false detection rate), and the power for different values

of the nuisance parameters θ and γ, and different sample sizes. Specifically, we let n

to be 10, 50, 100, 200 and 500. The false detection rate and the power are obtained

via Monte Carlo simulations from the null model (η = 0) and from the alternative

model with η = 0.2, respectively. Since φ is unknown in Example 3.1, it can be

estimated with the MLE φ̂ under H0. The simulations are then drawn from (3.20)

with φ = φ̂ via parametric bootstrap [Efron and Tibshirani, 1994]. In principle, the

observed sample used to compute φ̂ could either come from the null or from the

alternative model. Thus, in order to evaluate the consistency of (1.29) and (2.4)

in both situations, two further sub-cases are needed. In Example 3.1a, we draw

the “observed” sample from (3.20) with η = 0 and φ = 1.4, i.e., in absence of new

physics. In Example 3.1b, we draw the “observed” sample with η = 0.2, φ = 1.4

and θ = 9, i.e., when a signal is present at energy level 9GeV.

Results of the simulation studies appear in Figure 5.2. The columns of Figure 5.2

correspond to Example 3.1a, Example 3.1b and Example 5.1, respectively. In the

first row, we report the simulated detection rates. The simulated test statistics

supθ∈Θ{Tn(θ)} and supθ∈Θ{S?n(θ)} of GV and PL, respectively, were calculated for

each of the 100, 000 datasets generated from the null model. The values obtained

were then compared to the nominal thresholds at 3σ, and calculated, as in (5.2) and

(5.3), by setting the right hand side of (1.29) and (2.4) equal to 1− Φ(3) = 0.0013

and solving for c, i.e.,

1− Φ(3) =
κ0

2π
P (χ2

2 ≥ c2) +
1

2
P (χ2

1 ≥ c2) (5.2)
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Figure 5.2: Simulated probability of type I error (top row), power (middle row) and adjusted power
(bottom row) for Example 3.1a (first column), Example 3.1b (second column) and Example 5.1 (third
column) with different sample size n over 100, 000 simulations. The gray symbols corresponds to PL
and the blue symbols to GV. Shaded areas indicate regions expected to contain 68% (dark gray) and
95% (light gray) of the symbols if the nominal type I error of 0.0013 holds.
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1− Φ(3) =
P (χ2

1 > c)

2
+ E[Nc0 ]e

− c−c0
2 . (5.3)

with c0 = 0.1 and E[Nc0 ] estimated via Monte Carlo simulations as described in

Chapter 3.

In the second row of Figure 5.2, we plot the power as a function of θ and γ for

Examples 3.1 and 5.1, respectively. The procedure is the same as for the simulated

false detection rates except the 100, 000 datasets were generated from the alterna-

tive models with η = 0.2 while varying θ and γ. In the third row, we evaluate

an adjusted version of the power; the simulated distributions of supθ∈Θ{Tn(θ)} and

supθ∈Θ{S?n(θ)} are the same as those used in the plots in the second row, but in-

stead of comparing them with the nominal thresholds obtained by solving (5.2)

and (5.3), we compared them with their empirical (bootstrap) thresholds. The em-

pirical threshold correspond to 99.87 quantiles of the 100, 000 simulated values of

supθ∈Θ{Tn(θ)} and supθ∈Θ{S?n(θ)} generated under H0 for the first row of Figure 5.2,

i.e., the empirical distributions of the test statistic under H0.

Looking at the first row of Figure 5.2, the simulated false detection rates associated

with GV are always consistent with the nominal 3σ error rate. This is not the case

for PL. Although the false detection curves approach the desired value as the sample

size increases, they are always higher than expected. Looking at the second row of

Figure 5.2, on the other hand, the simulated power when using supθ∈Θ{S?n(θ)} is

always higher than when considering supθ∈Θ{Tn(θ)} as test statistics, at least for

the smaller samples sizes. As expected, the difference between the power functions

decreases when the sample size increases, leading to two identical curves at 500

counts. These results are, however, not sufficient to determine if PL is more powerful

than GV. In fact, Figure 5.2 suggests that the increased power of PL is artificial,

as it is due to an increase of the probability of a type I error. Conversely, when

considering GV, the false detection rate is equal to or smaller than expected, and

its power function approaches that of PL as the sample size increases.

As specified in (1.29), the right hand side is a valid approximation for the left hand

side when c is large. In Examples 3.1a, 3.1b and 5.1 the values for c solving (5.2)

are 3.896, 3.939 and 3.937, respectively. This implies that the approximation error

in (1.29), i.e., o

(
e−

c2

2

c

)
, is of the order of 10−4, and thus the high false detection

rate associated to PL is unlikely to be due to an underestimation of the 3σ nominal

thresholds. Instead, it indicates that even a sample size of 500 is not sufficiently large

to guarantee (1.21). This, however, does not invalidate the utility of this approach
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Method θ̃ ηθ̃ P-value Significance

Unadjusted local 3.404 0.045 2.99 · 10−10 6.191σ
Bonferroni 3.404 0.045 2.99 · 10−8 5.419σ

Gross & Vitells 3.404 0.045 2.10 · 10−8 5.482σ
Pilla et al. 3.404 0.045∗ 1.72 · 10−9 5.909σ

∗Obtained afterwards via MLE by fixing the signal location

at θ̃ = 3.404 (see text).

Table 5.1: Implementing multiple hypothesis testing, GV and PL on the Fermi LAT simulation. For
the multiple hypothesis testing case, the smallest of R = 100 (undadjusted local) p-values, Bonferroni’s
bound on the global p-value, along with the bounds/approximations in (2.4) and (1.29), are reported
with their respective statistic and σ-significances.

for larger n as shown in Pilla et al. [2005], Pilla and Loader [2005].

A more detailed comparison of the detection power of the two methods can be done

by correcting the false detection rate (as in the third row of Figure 5.2). Specifically,

we can use the empirical detection threshold when evaluating their power, i.e., the

quantile of the simulated distribution of supθ∈Θ{S?n(θ)} and supθ∈Θ{T ?n(θ)} which

guarantees a false detection rate of 0.0013 (3σ significance). In this case, for all three

examples and for all signal locations (values of γ or θ) considered, GV is equally or

more powerful than PL.

Comparing the power functions in the second and third rows of Figure 5.2 with the

density functions in Figure 5.1, we see that in Example 3.1 only the location of the

source emission seems to affect the power. In particular, detection appears to be

more difficult in high background areas of the spectrum, and thus the strength of the

signal is weaker with respect to the background sources. These issues are overcome

if at least 500 counts are available; in this case both procedure exhibit maximum

detection power regardless the location or dispersion of the signal. For Example 5.1,

the detection power of the testing procedures is affected by both the specific location

of the signal and its spread over the search region. The power is higher when the

signal is narrowly dispersed and is located in a region with low background.

Few computational difficulties arose when implementing the two methods under

comparison. For PL, the most problematic step is the calculation of the geometric

constant κ0 in (1.30). This involves the numerical computation of nested integrals

and it can significantly slow down the testing procedure for complicated models. In
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Figure 5.3: Unadjusted local p-values (orange diamonds), Bonferroni adjusted local p-values (green
dots), global p-value (gray dotted line) implemented via PL and global p-value (blue dashed line)
implemented via GV for the Fermi LAT simulation. The Bonferroni’s bound is only slightly more
conservative than the GV bound

the case of Examples 3.1 and 5.1, small search regions ([1; 10] and [0; 2] respectively)

were chosen in order to speed up the computation of these integrals, which tended

to diverge numerically over larger energy bands. The main difficulty with GV is

associated with the maximization of the log-likelihood under H1. Here a multidi-

mensional constrained optimization must be repeated for each point of the grid, ΘR,

for each Monte Carlo replicate used to estimate E[Nc0 ].

5.2 TOHM and MHT on Fermi LAT data

As a practical application, we perform PL, GV and multiple hypothesis testing via

Bonferroni’s correction considering Example 3.1 and the respective Fermi Large Area

Telescope (LAT) simulation described in Section 3.2.1.

Results of the methods implemented are shown in Table 5.1 and Figure 5.3. In the

multiple hypothesis testing analysis, the smallest of the local p-values is reported

along with the respective estimates for the signal strength and location. As discussed

in Chapter 4, the latter are approximately equivalent to those obtained via TOHM.

When implementing PL, the test statistic supθ∈Θ{S?n(θ)} is constructed under the
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assumption that η = 0, and thus does not depend on the signal strength. However,

it does depend on the location of the source emission, therefore the estimation of η

under H1 must be conducted once the signal location has been estimated (through

MLE for instance). In our analysis, the location at which the processes {Tn(θ)} and

{S?n(θ)} achieve their maximum, i.e., θ̃ is the same at which the minimum among

the local p-values is achieved, hence, the same follows for the MLE of the signal

strength, namely η̂θ̃.

When computing the local p-values the largest significance observed is 6.191σ, fol-

lowed by PL with 5.909σ, GV with 5.482σ and finally the minimum of the Bonferroni

adjusted local p-values leads to 5.419σ significance. Although PL gives to the most

significant of the global p-values, it is difficult to interpret this result given the higher

expected rate of false detections observed in the simulation study. The Bonferroni

adjusted local p-value, over a set of R = 100 simultaneous tests, is only slightly more

conservative than GV. The disparity between the two is expected to grow, however,

as the number of grid points over the energy spectrum increases.

5.3 A sequential approach to select among different

procedures

Denote with pPL and pGV the global p-values provided by the right hand side of (1.29)

and (2.4) respectively. The PL and GV methods are typically used to overcome the

over-conservativeness of the Bonferroni’s bound, thus, one might expect pPL and

pGV to be smaller or equal to pBF . However, as shown in Theorem 6.2.1, this is not

necessarily the case when the number R of tests conducted is small. Specifically, for

large n and c,

pPL ≈ pGV ≤
R + 1

R
pBF . (5.4)

On the basis of (5.4), and the results of the previous sections, it is possible to

establish general guidelines for selecting the appropriate statistical testing procedure.

The goal is to adhere to the prescribed false-positive rate as closely as possible while

minimizing the computational effort. This can be accomplished by combining the

simplicity of multiple hypothesis testing with the robustness of global p-values in

a multi-stage procedure. Specifically, Figure 5.4 summarizes a simple sequence of

steps where multiple hypothesis testing methods are implemented first, and the more

time-consuming GV and PL are implemented only if simpler methods exhibit poor
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Figure 5.4: General guidelines for statistical signal detections via MHT and TOHM. ΘR is the grid
of possible signal-search locations. pL is the minimum of the local p-values defined as in (1.31) and
pBF its Bonferroni adjusted counterpart in (4.9). αF is the family-wise type I error rate. pPL and pGV

are the global p-values provided by the right hand side of (1.29) and (2.4) respectively. Dashed arrows
indicate that two actions are equally valid, and dotted lines lead to the final conclusion in terms of
evidence in favor of the new signal.

type I error rates and/or power.

In order to implement the sequential approach, we first calculate the R unadjusted

local p-values over the grid ΘR; the minimum of these p-values is denoted by pL.

Let αF be the family-wise probability of type I error introduced in Section 1.3. If

we observe pL > αF we fail to reject reject H0 with any of the procedures and

we can immediately conclude that we cannot reject H0. On the other hand, if

pL ≤ αF, a correction for the simultaneous R tests is needed, and because of its easy

implementation, we compute pBF . Whereas, if pBF < αF, then all methods reject

H0, and we can claim evidence in favor of the new source. Conversely, if pBF ≥ αF

we should implement a method that is typically less conservative than Bonferroni’s

correction, when dealing with large significances (e.g. 3σ, 4σ, 5σ), such as GV or

PL. Specifically, on the basis of the simulations in Section 5.1, GV appears to be

preferable for small sample sizes, as it provides a false-positive rate less than or
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Method Type I error Power

Unadjusted local 0.03033 0.89502
Bonferroni 0.00040 0.45211

Gross & Vitells 0.00089 0.53159
Sequential approach 0.00087 0.53161

Table 5.2: Probability of type I error and power of the testing methods and sequential approach
implemented on 100,000 simulated datasets from Example 3.1.

equal to αF. For large sample sizes, PL and GV are equivalent, and the decision

between GV and PL depends on the details of the models compared. As discussed in

Section 5.1, PL requires extensive numerical integration which can diverge for large

search windows Θ, while GV requires a small number of Monte Carlo simulations

which might become troublesome for complicated models. Finally, if pGV < αF

(or pPL < αF) we can claim evidence in support of the new emission, whereas if

pGV ≥ αG (or pPL ≥ αF) we cannot claim that a signal has been detected.

The sequential approach described in Figure 5.4 involves choosing a procedure after

having observed the inferential results. Thus, one might be concerned about possible

“flip-flopping” similar to that described in Feldman and Cousins [1998] in the context

of confidence intervalsa, i.e., the selection among different inferential procedures

on the basis of their results may artificially inflate the type I error rate and the

power. As argued below, however, this is not the case for the approach illustrated

in Figure 5.4.

By virtue of Theorem 6.2.1, both the type I error and the power of the sequential

approach are approximately equivalent to those of GV (or PL) for large values of

R. For simplicity, we hereafter suppose that the sample size is sufficiently large to

guarantee asymptotic equality of GV and PL, and GV is used when pBF ≥ αF. (The

results below follow in exactly the same way however, if PL is used instead of GV.)

Let α̃ be the overall false detection rate associated with the sequential approach

proposed in Figure 5.4, and consider the events

BF 1 = {Reject H0 at level αF with Bonferroni}
GV 1 = {Reject H0 at level αF with GV}.

aIn high energy physics researchers often decide to report upper limits instead of confidence
intervals on the basis of the results of the analysis being conducted. Feldman and Cousins [1998]
show that this approach leads to wrong coverage and propose a computational solution to build
confidence which guarantees correct coverage.
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Unadjusted Bonferroni Gross
local & Vitells

Bkg only 97056 37 2907
Time (secs) 0.974 0.000 136.282

Bkg+sig 10496 45210 44294
Time (secs) 1.061 0.000 137.532

Table 5.3: Summary on the analysis of 100,000 simulated datasets from Example 3.1. We report the
number of times each testing method is used by the sequential approach to make a final decision at
3σ, and the respective average computational times. The first two lines refer to the background only
simulations and whereas the last two lines correspond to the background + signal simulations.

Because the sequential approach rejects H0 when either Bonferroni or GV does so,

it follows that

α̃ = P (BF 1 ∪GV 1|H0)

= P (BF 1|H0) + P (GV 1|H0)− P (BF 1 ∩GV 1|H0)

= P (BF 1|H0) + P (GV 1|H0)− P (GV 1|BF 1, H0)P (BF 1|H0).

By (5.4), if H0 is rejected by Bonferroni then, for large R, it is also rejected by GV

and thus,

P (GV 1|BF 1, H0) ≈ 1,

from which it follows that α̃ ≈ P (GV 1|H0), where P (GV 1|H0) is the probability of

type I error of GV. Conversely, for smalll R, GV is more conservative than Bonfer-

roni, and thus P (BF 1|GV 1, H0) ≈ 1. Rewriting P (GV 1|BF 1, H0) via Bayes theorem

we obtain

P (GV 1|BF 1, H0) =
P (BF 1|GV 1, H0)P (GV 1|H0)

P (BF 1|H0)
≈ P (GV 1|H0)

P (BF 1|H0)
,

from which it follows that α̃ ≈ P (BF 1|H0).

To further investigate these aspects, we apply the sequential approach to a set of

100,000 simulated datasets from the model in Example 3.1 with φ fixed at 1.4. For

each dataset we first simulate 2000 background only events and then we simulate 30

additional events from a Gaussian source centered at 9GeV. For both the 100,000

background only datasets and the 100,000 background plus source datasets we com-

pute unadjusted local p-values, Bonferroni’s corrections, and GV. The power of the
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Figure 5.5: QQ-plots for the unadjusted local, Bonferroni’s bound and GV p-values computed for the
100,000 simulated background-only datasets from Example 3.1. Each dataset considers 2000 back-
ground only events. The p-values selected via the sequential procedure in Figure 5.4 are also reported.
Each set of p-values is compared with the expected quantiles of a Uniform distribution on [0, 1]. The
inlayed plots in each panel magnify the important range of the p-value distributions near zero.

sequential approach can be obtained in a similar manner by considering the events

L1 = {Reject H0 at level αF with local p-values}
GV 1 = {Reject H0 at level αF with GV}.

Table 5.3 reports the number of times each of the testing procedures considered is

selected by the sequential approach to make a final decision at the 3σ significance

level. The average computational times for each method are also reported. In the
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presence of source emission, the most computationally expensive method GV, and

implemented via the R package NONnest [Algeri, 2015], was used only about 44% of

the time, leading to a computational gain of about 89 days over the 100,000 simu-

lations. Conversely, in absence of the signal, GV was used about 2.9% of the time,

leading to a computational gain of about 155 days. In order to assess the robust-

ness of the method with respect to the desired statistical properties, we computed

the false discovery rate and the power using nominal levels at 3σ significance. The

results are presented in Table 5.2. As discussed above, the sequential approach ex-

hibits statistical properties which are approximately equivalent to those of GV (or

PL). As expected, the small discrepancies between the two methods are due to the

fact that in 0.375% of the replications pGV > pBF . When removing these cases from

the analysis, both the probability of a Type I error and the power of the sequential

approach coincide with those of GV.

Finally, Figure 5.5 displays the p-values computed with each procedure on each

of the 100,000 simulated background-only datasets. Ideally a p-value will follow a

uniform distribution on the unit interval under repeated sampling of data under

H0; this insures that the method will have the target Type I error rate. In the

QQ-plots in Figure 5.5, the p-values will fall along the 45◦ line if they follow a

uniform distribution. If they deviate above this line, the procedure is conservative

and if they deviate below the procedure will exhibit too many false positives. As

expected, the unadjusted local p-values are always smaller than their expected values

assuming uniform distribution, whereas both Bonferroni and GV are conservative.

The sequential approach leads to an intermediate situation in which the p-values

are over-conservative up to the significance level αF adopted at each step of the

algorithm in Figure 5.4 (3σ in Figure 5.5), whereas the p-values become under-

conservative above αF , i.e., only for uninteresting cases.
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6
Testing One Hypothesis Multiple

Times: the multidimensional case

In Chapter 3 a simple expansion for the expected number of upcrossings of {W (θ)},
is used to bound/approximate global p-values. In this chaper, we extends these

results to the multidimensional setting, i.e., we let θ ∈ Θ ⊂ RD, for arbitrarily large

D. Similarly to the one-dimensional case, we consider the supremum of a random

field indexed by θ as test statistic, and instead of the number of upcrossings we

use the mean Euler characteristic (EC) of the excursion set to approximate the

resulting global p-value. In order to overcome the difficulties associated to the

calculation of the mean EC, we discuss a simple algorithm to compute the EC in

multiple dimensions. This leads to an highly generalizable computational tool to

perform inference under non-standard regularity conditions [Algeri and van Dyk,

2018].

6.1 A quick review on random fields and geometry

To generalize the framework of Chapter 1, let Y be a random variable with probabil-

ity density h(y,η,θ) and let y = (y1, . . . , yn) be a random sample, each component

of which is distributed as Y . Suppose we wish to test a one-sided alternative hy-

pothesis

H0 : η = η0 versus H1 : η > η0, (6.1)
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analogous results follow when testing H0 versus H1 : η 6= η0 or H1 : η < η0.

We let η ∈ Ξ index the hypotheses in that η = η0 defines H0, and let θ be the

nuisance parameter that is only defined under H1, it has no value under H0, and

such that θ ∈ Θ ⊂ RD, with D ≥ 1. In Chapter 3, tests of hypothesis such as those

in (1.15), (2.3) or (3.22) are performed by means of a stochastic process, namely

{W (θ)}, indexed by the one-dimensional parameter θ. In order to extend these

results to the case where θ is multidimensional, we let {W (θ)} = {W (θ),θ ∈ Θ}
be a D-dimensional random fielda indexed by θ, and in order to test (6.1) we consider

the global p-value

P

(
sup
θ∈Θ
{W (θ)} > c

)
, c ∈ R. (6.2)

In the one-dimensional setting, P (supθ∈Θ{W (θ)} > c) is modelled via the probability

of having at least one upcrossing of c. The definition of upcrossings in Section 1.1.2,

however, is unhelpful in the multidimensional setting. For smooth random fields for

instance, if {W (θ)} crosses c at a point θ0, it also crosses c at all the nearby points,

leading to an infinite number of crossings. Therefore, our first aim is to identify a

generalization of the number of upcrossings in the context of random fields.

Following Hasofer [1978], one possibility is to consider the number of local maximab

of {W (θ)} that exceed c, namely Mc, hence

P

(
sup
θ∈Θ
{W (θ)} > c

)
= P (Mc ≥ 1) ≤ E(Mc). (6.3)

Unfortunately, analytical expressions for E(Mc) are known in literature only asymp-

totically in c, and thus cannot be exploited to derive multidimensional counterparts

of Results 3.1.2 and 3.1.3, which would rely on evaluating E(Mc0) at an arbitrarily

small c0. A quantity that is more amenable and for which analytical expressions

are known exactly, is the expected Euler characteristic (EC) of the excursion set

of {W (θ)} above c. A clear description of the EC requires a few concepts from

geometry that we now summarize [see Adler, 2000].

aThe term “field” is typically used to indicate a stochastic process whose parameter space is
multidimensional [Vanmarcke, 2010, p. 21].

bWe are interested in scenarios where local maxima becomes rarer and rarer as c→ +∞. Hence,
we are implicitly assuming that no ridges above c occur. However, the procedure to be discussed
aims to approximate the number of local maxima with the number of connected components above
c, hence it also covers situations where, instead of isolated local maxima, sets of local maxima
(ridges) are present.
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Figure 6.1: The shaded regions illustrate three possible excursion sets Ac. The Euler characteristic
(EC) of Ac in the left, central and right panels are 1,2 and 3, respectively. The EC can be obtained by
counting the number of connected components less the number of holes ofAc. Alternatively, considering
a quadrilateral mesh of the image (black points and black edges), the same Euler characteristic is given
by the number of points less the number of edges plus the number of squares.

Definition 6.1.1. The excursion set of {W (θ)} above c is the set of points

Ac = {θ ∈ Θ : W (θ) ≥ c}. (6.4)

Definition 6.1.2. The Euler characteristic, φ(A), of a compact set A ⊂ RD is

the additive, integer-valued functional of A uniquely determined by the following

properties:

φ(A) =

{
1 if A is homeomorphic to a D-dimensional sphere;

0 otherwise.
(6.5)

and

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B).

Intuitively, in two dimensions the EC of Ac is its number of connected components

less its number of “holes”, see Figure 6.1. As noted by Hasofer [1978], the maxima of

{W (θ)} above large values of c can be approximated by elliptic paraboloids, which

correspond to connected components ofAc. Hence, for large c, the EC approximately

equals the number of connected components, and thus also approximately equals the

number of local maxima above c. It follows from (6.3) that, as c→∞,

P

(
sup
θ∈Θ
{W (θ)} > c

)
≈ E[φ(Ac)]. (6.6)
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Gaussian case

ρ0(c) = 1− Φ(c) ρ1(c) = e−c
22

2π

ρ2(c) = e−c
22

(2π)3/2
ρ3(c) = (c2−1)e−c

22

(2π)2

ρ4(c) = (c3−3c)e−c
22

(2π)5/2
ρ5(c) = (c4−4c2+3)e−c

22

(2π)3

χ2
s case

ρ0(c) = 1− Fχ(c) ρ1(c) = c
s−1
2

Γ( s
2

)

√
2
π
e−

c
2

ρ2(c) =
(
c
2

) s
2
−1 e−

c
2

2π

[
c− (s− 1)1{s≥2}

]
ρ3(c) = c

s−3
2 e−

c
2

(2π)3/2Γ( s
2

)2
s−2
2

{
(s− 1)

[
(s− 2)1{s≥3}

−2c1{s≥2}
]
+(c2 − c)1{s≥1}

}
Table 6.1: EC densities, ρd(c), of Guassian and χ2 random fields. Φ(·) is the cumulative function of a
standard normal, Fχ(·) is the cumulative function of a χ2

s and 1{·} is the indicator function. See Adler
and Taylor [2009, p. 426] for higher order EC densities.

Worsley [1994, 1995] and Adler [2000], among others, give analytical expressions

for E[φ(Ac)], but they are often limited by regularity conditions on {W (θ)}, Ac
and Θ, or by the dimension of Θ. A more generalizable approach is given by

the seminal work of Taylor and Adler [2003], Adler and Taylor [2009] and Taylor

and Worsley [2008]. They provide a convenient expansion of E[φ(Ac)] for smooth

Gaussian-related random fields on smooth manifolds with piecewise smooth bound-

aries. Specifically, we assume that {W (θ)} can be written as a function of i.i.d

copies of a Gaussian random field {Z(θ)}, with mean zero and variance one, and

we require Conditions 6.1.3 to hold.

Conditions 6.1.3.

(i) Θ is a compact manifold differentiable up to at least the third order;

(ii) {Z(θ)} has almost surely uniformly continuous partial derivatives up to the

second order, with finite second moments in an open neighbourhood of Θ;

(iii) the joint distribution of {Z(θ)} and its partial derivatives is non-degenerate.
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see Taylor and Adler [2003, p. 547], for a more detailed formalization of Conditions

6.1.3 in geometric terms.

From Taylor and Adler [2003], it follows that, under Conditions 6.1.3,

E[φ(Ac)] =
D∑
d=0

Ld(Θ)ρd(c), (6.7)

where the ρd(c) are functionals known as EC densities, and only depend on the

(identical) marginal distribution of each W (θ) in {W (θ)}; for example, ρ0(c) =

P (W (θ) > c). Closed-form expressions of ρd(c) are available in literature for Gaus-

sian, χ2, F and other Gaussian-related random fields [Taylor and Adler, 2003, Adler

and Taylor, 2009, Taylor and Worsley, 2008]. The functionals Ld(Θ) are known as

the Lipschitz-Killing curvatures of Θ. Intuitively, they measure the intrinsic volume

of Θ, i.e., they account for its volume, surface area, and boundaries. Their analytical

forms typically rely on the covariance structure and partial derivatives of {W (θ)}.

Unfortunately, obtaining closed-form expressions for Ld(Θ) is challenging for non-

isotropic fields [Adler and Taylor, 2009]. Even in the isotropic case this may require

tedious calculations and knowledge of the distribution of the derivatives of {W (θ)}.
In the next two sections we introduce a novel approach to estimate the Ld(Θ) in

(6.7), and consequently, to compute the approximation for the global p-value in

(6.6).

The error rate associated with (6.6) is exponentially small in the Gaussian case

[Taylor et al., 2005], specifically,

P

(
sup
θ∈Θ
{Z(θ)} > c

)
= E[φZ(Ac)] +O

(
e−

υc2

2

)
(6.8)

for some υ > 1 and with E[φZ(Ac)] being the expected EC of the excursion set

of {Z(θ)} with respect to c. However, no quantification of errors are available for

non-Gaussian fields [Taylor and Worsley, 2008].

6.2 Methodological setup

In this section we extend the results of Section 3.1 with the goal of efficiently com-

puting the right hand side of (6.7). This can be done following the approach im-

plemented by Vitells and Gross [2011] in two dimensions, which we formalize and
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extend to an arbitrary large dimension in Result 6.2.1 and Result 6.2.2.

Result 6.2.1. Let c ∈ R, and define a sequence of constants c1 6= c2 6= · · · 6= cD,

with ck ∈ R for k = 1, . . . , D. If (6.7) hold, then,

E[φ(Ac)] = L0(Θ)P (W (θ) > c) +
D∑
d=1

L∗d(Θ)ρd(c), (6.9)

where L∗d(Θ) are the solutions of the system of D linear equations

E[φ(Ac1)]− L0(Θ)ρ0(c1) =
∑D

d=1 Ld(Θ)ρd(c1)

E[φ(Ac2)]− L0(Θ)ρ0(c2) =
∑D

d=1 Ld(Θ)ρd(c2)
...

E[φ(AcD)]− L0(Θ)ρ0(cD) =
∑D

d=1 Ld(Θ)ρd(cD),

(6.10)

with Ack being the excursion sets of {W (θ)} above the constants ck and E[φ(Ack)]
their expected EC.

Proof. The proof is straightforward since the expansion for the expected EC in (6.7)

holds for any value c. The Lipschitz-Killing curvature for d = 0, L0(Θ), corresponds

to the Euler characteristic of Θ [Taylor and Worsley, 2008]. Since Θ is not random,

L0(Θ) is known (e.g., L0(Θ) is 0, 1, 1 or 2 if Θ is a circle, a disc, a square or a

cube, respectively) and does not need to be estimated. Finally, the EC densities

ρd(·) are know for all d = 0, . . . , D. Thus, (6.10) can be seen as a system of D linear

equations with D unknowns, i.e., L1(Θ), . . . ,LD(Θ), and its solution is given by the

vector L∗1(Θ), . . . ,L∗D(Θ).

Result 6.2.2 follows from (6.6), (6.7) and (6.9).

Result 6.2.2. Under the conditions of Result 6.2.1, (6.6), (6.7) and (6.9) together

imply

P

(
sup
θ∈Θ
{W (θ)} > c

)
≈ L0(Θ)P (W (θ) > c) +

D∑
j=1

L∗d(Θ)ρd(c) (6.11)

as c→∞.

In order to compute the solution L∗1(Θ), . . . ,L∗D(Θ) of (6.10) we estimate each

E[φ(Ack)] via a Monte Carlo simulation; details are given in Section 6.4. We could
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also estimate Ld(Θ), d = 1, . . . , D via regression as described in Adler et al. [2017].

Specifically, in Adler et al. [2017] the Lipschitz-Killing curvatures Ld(Θ) are treated

as unknown regression coefficients, whereas the response vector and the design ma-

trix of the regression model are given by E[φ(Ac)] and the EC densities ρd(c), re-

spectively, evaluated over different realizations of the random field under study, and

for different values of c. The latter are either chosen over a grid of equally spaced

values ranging from the maximum and the minumum of {W (θ)} observed, or on the

basis of the quantiles or the variance of the observed values of {W (θ)}. Adler et al.

[2017] discuss this approach in the context of brain imaging, where a realization of

the random field of interest (the brain) is available for each of the subjects under

study (the patients). However, when different observations of the random field are

not available, a Monte Carlo sample is needed. In this case, Result 6.2.1 provides

a simplified solution to estimate E[φ(Ack)] and compute the Monte Carlo error as-

sociated with it. A discussion on the choice of the constants ck in this setting is

postponed to Section 6.4.2.

Notice that when D = 1, {W (θ)} is a random process and the search area is the

interval Θ ≡ [L,U] ⊂ R. Hence L0(Θ) = 1, and (6.7) specifies

E[φ(Ac)] = P (W (L) > c) + L1(Θ)ρ1(c) (6.12)

where the second term in the right hand side of (6.12) is the so-called expected

Differential Topology (DT) characteristic of Ac [Worsley, 1994], and corresponds

to the number of upcrossings of c by {W (θ)} [Chiu et al., 2013], i.e., E[Nc] (see

Chapter 3). Thus we write

E[Nc] = L1(Θ)ρ1(c), (6.13)

hence, (3.4) in Result 3.1.2 is satisfied with a(c) = ρ1(c), and b(Θ) = L1(Θ). Equa-

tion (6.14) follows from Result 3.1.3 and (6.13)

P

(
sup
θ∈Θ
{W (θ)} > c

)
≈ P (W (L) > c) +

ρ1(c)

ρ1(c0)
E[Nc0 ] ∀c0 ≥ c, c0 ∈ R (6.14)

as c → ∞. In general, when D > 1, the Lipschitz-Killing curvatures may be

negative and thus, for small c, E[φ(Ac)] may lead to an uniformative lower bound

for P
(
supθ∈Θ{W (θ)} > c

)
. Conversely, when D = 1, the relationship in (6.13)

guarantees that L1(Θ) is always non-negative and, on the basis of Result 6.2.1, so

is its estimate L∗1(Θ). Thus, coherently with Result 3.1.3, when c is small the right
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hand side of (6.14) leads to an upper bound for the left hand side.

6.2.1 LRT and global p-values when testing on the boundary

We consider a generalization of the mixture model in (1.14) where the nuisance

parameter, θ, in g(y,θ) is allowed to be multidimensional. We are interested in

testing (1.15) and (2.3); both tests are performed on the boundaries of the parameter

space of η.

Denote with {K(θ)} the multivariate analogous of {K(θ)}, i.e., we let {K(θ)} be a

random field indexed by θ and such that K(θ) ∼ χ̄2
01 for all θ ∈ Θ. From Taylor

and Worsley [2008] it follows that the EC densities, ρd(c), of {K(θ)} are given by

the sum of the EC densities of a χ2
0-random field and those of a χ2

1-random field,

each multiplied by the respective mixture weight, i.e., 0.5. When Θ ⊂ R2 as in

Examples 1 and 2, (6.6) specifies as

E[φ(Ac)] =
c

1
2 e−

c
2

(2π)
3
2

L2(Θ) +
e−

c
2

2π
L1(Θ) +

P (χ2
1 > c)

2
L0(Θ) (6.15)

where the functions of c multiplying L0(Θ), . . . ,L2(Θ) are the EC densities of a

two-dimensional χ2
1 random field (see Table (6.1)) divided by 2. Because the EC

densities of a two-dimensional χ2
0 random field evaluated at c > 0 are all zero, they

do not contribute to (6.15).

In Section 6.4.2, we investigate via a suite of simulation studies the precision of

(6.15) to approximate (6.2).

6.3 Computing the mean Euler characteristic via graphs

We implement the approximation of the global p-value in Result 6.2.2 by estimating

E[φ(Ack)], for c1, . . . , cD via a Monte Carlo simulation; this requires the evaluation

of φ(Ack) for a sequence of realizations of {W (θ)}. In this section we propose a

convenient algorithm to achieve this goal.

To simplify notation, we assume that Θ is the cross product of the parameter spaces

of the components of θ. Specifically, Θ = Θ1×· · ·×ΘD, where Θd is the parameter

space of component d of θ; the same reasoning easily applies when Θ ⊂ Θ1×· · ·×ΘD

(e.g., Example 6.1 described in Section 6.4.1). In practice, we can only evaluate
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Algorithm 1 Computing φ(Ack) via graphs

Input 1: Constant ck.

Step 1: For all pairs (θr,θs) in Ãck calculate the distance dϕ(θr,θs) in
(6.16);

Step 2: construct the undirected graph GDk = (Ãck , ED
k ) where the edges

ED
k are allocated according to (6.17), with d = D;

Step 3: set j = 1;

Step 4: while j < D:

(i) set d = D − j;
(ii) obtain Gdk from Gd+1

k by removing edges in Ed+1
k for which (6.17)

does not hold;

(iii) count |Cd
k | in Gdk via Eppstein et al. [2010];

(iv) j=j+1;

Step 5: calculate φ(Ack) via (6.18).

Output: Value of φ(Ack).

{W (θ)} on a finite set of values for θ. We do so by placing a grid of Rd points on

Θd, for d = 1, . . . , D and evaluating {W (θ)} at θr = (θr1, . . . , θrD) for r = 1, . . . , R,

with R = R1× · · · ×RD, so that the evaluation points are the cross products of the

component-wise grids. Finally, we let Θ̃d be the ordered set of evaluation points of

component d of θ and Θ× be the full set of evaluation points of θ over the cross

product of Θ̃1, . . . , Θ̃D, i.e., Θ× = {θr, r = 1, . . . , R}. For each constant ck in Result

6.2.1, we define the excursion sets of {W (θr)} above ck to be the set of evaluation

points Ãck = {θr ∈ Θ× : W (θr) ≥ ck}, hence Ãck ⊆ Θ× provides a discretization of

Ack .

In order to compute φ(Ack) numerically, we consider a quadrilateral meshc of Ack
[Taylor and Worsley, 2008], i.e., the set of vertices composed of the points in Ãck
and the edges that connect them to form a partition of Ack into D-dimensional

hyperrectangles, and denoted byMk. Specifically, we consider the set of edges, E1
k ,

such that two vertices θr and θs in Ãck are joined by an edge if and only if

cFor simplicity, we limit our attention to the case of a quadrilateral mesh. However, our
approach can be easily extended to any mesh involving regular polygons.
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Figure 6.2: Left panel: quadrilateral mesh M′k of the excursion set Ack (gray area), with set of
vertices Ãck (black dots) and edges E1

k allocated according to (6.16) (black solid segments) of unit
length. Central panel: quadrilateral mesh M′k and diagonals of length

√
2 (black dashed segments).

Right panel: graph G2
k = (Ãck , E2

k) in which the three 4-dimensional cliques in C2
k are highlighted in

orange, blue and green. As expected, each clique in G2
k corresponds to a square in M′k.

dϕ(θr,θs) =

√√√√ D∑
d=1

(ϕd(r)− ϕd(s))2 = 1, (6.16)

where, ϕd(r) is the index of component d of θr within its (ordered) grid of evaluation

points Θ̃d and dϕ(θr,θs) is the Euclidean distance between the D indexes of the D

components of θr and θs within the componen-twise grids Θ̃1, . . . , Θ̃D. In Mk,

the lengths of the edges in E1
k are the Euclidean distances between θr and θs,

i.e., d(θr,θs) =
√∑D

d=1(θrd − θsd)2. In quadrilateral meshes involving only unit

hypercubes d(θr,θs) = dϕ(θr,θs).

We assume that Θ× is sufficiently dense to guarantee that Ack is well approximated

byMk. The EC is then calculated by alternatively adding and subtracting the num-

ber of d-dimensional hyperrectangles for d = 0, . . . , D in Mk [e.g., Adler, 2000]. In

two dimensions for instance, the EC is obtained by counting the number of vertices,

subtracting the number of edges and adding the number of rectangles [Worsley,

1995, Taylor and Worsley, 2008], e.g., Figure 6.1.

In order to ease computations in higher dimensions, one possible way to count the

number of hyperrectangles of arbitraly large dimension d is summarized in Algo-

rithm 1 and described below. The goal of Algorithm 1 is to construct graphs where

the number of d-dimensional complete subgraphs (or cliques, to be defined soon) is

equal to the number of d-dimensional hyperrectangles in Mk. This can be done as

follows.
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For each constant ck needed by Result 6.2.1, and for each dimension d = 1, . . . , D,

consider an undirected unweighted graph, Gdk = (Ãck , Ed
k), with vertices Ãck and

edges Ed
k such that two vertices θr and θs are joined by an edge if and only if

1 ≤ dϕ(θr,θs) ≤
√
d (6.17)

where
√
d corresponds to the length of the longest diagonal of a d-dimensional unit

hypercube.

A general graph G = (V,E) has a clique of dimension Q if there exists a subset of Q

vertices in V such that every pair of distinct vertices of the subset are connected by

an edge. We denote the set of all 2d-dimensional cliques in Gdk by Cd
k . The distance

between points in Ãck does not affect the enumeration of the hyperrectangles inMk.

Specifically, since the allocation of the edges E1
k only depends on the indexes ϕd(r)

of the θrd within Θ̃d, for d = 1, . . . , D, the number of d-dimensional hyperrectangles

in Mk is equal to the number of d-dimensional unit hypercubes in a “unit” mesh,

denoted by M′
k, with vertices Ãck and edges E1

k of unit length. It follows that the

2d vertices of each clique in Cd
k is a subset of points in Ãck which are at least one

unit, and at most
√
d, apart one another. By construction, this implies that each

clique in Cd
k corresponds to a unit d-dimensional hypercube in M′

k, which in turn

corresponds to a d-dimensional hyperrectangle in Mk. For illustrative purposes, in

Figure 6.2 we give an example in two dimensions, where for simplicity the points

θr are equally spaced over unit intervals in each Θ̃d, d = 1, 2, and thus Mk =M′
k.

Notice that the main difference between the mesh Mk (or M′
k) and the graph GDk

is that the former depends on the position of the points in Ãck over Θ and their

distance; whereas the latter only accounts for their connectivity.

Therefore, in general terms, we can compute φ(Ack) as

φ(Ack) =
D∑
d=0

(−1)d|Cd
k | (6.18)

= |Ãck | − |Ek|+
D∑
d=2

(−1)d|Cd
k | (6.19)

where | · | is the cardinality of the set considered. Equation (6.19) follows from (6.18)

since by construction G0
k = Ãck , G1

k is the unweighted graph with the same vertices

and edges of Mk and M′
k; thus |C0

k | = |Ãck | =
∑R

r=1 1{w(θr)>ck} and |C1
k | = |E1

k | =∑R
r=1

∑R
s=1 1{dϕ(θr,θs)=1}.
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Naively, computing |Cd
k | by sequentially considering each subset of Ãck of size 2d

requires a complexity O(|Ãck |2
D

4D) to evaluate (6.18), a massive computation load

unless D is quite small. The advantage of converting the hyperrectangles enumera-

tion problem into a clique-finding problem is that several efficient algorithms exists

to address this challenge in near-optimal time [e.g., Bron and Kerbosch, 1973, John-

ston, 1976, Eppstein et al., 2010]. In our implementations in Section 2.2, we use the

algorithm proposed by Eppstein et al. [2010], and implemented in the R function

cliques in the igraph package [Csardi and Nepusz, 2006]. Specifically, Eppstein

et al. [2010] propose a variation of the Bron-Kebosch algorithm for sparse graphsd

where the running time is of O(h|Ãck |
h
3 ), with h = 2D − 1. This is particularly

convenient in our context where the constants ck can be chosen arbitraly to reduce

both the size of the graph and its sparsity. Hence in Algorithm 1 we recommend a

top-down approach where GDk is constructed first, and the constants ck can be ade-

quately adjusted between Step 2 and Step 3 in order to increase sparsity in GDk . The

graphs Gdk , for d = 0, . . . , D − 1, are obtained subsequently by removing edges for

which (6.17) is not satisfied as d decreases. An additional advantage of this approach

is that GDk provides a simple two-dimensional representation of the D-dimensional

excursion sets Ack .

Finally, for adequate choices of ck (see Section 6.4.2), Monte Carlo estimates of

E[φ(Ack)], namely ̂E[φ(Ack)], can be obtained by computing Algorithm 1 over a

small set of Monte Carlo replicates of {W (θr)} and averaging over the values φ(Ack)
calculated on each replicate. (The reader is referred to Section 6.4.2 for a discussion

on the accuracy of ̂E[φ(Ack)].) Consequently, we can approximate the right hand

sides of (6.11) with

L0(Θ)P (W (θ1) > c) +
D∑
j=1

L̂∗d(Θ)ρd(c) (6.20)

where L̂∗d(Θ) are the solution of the system of equation in (6.10) with E[φ(Ack)]
in the left hand sides of each equation replaced by their Monte Carlo estimates
̂E[φ(Ack)].

dThe Bron-Kebosch algorithm finds all maximal cliques in a graph, i.e., it lists all subsets of
vertices for which each pair is connected by an edge, and such that, if an additional vertex is added
to any of these subsets the complete connectivity is violated [Bron and Kerbosch, 1973].
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6.4 Numerical results

6.4.1 Motivating Examples

In this section we show how TOHM can be used in the context of feature detection

in images, comparison of non-nested models characterized by multidimensional pa-

rameters and a logistic regression with a break point and change of trend. We refer

to these examples with Example 6.1, 6.2 and 6.3, respectively; notice that in all of

them the multidimensional parameter which characterizes the structural change in

data distribution, and is not identifiable under H0, is denoted with θ.

Example 6.1. We consider a dark matter search in the sky where the goals are

(i) to assess the presence of a photons emission due to a dark matter source in

addition to background photons, and (ii) to identify the location at which maxi-

mum evidence in favor of the suspected source is achieved. Specifically, we consider

realistic simulations of the Fermi Large Area Telescope (LAT) where the astrophys-

ical background is uniformly distributed over a disc in the sky of 30◦ radius and

centered at (195RA, 28DEC), which corresponds to our search region Θ. In our

simulations the dark matter source is modeled as a bivariate Gaussian located at

(θ1, θ2) = (174.952, 37.986). Realistic representations of the systematic errors, as

well as the calibration of the detector, were included in the simulation obtained via

the gtobssim packagee. This set up led to 51, 098 background events and 39 dark

matter events. We specify the model of interest as

(1− η)
1

λ(Θ)
+ η

1

kθ1θ2
exp

{
− 1

0.02

[(
x− θ1

θ1

)2

+

(
y − θ2

θ2

)2]}
(6.21)

where x ∈ [165; 195], y ∈ [28−
√

302 − (x− 195)2; 28+
√

302 − (x− 195)2], η ∈ [0, 1]

is the intensity of the dark matter emission, θ = (θ1, θ2) is the location of the

emission over the disc Θ, kθ1θ2 is a normalizing constant and λ(Θ) is the area of Θ.

We assess the presence of the signal by testing (1.15).

Example 6.2. We consider the Compressive strength and strain of maize seeds

dataset available in the R package goft [Gonzalez-Estrada and Villasenor-Alva,

2016]. The dataset records the compression strength in Newtons of 90 seeds and

the goal is to choose between a gamma and a log-normal distribution for the data.

ehttp://fermi.gsfc.nasa.gov/ssc/data/analysis/software
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Figure 6.3: Data, null and fitted models. Top panel: 2D histogram of the Fermi-LAT realistic data
simulation for Example 6.1. The white circle indicates the location at which the LRT-process achieves
its maximum, i.e., θ̃ = (175, 38) with estimated intensity η̂θ̃ = 0.001. Bottom left panel: histogram of
the maize seeds strength data for Example 6.2. The null model in (1.15) (blue dashed curve) is fitted
as a gamma distribution with (τ̂ , γ̂) = (2.762, 83.007). The null model in (2.3) (green dotted line) is
fitted as a log-normal distribution with (µ̂, σ̂) = (5.243, 0.614). The alternative model when testing
(1.15) (red solid line) is fitted with (η̂µ̃σ̃, γ̂µ̃σ̃, τ̂µ̃σ̃, µ̃, σ̃) = (0.783, 4.820, 88.742, 5.041, 0.5). Finally
the alternative model when testing (2.3) (chained orange line) is fitted with (η̂γ̃τ̃ , γ̃, τ̃ , µ̂γ̃τ̃ , σ̂γ̃τ̃ ) =
(0.741, 9.816, 83.061, 5.014, 0.472). Bottom right panel: Down syndrome data, the model in (6.23)
selected by THOM is a break point logistic regression with linear trend (red solid lines) i.e., θ̃ =
(θ̃, α̃) = (31.265, 1), with a break point at θ̃ = 31.265 (red triangle). For comparison, a break point
logistic regression with change of trend from linear to quadratic (gray dashed line) is also fitted while
fixing α = 2. In this case the breakpoint occurs at θ̃ = 20 (gray triangle).
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Figure 6.4: Estimated approximations in (6.20) (blue dashed line), Monte Carlo estimates of
P (supθ∈Θ{W (θ)} > c) (red solid line) in log10-scale, and Monte Carlo Errors (pink areas) for in-
creasing values of the threshold c, for Example 6.1 (left panel), Example 6.2 (central panel) and

Example 6.3 (right panel). Monte Carlo errors associated with ̂E[φ(Ack)] in (6.20) are plotted as gray
areas. In each plot the sample size of each Monte Carlo dataset is 100,000, the number of Monte Carlo

replicates used to obtain the Monte Carlo p-values is 10,000, whereas the quantities ̂E[φ(Ack)] have
been estimated over a separate set of 100 Monte Carlo replicates.

Hence the we consider the comprehensive model

(1− η)
e−y/τyγ−1

kτγ
+ η

exp
{
− ln y−µ

2σ2

}
ykµσ

, (6.22)

where η ∈ [0, 1], γ > 0, τ > 0, kτγ and kµσ are normalizing constants. In order

to ease our computation, we let y ∈ (0, 1000]. In this case the parameter which is

present only under the alternative is θ = (µ, σ) when testing (1.15) and θ = (γ, τ)

when testing (2.3).

Example 6.3. We refer to the Down Syndrome dataset introduced in Example 3.2.

However, in contrast to Example 3.2, here we allow for a change of trend after the

break point. Specifically, we allow for a quadratic trend, a change in the slope of the

linear trend or a break due to a change of the intercept, i.e., the model of interest is

E

[
log

(
πi

1− πi

)]
= φ1 + φ2xi + ξ(xi − θ)α1{xi≥θ} for i = 1, . . . , n (6.23)

where πi = P (Yi = 1), x ∈ R, 1{·} is the indicator function, θ = (θ, α), with

α ∈ {0, 1, 2}, we let Θ ≡ [−12, 12]× {0, 1, 2}, and we test (3.22).

For Examples 6.1 and 6.2 the tests in (1.15) and/or (2.3) are performed via the

classical LRT. Hence, we consider the random field {K(θ)} with componentsK(θ) ∼
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χ̄2
01. In Example 6.3, we consider the signed-root-LRT, Qn(θ), in (3.23). For each

θ and under H0, Qn(θ) is asymptotically normally distributed with mean-zero and

unit variance. Further, by exploiting the asymptotic equivalence of Qn(θ) and the

normalized Score function [Davies, 1977, Moran, 1970], it can be shown [Pilla et al.,

2005] that the supremum of the random field {Qn(θ)} converges in distrubution to

the supremum of a mean zero and unit variance Gaussian random field.

The data for Examples 6.1-6.3 are plotted in Figure 6.3.

6.4.2 Goodness of the approximations and choice of ck

Our first task is to assess the validity of the approximation of (6.2) via (6.20), as

c→∞.

In the plots in Figure 6.4 we show as red dashed lines the Monte Carlo estimates of

P (supθ∈Θ{W (θ)} > c) obtained using 10, 000 data sets simulated under the null

model. In order to guarantee that the asymptotic distribution of the test statistics

considered is achieved, we simulate at each replicate 100, 000 events; their Monte

Carlo errors are given by the pink areas. These are compared with the approxima-

tion in (6.20) plotted as blue dashed lines as c increases (x-axis). We use a set of

100 Monte Carlo replicates, again each of size 100, 000, to estimate the quantities

E[φ(Ack)] used in (6.10) to obtain each L∗d(Θ) in (6.9) with φ(Ack) computed via

Algorithm 1 at each replicate.

For Example 6.1 (left panel of Figure 6.4), we considered a grid of size R = 2821

over the 30 degree radius circular search region centered at (195RA, 28DEC). Since

in this case Θ is given by a disc, its EC is one and thus L0(Θ) = 1. In order

to estimate L1(Θ) and L2(Θ) we consider c1 = 1 and c2 = 8, which lead to an

accurate approximation of P (supθ∈Θ{W (θ)} > c), with L̂∗1(Θ) = −244.053 and

L̂∗2(Θ) = 644.244.

For Example 6.2 in the central panel of Figure 3.4, we define a grid of size R = 2500

over the square [1, 10]× [0.2, 5]. Again L0(Θ) = 1, and we chose c1 = 2 and c2 = 3.

The resulting estimates for the Lipschitz-Killing curvatures are L̂∗1(Θ) = 30.11037

and L̂∗2(Θ) = 30.52665, which in this case also lead to a good approximation of

P (supθ∈Θ{W (θ)} > c).

Finally, the right panel of Figure 6.4 shows the goodness of the approximation pro-

vided by (6.20) for Example 6.3. The parameter space Θ corresponds to [−12, 12]×
[0, 2], and we let R=150 as in practice we only allow values of α equal to 0, 1 and
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Example θ̃ P-value Error
(significance) (significance interval)

Example 6.1 (θ̃1, θ̃2) 1.092 · 10−26 9.272 · 10−28

(175, 38) (10.629σ) [10.621σ; 10.637σ]

Example 6.2 (µ̃, σ̃) 0.036 0.012
H0 : η = 0 vs H0 : η > 0 (5.041, 0.5) (1.801σ) [1.663σ; 1.988σ]

Example 6.2 (γ̃, τ̃) 0.624 0.096
H0 : η = 1 vs H0 : η < 1 (4.898, 82.653) (0.00σ)

Example 6.3 (θ̃, α̃) 8.611 · 10−30 2.494 · 10−30

(31.265, 1) (11.276σ) [11.254σ; 11.306σ]

Table 6.2: TOHM p-values computed via (6.20), σ-significance and respective errors.

2. Selecting c1 = 0.5 and c2 = 1, we obtain L̂∗1(Θ) = 16.724 and L̂∗2(Θ) = 23.291

which lead to a satisfactory approximation for the global p-value.

Since Result 6.2.1 and Result 6.2.2 hold for any choice of ck, k = 1, . . . , D, it is con-

venient to choose them sufficiently small so that the excursion sets Ack are composed

by a reasonably high number of connected components; this reduces the size of the

Monte Carlo simulation required to accurately estimate the quantities E[φ(Ack)].
Hence, the thresholds ck should be chosen small enough that the excursion sets Ack
are non-empty with high probability. Additionally, since both the size and the spar-

sity of the graphs GDk affects the running time of Algorithm 1, ck should be selected

accordingly. These aspects can be assessed with a sensitivity analysis. Specifically,

for a given ck, GDk allows a two-dimensional visualization of the D-dimensional mesh

Mk, and thus after Step 2 in Algorithm 1, ck can be increased to increase sparsity

and decrease the size of GDk before proceeding with Steps 3-5.

In principle, the choice of c1, . . . , cD should also take into account the possibility

that the ECs, φ(Ack), for different values of k could be correlated with one another.

However, since we are interested in c → ∞, the Monte Carlo error associated with

(6.20) become extremely small as c increases, and this is true even when, as in

Figure 6.4, the quantities φ(Ack) have been computed on the same set of Monte

Carlo simulations for each ck considered.
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6.4.3 Data analysis

We calculated the TOHM p-value in (6.20) and respective significance for Examples

6.1, 6.2 and 6.3. The results are summarized in Table 6.2.

In Example 6.1, we performed R = 2821 tests over our circular search region centered

at (195RA, 28DEC). In our realistic simulation, the true dark matter emission was

located at (174.952RA, 37.986DEC) and the LRT-process used in TOHM achieves

its maximum at θ̃ =(175RA, 38DEC) with about 10σ significance. Notice that our

original dataset includes 51,098 background events and only 39 dark matter events;

hence the procedure appears to be particularly powerful even in presence of a low

signal-to-noise ratio. The identified location is plotted as a white circle in the upper

panel of Figure 6.3.

In Example 6.2, we set R = 2500 when testing (1.15) and the gamma model is

rejected at a 0.05 significance level by the THOM p-value. Whereas, when testing

(2.3), the log-normal model cannot be rejected; the resulting p-value is 0.624. Thus,

the log-normal model is selected for the maize seeds strength data, and the maximum

is achieved at µ̃ = 5.004 and σ̃ = 0.633. The log-normal fitted model is plotted in

the bottom left panel of Figure 6.3 as a red solid line.

Finally in Example 6.3, when testing (3.22) R = 150 times, the global p-value

computed via (6.20) provides strong evidence (∼ 11σ) in favor of a linear trend

(α̃ = 1) with a break point at θ̃ = 31.265. Hence we expect the risk of giving birth

to a child with down syndrome to increase when the mother is 31 years old or older.

The model selected is displayed as a red solid line in the bottom right panel of Figure

6.3, with the break-point indicated by a red triangle. For the sake of comparison,

we also plot the fitted model when allowing a quadratic trend (α = 2) with a break

point selected by the procedure at θ̃ = 20.
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Conclusion

The main findings collected in this thesis can be summarized as follow.

In Chapter 1 we review several approaches proposed in both the statistics and the

physics literature to test hypotheses under standard and non-standard regularity

conditions. These include tests conducted on the boundary of the parameter space

[Chernoff, 1954], tests where a nuisance parameter is present only onder the alter-

native [Davies, 1987, Gross and Vitells, 2010, Pilla and Loader, 2005, Pilla et al.,

2005] and classical multiple hypothesis testing [Bonferroni, 1935, 1936]. This allows

us to introduce the background necessary for the developments and the comparisons

discussed in the subsequent chapters.

In Chapter 2 we show that we can select between non-nested models by means of a

comprehensive model of which the two models under comparison are special cases.

The problem is then reduced into a test of hypothesis for nested models where the

parameter of interest, η, is tested on the boundary of its parameter space while a

nuisance parameter, θ, is present only under the alternative. The test is performed

by adequtely adjusting the method of Gross and Vitells [2010] to correct for the

look-elsewhere effect on the basis of the results in Chernoff [1954]. This approach

is implemented in the context of inderect searches for dark matter which mainly

motivate the developments in this chapter.

In Chapter 3 we formalize the methodological framework of TOHM in one-dimension

and show how EVT and Monte Carlo methods can be combined to efficiency ap-

proximate the supremum of a stochastic process and obtain global p-values. This

generalizes the solution of Gross and Vitells [2010] beyond the LRT and χ2 case and

clarifies the conditions necessary for these results to hold. We also provide guidelines

and graphical tools to validate the adequacy of the grid resolution and select the

threshold c0 used to effectively reduce the Monte Carlo error.

In Chapter 4 we identify scenarios where TOHM leads to the same inference of MHT

via Bonferroni, and we introduce a simple plot to assess when equivalence among the

two hold. On the other hand, we show that when the two testing procedures lead to

different results, the TOHM bound is typically less conservative when the number

R of (sub-)tests conducted is large and, unlike Bonferroni, yields valid inference.
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Conversely, when R is small, Bonferroni is less conservative than TOHM and it is

therefore preferred in such cases.

In Chapter 5 we show that, for small samples sizes, the testing procedure of Pilla

et al. [2005] and Pilla and Loader [2005] may produce a higher number of false

detections than expected. Conversely, the method of Gross and Vitells [2010] adheres

to the expected probability of type I error even for small sample sizes, thus it is

preferred to obtain global p-values when n is small. We also discuss how, for large

R, the computational effort can be reduced by selecting sequentially among different

testing procedures while maintaining the desired statistical properties.

Finally, in Chapter 6 we generalize the framework of Chapter 3 to multiple di-

mensions and we obtain a computational solution which combines the probabilistic

constructs of differential geometry for random fields [Taylor and Worsley, 2008] with

simple results in graph theory to efficiently to approximate the distribution of the

supremum of a random field. This implicitly extends the methods proposed by

Davies [1977, 1987], Gross and Vitells [2010] and Vitells and Gross [2011] to test

hypothesis when a multidimensional parameter is present only under the alternative.

The results of Chapter 3 and Chapter 6 are of particular importance as they allow us

to establish a unified framework to perform inference under non-standard regularity

conditions. Specifically, we show how TOHM can be used to detect an unexpected

mode in the data, compare non-nested model, detect a change point in a trend, and

deal with several other situations.

Stringent significance requirements play a critical role in both the theory and the

practical implementation of TOHM. Hence, our setup is particularly well suited for

searches in high energy physics, where the significance level necessary to claim a

discovery is of at least 5σ (see Table 1.1). However, in light of the recent “p-value

crisis”, culminated with the Journal Basic and Applied Social Psychology banning

the use of the p-value in future submissions [Wasserstein and Lazar, 2016, Leek

and Peng, 2015], stringent significance criteria may become more popular in other

scientific communities.

Despite its general character, TOHM suffers from several limitations which offer op-

portunities for future development. Specifically, from a computational perspective,

TOHM requires a simulation stage in which the test statistic considered is evaluated

over a fine grid on the parameter space, for each of the (few) Monte Carlo repli-

cates under H0. Hence, the computation can become particularly heavy for large

dimensional parameters. One could naively circumvent the problem by reducing
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the resolution of the grid or limiting the test to a small region of the parameter

space. We aspire to a more sophisticated solution which would incorporate an im-

portance sampling-like approach to select regions of the parameter space where the

grid evaluation is performed.

From a methodological perspective, TOHM targets situations where only one signal

is expected to be identified over the search range (e.g., one bump, one break point

in the regression line etc). Thus, a natural question is: can we utilize the frame-

work of TOHM to identify a few (but still ≥ 1) signals under stringent significance

requirements? The statistical tool to be developed in Algeri [2018] addresses this

question via a multiple hypothesis testing approach where the number of tests to

be conducted is reduced via extreme value theory. The major advantage of this

approach is that it does not require the specification of the expected number of sig-

nals and thus, provides a comprehensive tool which simultaneously solves important

long-standing problems such as detecting the number of components in a mixture or

identifying multiple bumps in the data, and it is applicable in one or more dimen-

sions. The fundamental problem of detecting dark matter sources in the Galactic

Center [Daylan et al., 2017] offers the main motivation for this work. Preliminary

simulation results are coherent with the outline of the theory which we have already

developed. More time is needed for the proof of the intermediate theoretical steps,

as well as for the application on real data, the development of a validation method,

and the assessment of the power of the procedure.

It is important to point out that TOHM relies on the assumptions that the para-

metric models provided by theoreticians reliably represent both the true underlying

process and the systematic uncertainties associated with the detector, instrumental

resolution etc. In several physics and astronomy problems, however, these assump-

tion fail in practice. Examples include the direct search for dark matter [Undagoitia

and Rauch, 2015], the discrimination of the neutrino mass hierarchy [Capozzi et al.,

2015] and searching for rare decays of b-hadrons [Koppenburg et al., 2016]. In the

absence of valid theoretical models and/or strong prior knowledge of the system-

atics effects and/or sufficient computational resources to estimate them, a reliable

data-driven solution has the potential for major impact in the physics community.

To accomplish this, we will develop the core of the statistical solution in a non-

parametric framework. Specifically, given a parametric model, which incorporates

all the (limited) knowledge available with respect to the background process, the

data are used to update the input model, for example, using the modern approach

of Mukhopadhyay (2016). As an additional advantage, the methodology we intend
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to propose does not require the specification of a model for the signal.

Finally, we aim to develop an R package to automatically implement all the methods

discussed in this thesis. This software solution has the potential of being an indis-

pensable element in the “tool-box” of any experimental physicist or astronomer, or

really any applied scientist.
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A
Rates of convergence and

goodness of the approximations

Most of the results discussed in Chapters 3 and 4 focus on bounding/approximating

excursion probabilities of the form

P
(
sup
θ∈Θ
{W (θ)} > c

)
(A.1)

where {W (θ)} in (A.1) is a generic stochastic process indexed by θ ∈ Θ. In this

appendix, we limit our attention to the case where {W (θ)} is either a Gaussian, a

χ2 or a χ̄2
01 process, and we quantify the rate at which the right hand sides (1.13),

(2.4) and (3.10) converge to their left hand sides. These approximations are also

validated via a suite of numerical studies throughout Chapters 2, 3 and 4.

A.1 Rates of convergence

We would like some indication on the sharpness of the bound in (3.6), i.e.,

P

(
sup
θ∈Θ
{W (θ)} > c

)
≤ P (W (L) > c) +

a(c)

a(c0)
E[Nc0 ] ∀c0 ≤ c, c0 ∈ R, (A.2)

for the normal, χ2
s and χ̄2

01 cases. As discussed in Chapters 1, 3 and 4 under Con-

dition 1.1.4 and Conditions 3.1.1, the number of upcrossings Nc converges to a
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Poisson process as c → ∞ (e.g., Falk et al. [2010, p. 364]). Thus, assuming that

E[Nc] converges to a finite limit µ, we write

P (Nc ≥ 1)→ 1− e−µ. (A.3)

In this section, we focus on {Z(θ)} and {T (θ)}, i.e., the Gaussian and χ2
s processes

defined in Chapter 1. Results pertaining to χ2
s processes naturally extend to χ̄2

01

processes since the process of upcrossings is governed by its χ2
1 component for all

c > 0.

Condition 1.1.4 and Conditions 3.1.1 can be formalized in more details considering

the covariance function ρ(θ, θ†) of the underlying process [e.g., Pickands, 1969a,

Lindgren, 1974, 1980b, Aronowich and Adler, 1985, Tan and Hashorva, 2013, Liu

and Ji, 2014, Hashorva and Ji, 2015]. Specifically, for non-stationary processes, we

exploit the results of Tan and Hashorva [2013], Liu and Ji [2014], and Hashorva and

Ji [2015], and we require (A.4), and (A.5) to be satisfied for some p, q ∈ (0, 2] and

some positive constants A,B

ρ(θ, θ†) = 1− A|θ − θ†|p + o(|θ − θ†|p), as |θ − θ†| → 0 (A.4)

ρ(θ,U) = 1−B|θ − U|q + o(|θ − U|q) as |θ − U| → 0 (A.5)

where U is the upper bound of the parameter space of θ, i.e., Θ ∈ [L,U]. It follows

that (3.10) and (1.13) can be rewritten as in (A.6) and (A.7), respectively

P

(
sup
θ∈Θ
{Z(θ)} > c

)
= e−

c2−c20
2 E[NZ

c0
] + o(cmax( 2

p
− 2
q
,0)−1e−c

2/2) (A.6)

P

(
sup
θ∈Θ
{T (θ)} > c

)
=

(
c

c0

) s−1
2

e−
c−c0

2 E[NT
c0

] + o(cmax( 2
p
− 1
q
,0)+s/2−1e−c/2). (A.7)

Notice that, as c → ∞, the first terms on the right hand sides of (1.13) and (3.10)

are dominated by the second term, thus the second terms in the right hand sides of

(A.6) and (A.7) also account for this.

For the stationary case, following Lindgren [1980a,b], (A.6) and (A.7) simplify to

(A.8) and (A.9) respectively

P

(
sup
θ∈Θ
{Z(θ)} > c

)
= e−

c2−c20
2 E[NZ

c0
] + o(ce−c

2/2) (A.8)
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P

(
sup
θ∈Θ
{T (θ)} > c

)
=

(
c

c0

) s−1
2

e−
c−c0

2 E[NT
c0

] + o(cs/2−1e−c/2). (A.9)

The error rates in (A.6) and (A.7) refer to the asymptotic expansions provided

by Tan and Hashorva [2013], Liu and Ji [2014], Hashorva and Ji [2015]. They

approximate the excursion probabilities on the left hand sides of (A.6) and (A.7) via

the so-called geometric approach of Piterbarg, and based on Minkowski functionals,

i.e., the Euclidean version of the Lipschitz-Killing curvatures introduced in Chapter 6

(the reader is directed to Pickands [1969a,b], Adler [2000], Adler and Taylor [2009]

and Piterbarg [2012] for further details). Thus, the expansions obtained via the

geometric approach do not consider directly the expected number of upcrossings.

However, as noted in Adler and Taylor [2009, p. 386], the approach pioneered by

Piterbarg is indirectly leading to the expected Euler characteristic and thus, in one

dimension, to the expected number of upcrossings. Consequently, we expect the

error rates of the two approaches to coincide and (A.6) and (A.7) to hold.

A.2 Approximating TOHM via Bonferroni

Results 4.1.5 and 4.1.6 formalize the Poisson convergence of the processes of ex-

ceedances and upcrossings of c by {W (θr)}, which in turn guarantee the validity of

Theorem 4.2.1. Thus, one way to assess the goodness of the approximation in (4.13)

is to measure the distance between the distribution of the process of exceedances,

ṄcR , with intensity pBF (see 4.8), and the Poisson process with intensity E[ÑcR ],

namely P(E[ÑcR ]).

In order to achieve this goal, we consider the variational distance d(·, ·) between ṄcR

and the Poisson process P(E[ÑcR ]) and we let P(pBF ) be the Poisson process with

mean pBF . For the normal sequence {Z(θr)}, it follows from Barbour and Holst

[1989] (see also Falk et al. [2010, p. 372]) that, under the conditions required by

Theorem 4.2.1, d(ṄZ
cR
,P(pBF )) specifies

d

(
ṄZ
cR
,P(pBF )

)
≤ 1− epBF

pBF

(
p2

BF

R
+
∑

r 6=r′≤R

∣∣∣∣cov(1{Z(θr)>cR},1{Z(θr′ )>cR})

∣∣∣∣). (A.10)

Thus, using the triangular inequality property of the variational distance we can
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write d(ṄZ
cR
,P(E[ÑZ

cR
])) as

d

(
ṄZ
cR
,P(E[ÑZ

cR
])

)
≤ d

(
ṄZ
cR
,P(pBF )

)
+d

(
P(pBF ),P(E[ÑZ

cR
])

)
=

1− epBF
pBF

(
p2

BF

R
+
∑

r 6=r′≤R

∣∣∣∣cov(1{Z(θr)>cR},1{Z(θr′ )>cR})

∣∣∣∣)
+

∣∣∣∣E[ÑZ
cR

]− pBF

∣∣∣∣.
(A.11)

More work has to be done for the χ2
s case. Specifically let {T (θr)} be a χ2

s sequence

where each component is the sum of the squares of the standard normal sequences

{Z1(θr)}, . . . , {Zs(θr)}. Following the approach of Raab [1997, Sec. 2.3.2], we con-

sider the indicator functions

1r = 1{h(±Z1(θr)2,...,±Zs(θr)2)>cR} (A.12)

where h(z1, . . . , zs) = (z2
1 + · · · + z2

s)1{z1≥0,...,zs≥0}. We can specify the variational

distance between ṄT
cR

and P(pBF ) as

d

(
ṄT
cR
,P(pBF )

)
≤ 1− epBF

pBF

(
p2

BF

R
+

R∑
r=1

R∑
r′ 6=r

|cov(1r,1r′)|
)
. (A.13)

As in (A.11), it follows that

d

(
ṄT
cR
,P(E[ÑT

cR
])

)
≤ d

(
ṄT
cR
,P(pBF )

)
+d

(
P(pBF ),P(E[ÑT

cR
])

)
=

1− epBF
pBF

(
p2

BF

R
+

R∑
r=1

R∑
r′ 6=r

|cov(1r,1r′)|
)

+

∣∣∣∣E[ÑT
cR

]− pBF

∣∣∣∣.
(A.14)

Since in the χ̄2
01 case, the process of upcrossings depends only on the χ2

1 component,

the bound in (A.14) also applies to the χ̄2
01.
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