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Abstract

In this thesis, we present three topics broadly connected to the concept and

use of statistical information, and specifically regarding the problems of hypoth-

esis testing and model selection, astronomical image analysis, and Monte Carlo

integration.

The first chapter is inspired by the work of DeGroot (1962) and Nicolae et al.

(2008) and is the most directly focused on the theme of statistical information.

DeGroot (1962) developed a general framework for constructing Bayesian mea-

sures of the expected information that an experiment will provide for estimation.

We propose an analogous framework for measures of information for hypothesis

testing, and illustrate how these measures can be applied in experimental design.

In contrast to estimation information measures that are typically used in exper-

imental design for surface estimation, test information measures are more useful

in experimental design for hypothesis testing and model selection. Indeed, one

test information measure suggested by our framework is probability based, and

in design contexts where decision problem are of interest, it has more appealing

properties than variance based measures. The underlying intuition of our de-
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sign proposals is straightforward: to distinguish between two or more models we

should collect data from regions of the covariate space for which the models differ

most. Nicolae et al. (2008) give an asymptotic equivalence between their test

information measures and Fisher information. We extend this result to all test

information measures under our framework, and hence further our understanding

of the links between test and estimation information measures.

In the second chapter, we present a powerful new algorithm that combines

both spatial and spectral (energy) information to separate photons from overlap-

ping sources (e.g., stars) in an astronomical image. We use Bayesian statistical

methods to simultaneously infer the number of overlapping sources, to proba-

bilistically separate the photons among the sources, and to fit the parameters

describing the individual sources. Using the Bayesian joint posterior distribu-

tion, we are able to coherently quantify the uncertainties associated with all these

parameters. The advantages of combining spatial and spectral information are

demonstrated through a simulation study. The utility of the approach is then

illustrated by analysis of observations of the sources FK Aqr and FL Aqr with the

XMM-Newton Observatory and the central region of the Orion Nebula Cluster

with the Chandra X-ray Observatory. In this chapter we make additional effort

to explain relevant standard statistical ideas and methods in order to make the

exposition more accessible to astronomers unfamiliar with statistics.

The last chapter extends the maximum likelihood theory developed by Kong

et al. (2003) for deriving Monte Carlo estimators of normalizing constants. Kong

et al. (2003) had the fundamental idea of treating the baseline measure as an
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unknown quantity to be estimated, and found that this suggested a maximum

likelihood method for estimating integrals of interest. Their work shows that sub-

models of the baseline measure can be used to incorporate some of our knowledge

of the true measure, thus allowing greater statistical precision to be gained at the

expense of more function evaluations, but without the need for more Monte Carlo

samples. Our contribution is to introduce a simple extension of this framework

which greatly increases its flexibility for trading off statistical and computational

efficiency. As a result, we gain an appealing maximum likelihood interpretation of

the very effective warp transformations proposed by Meng and Schilling (2002).

We additionally investigate the open problem of optimally choosing parameters

for sub-models of the baseline measure.
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1
Designing test information

and test information in design

1.1 Motivation and overview

1.1.1 Test information: foundations and developments

Nicolae et al. (2008) highlight that the amount of information provided by an

experiment depends on our goals, and in particular the amount of information

for hypothesis testing can be different to that for estimation. Nonetheless, the

1



importance of information measures and the need for a framework for constructing

and understanding them is common to both the testing and estimation scenarios.

Indeed, Ginebra (2007) points out that flexible information measures are essential

because information is a “highly multi-dimensional concept” which cannot be

captured by a narrow definition.

In statistics, perhaps the most famous appeal to information is in likelihood

theory which gives the asymptotic variance of the maximum likelihood estimator

(MLE) as the inverse of the Fisher information. But, the key to the importance of

information measures is that they quantify what it is possible to learn on average

given a data generating model (for the data to be used), and thus they go beyond

detailing the properties of a specific procedure. This is illustrated by the fact

that the Fisher information is not merely related to the asymptotic variance of

the MLE, it also appears in the Cramér-Rao lower bound for the variance of all

unbiased estimators. Given such requirements, it is natural that in the Bayesian

case estimation information measures are based on the posterior distribution,

because it contains all that can be known about the parameters. Furthermore,

it should be no surprise that the fundamental component of our test information

measures is the Bayes factor or likelihood ratio.

Development of the existing estimation information framework began when

Shannon (1948) gave his now well-known definition of statistical entropy,

H(π) = Eθ[− log π(θ)] = −
∫
Θ

π(θ) log π(θ)µ(dθ). (1.1)

This is a measure of the information gained by observing the random variable θ ∈
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Θ with density π, with respect to the measure µ, which is typically the Lebesgue or

counting measure. Next, Lindley (1956) defined the expected information about a

parameter provided by an experiment as the difference between the prior entropy

and the expected posterior entropy. This measure leads to the D-optimality design

criterion that is now often used in Bayesian experimental design, see for example

the review by Chaloner and Verdinelli (1995). It has also been used for other

purposes, such as defining reference priors, an example being the work of Berger

et al. (2009). A framework was proposed by DeGroot (1962) which generalizes

Lindley’s definition of the information provided by an experiment to the difference

between the prior and the expected posterior uncertainty, where the uncertainty

need not be quantified by entropy. Furthermore, DeGroot (1962) demonstrated

that many of Lindley’s results do not rely on the specific mathematical form of

entropy, and therefore they carry over to his more general information measures.

Our first theoretical contribution is to synthesize the test information measures

suggested by Nicolae et al. (2008) to develop an analogous framework to that

of DeGroot (1962) for test information. The general measures of expected test

information that we propose use the f -divergence introduced by Csiszár (1963)

and Ali and Silvey (1966), and we extend the concept to define observed and

conditional test information because these are of great importance in sequential

design. The use of divergence measures is natural and highlights fundamental

differences between testing and estimation scenarios, namely that in the testing

case the two hypotheses to be compared must be incorporated, and in computing

expected test information we must choose one of the hypotheses to condition
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on. This last observation suggests that every expected test information measure

should have a dual which conditions on the other hypothesis. Furthermore, we

may anticipate that there is an appealing subclass of measures which give the

same expected test information as their duals, an insight that we will revisit.

Our second theoretical contribution is to establish further connections between

test and estimation information measures. These connections concern an im-

portant quantity for sequential design discussed by Nicolae and Kong (2004) and

Nicolae et al. (2008), namely the fraction of information contained in the observed

data relative to that contained in the complete data (which additionally includes

unobserved or missing data). Nicolae et al. (2008) established an asymptotic

equivalence between their measures of the fraction of observed test information

and the fraction of observed Fisher information (for estimation), as the distance

between the null parameter and the MLE goes to zero. Intuitively, this means

that the fraction of observed Fisher information is a good approximation to the

fraction of observed test information if the null is close to the truth. We show

that, by allowing different weighting of observed and missing Fisher information,

the equivalence can be extended to hold for all test information measures under

our framework. This result further links test and estimation information and iden-

tifies an appealing class of test information measures that weight observed and

missing estimation information equally (in the limit considered).

With the basic foundations of our test information framework in place, we con-

sider its practical implications. Nicolae and Kong (2004) and Nicolae et al. (2008)

put forward their measures of the fraction of observed (or missing) test information
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with the purpose of informing data collection decisions in genetic linkage studies.

We now build on this by illustrating specifically how test information measures

may be used in experimental design, both in model selection and coefficient test-

ing scenarios. In the design for model selection scenario, it is often not clear how

to use estimation information measures, but the use of test information measures

is intuitive. We demonstrate this by finding optimal designs for choosing between

the complementary log-log and Probit link functions for binary linear regression.

Next, in the case of testing for linear regression parameters, we give a closed

form design criterion that is related to the familiar Bayesian alphabet optimality

criteria used in estimation contexts, though it is specific to testing. Not surpris-

ingly, in our simulations, optimizing this criterion yields designs which perform

better than the commonly used D-optimality criterion, for the purpose of testing.

We also propose a posterior probability based expected test information mea-

sure, which has many appealing properties, and similarly outperforms D-optimal

designs. In fact, this measure gives the same values as its dual and therefore ex-

hibits the property we have anticipated. Consequently, the design optimized with

respect to this measure does not depend on which hypothesis is true for its opti-

mality, a particularly useful symmetry in practice. Also in the linear regression

coefficient testing scenario, Toman (1996) showed that, for a particular loss func-

tion, minimizing the Bayes risk corresponds to choosing the D-optimal design.

This approach and conclusion differs to ours since we maximize the expected

probabilistic information for distinguishing hypotheses, rather than minimizing

an expected loss.
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Much of the other experimental design literature focuses only on estimation

problems, but among the limited work that deals with design for testing and

model selection, the approach of Box and Hill (1967) is perhaps most similar to

ours. They choose designs that maximize the entropy of the posterior probabil-

ity mass function of the model indicator, but do not offer a flexible framework

for test information measures and design, as we do. In terms of mathematical

justification, our framework benefits from the work of Ginebra (2007), which re-

views and synthesizes previous theory including that of Blackwell (1951), Sherman

(1951), Stein (1951), and Le Cam (1964). Specifically, our expected test informa-

tion measures satisfy (up to aesthetics) the three basic requirements that Ginebra

(2007) argues are essential for any expected information measure, regardless of

the context. But our framework also adds fresh perspectives, indeed the concept

of coherent dual test information measures is new and fundamental, and our ob-

served test information measures have fewer restrictions than those suggested by

Ginebra (2007) (who focused on the estimation case). Furthermore, we emphasize

that in practice test and estimation information measures behave very differently,

despite their common mathematical roots described by Ginebra (2007). This fact

does not seem to have been discussed in detail before.

A key limitation of designs optimized for distinguishing between a null and

an alternative model (or set of models) is their inherent sensitivity to these hy-

pothesized models. In particular, if none of the hypothesized models are a close

approximation to the unknown true data generating model, then the observed data

are unlikely to be as we predict, and consequently the design we select may be
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sub-optimal for choosing between our hypotheses. This issue is unavoidable and

can only be mitigated by generic space filling designs sometimes used in estimation

scenarios for similar reasons. Despite this limitation, test information measures

are valuable design tools because many scientific investigations are of confirmatory

nature, meaning that there is some reason to believe that the proposed models

capture scientifically acceptable descriptions (this particularly holds in physics).

In summary, the information measures we propose are beneficial whenever an

investigator seeks to compare several reasonable competing models.

This chapter is organized as follows. The remainder of Section 1.1 gives three

categories of scientific problem where test information measures are useful, briefly

reviews the estimation information framework proposed by DeGroot (1962), and

discusses the parallels with the test information measures introduced by Nicolae

et al. (2008). The main body of the paper is divided between Sections 1.2 and 1.3,

which deal with expected and observed test information, respectively. These sec-

tions finish with illustrations of the practical use of test information in design and

sequential design for decision problems, respectively. Section 1.2 also introduces

a fundamental symmetry condition that defines an appealing class of test infor-

mation measures. Section 1.4 presents our main result linking test and estimation

information, and Section 1.5 concludes with discussion and open problems.

1.1.2 Uses of test information

We now describe three experimental design problems, representing broad cate-

gories of scientific questions (shown in italics), for which test information measures
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are useful.

Classification and model selection. In astronomy, the intensity of some sources

(e.g., Cepheid stars) varies periodically over time, thus creating a continuous

function of time called a lightcurve. Such sources can be classified by features of

their lightcurves, e.g., the period. Since telescope time is limited for any group of

researchers, the lightcurve of a source is observed at a number of time points and

then a classifier is applied. For example, some modern techniques use random

forest classifiers, e.g., Richards et al. (2011) and Dubath et al. (2011). Intuitively,

given some lightcurve observations, the design problem is to pick the time of the

next observation that will maximize the probability of correct classification.

Screening and follow-up. In genetic linkage studies it is of interest to test if

markers (or genes) located close together on the same chromosome are more likely

to be inherited together than if markers are inherited independently (the null hy-

pothesis). This is a screening process because the magnitude of the linkage (i.e.,

dependence) is ultimately of interest. In the case of too much missing informa-

tion, a follow-up study could choose between increasing the number of markers in

potential regions of linkage or increasing the sample size (the number of people).

To assess which option is likely to have greater power, for example, we must take

the models under the two hypotheses into account. See Nicolae and Kong (2004)

and Nicolae et al. (2008) for previous work on this problem.

Robust design. Test information measures can also be useful in applications

at the interface of testing and estimation. In chemical engineering, it is often of

interest to estimate the mean yield of a product under different conditions, and
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ultimately to model the yield. In this situation, space filling designs are usually

preferred because it is unknown where the regions of high (and low) yield will

be. However, space filling designs can vary in their efficiency for distinguishing

specific models, and test information measures can be used to select the ones that

best separate important candidate models.

1.1.3 Bayesian information for estimation

We briefly review the framework of DeGroot (1962) to help make clear both

distinctions and parallels between test and estimation information. Suppose that

we are interested in a parameter θ ∈ Θ and our prior distribution is π, where

Θ is the parameter space. Information about the parameter is gained through

an experiment ξ whose future outcome is the random variable X ∈ X , where

X denotes the set of possible outcomes of the experiment. For example, ξ may

specify the design points at which data are to be collected. We denote by I(ξ; π)

a measure of the expected information to be gained by conducting ξ.

The measure I(ξ; π) should have basic properties such as non-negativity and

additivity. To specify the meaning of additivity we need the notion of conditional

information: if ξ = (ξ1, ξ2) is an experiment composed of two sub-experiments,

then we denote by I(ξ2|ξ1; π) the expected conditional information to be gained

by conducting ξ2 after conducting ξ1, i.e., the expected new information that will

be gained from ξ2. Additivity can now be formalized.

Definition 1.1 An information measure I is additive if, for any composite ex-
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periment ξ = (ξ1, ξ2) and any proper prior π, the following relation holds

I(ξ;π) = I(ξ1;π) + I(ξ2|ξ1;π). (1.2)

DeGroot (1962) chooses I(ξ; π) to be the difference between the prior uncer-

tainty and the expected posterior uncertainty about θ. In particular, he defines

the prior uncertainty to be U(π), where the uncertainty function U is a concave

functional of π, i.e., U(λπ1 + (1 − λ)π2) ≥ λU(π1) + (1 − λ)U(π2) for any two

densities π1 and π2 and λ ∈ [0, 1]. Similarly, DeGroot (1962) defines the expected

posterior uncertainty to be EX [U(p(·|X))], where the expectation is with respect

to f(x) =
∫
Θ
f(x|θ)π(θ)µ(dθ). Thus, we have the following.

Definition 1.2 The expected Bayesian estimation information provided by an

experiment ξ, under a proper prior π, is

I(ξ; π) = U(π)− EX [U(p(·|X))]. (1.3)

Lindley (1956) suggests U should be the entropy function H given in (1.1).

DeGroot (1962) shows that (1.3) satisfies non-negativity for all priors π and ex-

periments ξ if and only if U is concave. To generalize further, we follow the

logic of Definition 1.2 and define the expected conditional estimation information

contained in the second of two sub-experiments as

I(ξ2|ξ1; π) = EX1 [U(p(·|X1))]− EX1,X2 [U(p(·|X1, X2))], (1.4)
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where the second expectation is with respect to the joint density of X1 and X2,

with X1 and X2 being the outcomes of ξ1 and ξ2, respectively. The fact that the

measure given in Definition 1.2 is additive now follows directly from adding (1.3)

(with X1 replacing X) and (1.4), because EX1 [U(p(·|X1))] cancels. However, it is

not generally true that I(ξ;π) = I(ξ1; π) + I(ξ2;π), even under independence of

X1 and X2.

1.1.4 Insights from test information measures proposed by

Nicolae et al. (2008)

For the sharp test hypotheses H0 : θ = θ0 and H1 : θ = θ1, Nicolae et al.

(2008) (implicitly) propose the very natural frequentist expected test information

measure

IT (ξ; θ0, θ1) = EX [logLR(θ1, θ0|X)|θ1], (1.5)

where the superscript T indicates the testing context, and

LR(θ0, θ1|x) =
f(x|θ0)
f(x|θ1)

(1.6)

is the likelihood ratio. We observe that (1.5) is the Kullback-Leibler (KL) di-

vergence between the data models f(·|θ0) and f(·|θ1), and thus it is closely con-

nected to the entropy based measure proposed by Lindley (1956). (The KL di-

vergence between two densities g and h, will be denoted KL(g||h), and is defined
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as
∫
X g(x) log (g(x)/h(x))µ(dx), where the support of g is assumed to be a sub-

set of the support of h.) Nonetheless, there is a good reason why Nicolae et al.

(2008) did not simply use Definition 1.2 to construct measures of test information;

namely, it does not take the hypotheses into account. Indeed, the presence of the

two parameter values, θ0 and θ1, in (1.5) clearly distinguishes test information

from the estimation information we have considered so far. This difference makes

intuitive sense because it represents the difference between gaining evidence for

distinguishing two hypotheses and neutrally gaining knowledge about the param-

eter.

In practice, the alternative hypothesis is often composite and in the Bayesian

context we then write H1 : θ ∼ π, for some prior π. One of the Bayesian measures

of expected test information (implicitly) suggested by Nicolae et al. (2008) is

IT (ξ; θ0, π) = Varθ,X(LR(θ0, θ|X)). (1.7)

Variance and entropy are both measures of spread and hence (1.7) is also connected

to the measure proposed by Lindley (1956), although no logarithm is taken in

(1.7). The key distinction with Definition 1.2 is again due to the appearance of

the null hypothesis θ0. In summary, these examples have connections with the

estimation information measures reviewed in Section 1.1.3, but also have common

features distinguishing test information from estimation information. Based on

these parallels and distinctions, the next section proposes our general framework

for constructing test information measures.
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1.2 Expected test information: general frame-

work and applications

1.2.1 Test information: a synthesis

The two key properties of expected information measures are non-negativity and

additivity. For simplicity, we develop our framework in the case of continuous

densities and the Lebesgue measure. Theorem 2.1 of DeGroot (1962) establishes

non-negativeness of the estimation information reviewed in Section 1.1.3. Writing

the marginal density of x as f(x) =
∫
Θ
f(x|θ)π(θ)dθ, the key equation underlying

the theorem is

EX [p(·|X)] =

∫
X
p(·|x)f(x)dx = π(·). (1.8)

That is, the expected posterior density with respect to the marginal density is

the prior density. To see the corresponding key identity for hypothesis testing, we

first observe that the expected test information (1.5) uses the likelihood ratio as

the fundamental statistic for quantifying the information for distinguishing two

values of θ. More generally, the hypotheses may be composite, say H0 : θ ∈ Θ0

and H1 : θ ∈ Θ1, in which case we turn to the Bayesian perspective and replace

the likelihood ratio with the Bayes factor

BF(x|H0, H1) =
f(x|H0)

f(x|H1)
=

∫
Θ0
f(x|θ)π(θ|H0)dθ∫

Θ1
f(x|θ)π(θ|H1)dθ

=

∫
Θ0
f(x|θ)π(θ)

π0
dθ∫

Θ1
f(x|θ)π(θ)

π1
dθ
, (1.9)
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where πi = P (θ ∈ Θi), for i = 0, 1. (We assume πi ̸= 0 throughout, for i = 0, 1.)

Thus, for hypothesis testing, the analogous equation to (1.8) is

EX [BF(X|H0, H1)|H1] =

∫
X

f(x|H0)

f(x|H1)
f(x|H1)dx = 1. (1.10)

That is, the expected Bayes factor (or likelihood ratio), under the alternative,

does not favor either hypothesis. For simplicity, we assume here and throughout

that the support of f(·|θ) is X for all θ ∈ Θ. Equation (1.10) allows us to apply

Jensen’s inequality to ensure that the general expected test information given in

Definition 1.3 (below) is non-negative. For test information, the parallel of the

uncertainty function U is the evidence function V, which acts on the positive

real numbers and in particular has the Bayes factor (or likelihood ratio) as its

argument. The use of Jensen’s inequality to ensure non-negativity requires that

the evidence function is concave, and we therefore assume concavity throughout.

Note that, what is measured by the evidence function is the evidence in support

of the null, and therefore, like DeGroot (1962), we are interested in a reduction.

Definition 1.3 Under H1 : θ ∈ Θ1, the expected test information provided by the

experiment ξ for comparing the hypotheses H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, for a

given evidence function V and a proper prior π, is defined as

ITV (ξ;H0, H1, π) = V(1)− EX [V(BF(X|H0, H1))|H1], (1.11)

where Θ0 ∩Θ1 = ∅.
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The prefix “expected” is necessary because the Bayesian approach generally as-

sumes that data have been observed. Note that, (1.11) is mathematically equiv-

alent to the frequentist measure

V(1)− EX [V(LR(θ0, θ1|X)|θ1] (1.12)

when Θi = {θi} and P (θ = θi) ̸= 0, for i = 0, 1. (The frequentist perspective is

also recovered if the prior is viewed as part of the data generating model.) Under

(1.12), the measure (1.5) is given by choosing V(z) = log(z). The mathematical

equivalence of Bayesian and frequentist measures of expected test information

means that we can interchange the Bayes factor in (1.11) and the likelihood ratio

as convenient. More generally, the Bayes factor in (1.11) can be replaced by any

numerical comparison of the hypotheses, at least if the baseline is also adjusted.

However, the main focus here will be on the Bayesian perspective because it is

statistically coherent and is conceptually well suited to incorporating composite

hypotheses (and nuisance parameters, see Section 1.2.3) when no data have been

observed, as is often the case when we choose a design. We retain the argument

π in our notation ITV (ξ;H0, H1, π) as a reminder that (1.11) does depend on the

prior π, which we should therefore choose careful, as with the specification of any

part of our models. Also note that, the parameter in Definition 1.3 can simply be

a model indicator and hence our framework goes beyond parametric models.

The final term of (1.11) is the f -divergence introduced by Csiszár (1963) and

Ali and Silvey (1966), which generalizes KL divergence. Indeed, as mentioned

in Section 1.1.4, the measure (1.5) is a KL divergence. The properties of KL
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divergence alert us to the important feature that expected test information is not

necessarily symmetric in the two hypotheses. A class of evidence function that

treat the hypotheses equally will be introduced in Section 1.2.2.

The baseline term V(1) does not appear in (1.5) because it turns out to be

zero, but in general V(1) ensures non-negativity of expected test information, and

it is also one of the ingredients needed for (1.11) to be interpreted as a general

information measure, as we now explain. A general information measure should

appeal to many different researchers and this is typically achieved by considering

maximal information. For example, Fisher information measures the maximal es-

timation information asymptotically available. Our test information measures and

Degroot’s estimation information measures (see Definition 1.2) are also implicitly

maximal since all relevant information is contained in the Bayes factor (or likeli-

hood ratio) and the posterior distribution, respectively. For testing, researchers

must choose a test statistic (not necessarily the Bayes factor or likelihood ratio)

and quantities such as the size of the test (in frequentist settings), but these

decisions do not affect the maximal test information available. Thus, the KL

divergence in (1.5) quantifies how well the hypotheses can be separated proba-

bilistically, but the decision as to whether to use data in a statistically efficient

way and how to interpret the observed separation (e.g., whether to reject the null)

is left to the individual investigators. In general, if the baseline value in (1.11) de-

pended on investigator specific decisions, then the notion of maximal information

would be lost. Fortunately, the choice of V(1) as the baseline value does not suffer

from this problem, and has common appeal because it represents no evidence for
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Nicolae et al. (2008)
EX [log LR(θ1, θ0|X)|θ1]

Example presented here
1− EX

[
1

π1+π0BF(X|H0,H1)

∣∣∣H1

]

Frequentist
V(1)− EX [V(LR(θ0, θ1|X))|θ1]

Bayesian
V(1)− EX [V(BF(X|H0,H1))|H1]

Special cases

Test information

Synthesis / parallel

Fisher information
EX

[
−∂2 log f(X|θ)

∂θ2

∣∣∣ θ]

Lindley (1956)
Entropy reduction:
H(π)− EX [H(p(·|X))]

DeGroot (1962)
Generalization to uncertainty
reduction:
U(π)− EX [U(p(·|X))]

Frequentist

Estimation information

Bayesian

Inequalities
E.g., Cramér-Rao and Chapman-Robbins
lower bounds of variance. The latter can
be expressed in terms of test information.

Theoretical Links
The fraction of observed test information relative to the com-
plete data test information converges to the adjusted fraction of
observed Fisher information

Iob
Iob + CVImis

.

The weight CV is determined by V, and several examples give
CV = 1. The asymptotics considered are with respect to let-
ting the distance between the null value θ0 and the MLE of θ
approach zero, with the sample size fixed. (In the Bayesian case
a similar argument is possible if we let the priors shrink to delta
functions.)

Figure 1.1: Summary of estimation and test information theory. The synthesis of test in-
formation measures into one coherent framework paralleling the estimation framework is new.
Also new are the general links between estimation and test information, although Nicolae et al.
(2008) considered the same connection with Fisher information for specific cases.
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either hypothesis.

The test information introduced above and the links and parallels with existing

estimation information measures are summarized in Figure 1.1 (the theoretical

links are discussed in detail in Section 1.4). From this point on, we will frequently

write ITV (ξ) to mean ITV (ξ;H0, H1, π) and for similar notation will again drop the

arguments after the ‘;’ symbol when this causes no confusion. We complete our ini-

tial development of test information by specifying the form of ITV (ξ2|ξ1;H0, H1, π),

which is easily deduced from the expected conditional estimation information

(1.4).

Definition 1.4 The expected conditional test information ITV (ξ2|ξ1) provided by

conducting the experiment ξ2 after ξ1 is

ITV (ξ2|ξ1;H0, H1, π) = EX1 [W (X1)|H1]− EX1,X2 [W (X1, X2)|H1], (1.13)

where W (X1) = V(BF(X1|H0, H1)) and W (X1, X2) = V(BF(X1, X2|H0, H1)).

That (1.13) is non-negative is again a consequence of Jensen’s inequality;

EX2 [W (x1, X2)|H1, x1] ≤ W (x1), (1.14)

where, to make the expressions easier to read, we have denoted the observed

data by lower case letters, and unobserved data by upper case letters. Given

Definition 1.4, the additivity property of Definition 1.1 holds trivially, i.e., ITV (ξ) =

ITV (ξ1) + ITV (ξ2|ξ1).
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1.2.2 Symmetry class and a probability based measure

The best choice of V will to some extent depend on the particular context (see

Section 1.4 for some theoretical guidance), but here we propose a class of evidence

functions that have appealing properties. The class is those evidence functions

that treat the hypotheses symmetrically and in particular satisfy the condition

V(z;H0, H1)

V(1/z;H1, H0)
= z. (1.15)

Naturally, V(1/z;H1, H0) represents the evidence for the alternative, since the

roles of H0 and H1 have been swapped. Thus, setting z = BF(x|H0, H1), the

symmetry condition (1.15) states that our choice of V should preserve the Bayes

factor. We include the arguments H0 and H1 in (1.15) because in general the

evidence measures may be allowed to depend on the order of the hypotheses

through prior probabilities as well as through the Bayes factor.

The symmetry condition (1.15) has the important consequence that the result-

ing expected test information measure satisfies the fundamental coherence identity

ITV (ξ;H0, H1, π) = ITV (ξ;H1, H0, π). (1.16)

The right hand of (1.16) swaps the hypotheses, indicating that the dual expected

test information measure ITV (ξ;H1, H0, π) takes an expectation with respect to

f(·|H0), rather than f(·|H1). Indeed, the dual test information measure quantifies

the reduction in evidence for the alternative when data are collected under the

null. The coherence identity (1.16) states that, before we observe any data, the
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expected amount of information in the data for distinguishing the two hypotheses

is the same regardless of which is in fact true. This symmetry is intuitive because

the probabilistic separation of the two marginal data models f(·|H0) and f(·|H1)

does not depend on which hypothesis is true. The practical importance of the

coherence identity is that, when optimizing the expected test information with

respect to the experiment ξ, we do not need to know which hypothesis is true to

ensure the optimality of our experiment.

We can go further and consider what specific evidence functions satisfying (1.15)

are particularly appealing. We want our evidence function to be probability based

because hypothesis testing is fundamentally about seeking probabilistic evidence,

usually in the form of p-values or posterior probabilities. Indeed, for the purposes

of test information, the traditional estimation information focus on variance and

spread is in general inadequate. From the Bayesian perspective, a sensible prob-

ability based evidence function is

V(z;H0, H1) =
z

π1 + π0z
, (1.17)

where π0 and π1 are the prior probabilities of H0 and H1, respectively (for sim-

plicity we assume π0 + π1 = 1). When z = BF(x|H0, H1), then (1.17) is just

the posterior to prior probability ratio for H0. The resulting dual expected test
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information measures are

ITV (ξ;H0, H1) = 1− EX

[
z(X)

π1 + π0z(X)

∣∣∣∣H1

]
(1.18)

ITV (ξ;H1, H0) = 1− EX

[
1

π1 + π0z(X)

∣∣∣∣H0

]
, (1.19)

where z(X) denotes the Bayes factor BF(X|H0, H1). The measure (1.18) is simply

the expected difference between the prior and posterior probability of the null,

relative to the prior probability, when the data are actually from the alternative.

That is, the relative loss in probability of the null. The measure (1.19) is the

same but with the roles of H0 and H1 switched. Since (1.15) is satisfied, the

coherence identity (1.16) tells us that ITV (ξ;H0, H1) = ITV (ξ;H1, H0). This and

the straightforward Bayesian probability interpretation of (1.18) make (1.17) a

particularly appealing choice of evidence function.

There are also other examples of evidence functions that satisfy (1.15), e.g.,

V(z) = 1

2
log(z)− 1

2
z log(z). (1.20)

For this evidence function, both sides of (1.16) equal 1
2
KL(f(·|H1)||f(·|H0)) +

1
2
KL(f(·|H0)||f(·|H1)). Historically, this symmetrized form of KL divergence is

the divergence that Kullback and Leibler (1951) originally suggested (without

scaling by a half). Intuitively, it can be interpreted as a measure of the expected

test information when the two hypotheses are considered equally likely apriori.

However, symmetrized KL divergence does not have a straightforward probability

interpretation, and therefore we prefer (1.17)-(1.19).
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1.2.3 Nuisance parameters

Many statistical problems come with nuisance parameters. In the frequentist

setting, once data have been observed, estimates of the nuisance parameters can

be plugged in to give a point estimate of the expected test information (1.12) (as

can estimates of θ0 and θ1 when the hypotheses are composite). A confidence

interval for (1.12) can be obtained by evaluating it for values of the nuisance

parameters within a confidence interval. (Both could instead be done for observed

test information, see Section 1.3.1.) In design problems, data are typically yet to

be collected but (1.12) could be evaluated on a grid of values of the nuisance

parameters.

In the Bayesian context, the nuisance parameters β0 (under the null) and β1

(under the alternative) are simply integrated out along with the parameters that

define the hypotheses. That is,

ITV (ξ;H0, H1, π, ψ0, ψ1) = V(1)− EX [V (BF(X|H0, H1))|H1] , (1.21)

where the Bayes factor is now given by

∫
Θ0

∫
B0
f(X|θ, β0)ψ0(β0|θ)π(θ|H0)dβ0dθ∫

Θ1

∫
B1
f(X|θ, β1)ψ1(β1|θ)π(θ|H1)dβ1dθ

, (1.22)

with Bi being the support of the prior density ψi of βi, for i = 0, 1. Clearly, the

mathematical properties of (1.21) are the same as those of (1.11).

As mentioned in Section 1.2.1, alternatives to the Bayes factor in Definition 1.3

can be used at the expense of the coherence of the Bayesian method and simplicity.
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For example, those intending to use the likelihood ratio test, may opt to mimic

the likelihood ratio test statistic by calculating

ITV (ξ;H0, H1, π, ψ1) = V(1)− EX

[
V
(
f(X|θH0

MLE, β0,MLE)

f(X|θH1
MLE, β1,MLE)

)∣∣∣∣H1

]
, (1.23)

where θHi
MLE and βi,MLE are the MLEs of θ and βi, respectively, under hypothesis

Hi, for i = 0, 1. In this work we focus on the expected test information given in

Definition 1.3 (and (1.12)) and thus leave the theoretical investigation of measures

such as (1.23) for future work. However, we include numerical results based on

(1.23) in Section 1.2.4.

1.2.4 Binary regression example: distinguishing the com-

plementary log-log and Probit link functions

Consider the binary regression model

Xi|M,βθ, gθ ∼ Bernoulli(pi), (1.24)

for i = 1, . . . , n, where

MT =

1 1 · · · 1

t1 t2 · · · tn

 (1.25)

is the design matrix (i.e., essentially ξ), and gθ(pi) = βθ,int + βθ,slopeti, for the link

function gθ and θ ∈ {0, 1}. The sharp hypotheses of interest are H0 : θ = 0 and
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H1 : θ = 1, where g0(p) = log(− log(1 − p)) and g1(p) = Φ−1(p) are the familiar

complementary log-log and Probit link functions, respectively (Φ is the standard

Normal cumulative distribution function). In this model selection scenario, the

coefficients β0 = {β0,int, β0,slope} and β1 = {β1,int, β1,slope} are nuisance parameters,

and we assign the prior distribution

βi|Hi ∼ N(η,R), (1.26)

for i = 0, 1. Our independent prior for θ is Bernoulli(1/2). The design problem

is to choose the design which will provide the most information for distinguishing

between the two link functions.

We consider designs of 5 unique points in [−1, 1] with 100 replications of each.

Within this class, we optimize the expected test information under the posterior-

prior ratio and log evidence functions, i.e., (1.17) and V(z) = log(z). Since

β0 and β1 are nuisance parameters, we use the two measures in Section 1.2.3,

i.e., the Bayes and MLE plug-in approaches. Under the posterior-prior ratio

evidence function, we denote these two measures by ϕPbayes(M) and ϕPLRT(M),

respectively. Similarly, under the log evidence function the two measures are

denoted ϕKLTbayes(M) and ϕKLTLRT(M), respectively. The ϕ notation indicates

a design criterion, P indicates a connection to the expected posterior probabil-

ity of H1, (given by π1 + π0ϕPbayes(M)), and KLT indicates the KL divergence

between the marginal data models and the testing context. The criteria are com-

puted using Monte Carlo simulation and the optimal design under each crite-

rion is found using a single point exchange algorithm similar to that introduced
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Figure 1.2: Prior mean power of the likelihood ratio test under MC , for C ∈ {Spread,Power,
Pbayes, PLRT,KLTbayes,KLTLRT}, for different settings of the priors in (1.26). For the P-optimal
designs we set π0 = π1 = 0.5.

by Fedorov (1972). The design matrix optimizing criterion C is denoted MC ,

for C ∈ {Pbayes, PLRT, KLTbayes, KLTLRT}, collectively called the P-optimal and

KLT-optimal designs.

We need a separate criterion by which we can evaluate and compare the optimal

designs. Since power is a common quantity of interest, we choose the criterion to

be the prior mean power of the likelihood ratio test, i.e.,

∫
Ω

P(M ; θ0, θ1, β0, β1)ψ0(β0|θ0)ψ1(β1|θ1)π0(θ0)π(θ1)d(β0, β1, θ0, θ1), (1.27)

where Ω = Θ0 × Θ1 × B0 × B1, and P(M ; θ0, θ1, β0, β1) denotes the power of the

likelihood ratio test under design matrix M and given the parameters θ0, θ1, β0, β1

(for a test size of 5%). Section 1.5.2 discusses the reasons why (1.27) or similar

summaries of power are not the only measures of expected test information, or
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even particularly good measures. Nonetheless, the relative familiarity of (1.27)

makes it suitable for our current purpose of comparing the performance of the

different optimal designs. Figure 1.2 shows the prior mean power under MC , for

C ∈ {Pbayes, PLRT, KLTbayes, KLTLRT}, given various specifications of the priors

in (1.26). In all cases R = σ2I2 and only σ2 and η are indicated. Note that, we

tried several values of ηint but the results were qualitatively very similar, so Figure

1.2 only shows results for ηint = −2.

Also shown is the prior mean power under Mpower and Mspread, the maximum

prior mean power design and the spread of points −1,−0.5, 0, 0.5, 1 (replicated

100 times), respectively. The P-optimal and KLT-optimal designs all perform

well in terms of prior mean power, and in some cases yield considerably greater

prior mean power than Mspread. For example, when σ2 = 10 and η = {−2, 10}

(left panel of Figure 1.2), the design Mspread has prior mean power 0.07 while

the P-optimal and KLT-optimal designs are all relatively close to achieving the

maximum prior mean power of 0.44. The problem with Mspread in this case is that

both inverse link functions go from 0 to 1 over a small range of the covariate t

and therefore spreading the design points over the whole interval [−1, 1] is not an

effective strategy.

To investigate the designs further, Figure 1.3 compares Mspread and Mpower. In

each plot, the design is given by the x-coordinates of the large dots (100 binary

observations are recorded at each). In this illustration, 500 datasets were sim-

ulated under each design with η = {−2, 10} and σ2 = 10. For reference, the

complementary log-log (dotted blue line) and Probit (dashed green line) inverse
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Figure 1.3: Comparison of Mspread (left) and Mpower (right), with the parameters of (1.26) set
to η = {−2, 10} and R = 10I2. Thin grey lines show dt, for each simulated dataset, and the
thick red line shows st (both are described in the main text). The large dots show the design
point locations (x-coordinates) and the corresponding values of st (y-coordinates and numbers
below).

link functions are plotted for β0 = β1 = {−2, 10}. However, since σ2 > 0, the

actual value of β0 and β1 vary across the simulated datasets. Furthermore, for

any given dataset, there is uncertainty associated with the MLE of β0 and β1.

These two sources of variation are captured by the spread of the solid thin grey

lines in Figure 1.3; each corresponds to a single simulated dataset and traces the

fit difference dt(x(j)) = g−1
1 (β̂

(j)
1,int + β̂

(j)
1,slopet)− g−1

0 (β̂
(j)
0,int + β̂

(j)
0,slopet) for t ∈ [−1, 1],

where β̂(j)
i,int, β̂

(j)
i,slope are the MLEs of βi,int, βi,slope for dataset x(j), for i = 0, 1, and

j = 1, . . . , 500. The distribution of the fit differences at any point t indicates our

ability to distinguish the two inverse link functions at that point based on max-

imum likelihood fits. The solid thick red line summarizes by tracing the relative

mean fit difference st = d̄t/sd(dt), where d̄t and sd(dt) are the mean and standard
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deviation of dt over 500 simulations, respectively.

The y-coordinates of the large dots give the values of st at the design points

(as do the numbers below the large dots). As expected, |dt| is generally small

at the design points, but for Mpower the variability in dt is low and thus |st| is

larger at the design points than under Mspread. The low variability is achieved

by grouping the design points together near the important steep section of the

reference inverse link functions. The complementary log-log and Probit regression

models fit by maximum likelihood are known to differ principally in the tails, and

hence st is not largest at the design points in the central steep section. But, these

points constrain the fits, thus reducing variability in dt so that the two design

points in the tails have large values of st. The designs MKLTbayes and MKLTLRT

are almost identical to Mpower, which is to be expected because intuitively the

prior mean power should increase as the expected negative log Bayes factor (or

likelihood ratio) increases.

1.2.5 Normal linear regression coefficient tests

We now discuss the Normal linear regression model

X|β,M ∼ N(Mβ, σ2I), (1.28)

and the hypotheses H0 : β = β0 and H1 : β ∼ N(η, σ2R). The goal is to test the

adequacy of a specific value β0 of the regression coefficients, rather then treating

them as nuisance parameters as we did in Section 1.2.4. Thus, β is now playing
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the role of θ in the expected test information of Definition 1.3, and formally we

restrict its support under H1 to be B1 = R2/{β0}. We again consider the criteria

ϕPbayes(M) and ϕKLTbayes(M) which, since there are no nuisance parameters, are

now simply given by Definition 1.3 under the posterior-prior ratio and log evidence

function, respectively.

In the linear regression setting, ϕKLTbayes(M) has the closed form

ϕKLTbayes(M ; β0, η, R) =

∫
X
log

(
f(x|H1,M)

f(x|β0,M)

)
f(x|H1,M)dx (1.29)

=
1

2

(
1

σ2
(η − β0)

TMTM(η − β0) + tr(MTMR)− log
(
|I +MRMT |

))
.

The first term of (1.29) confirms our intuition that the expected test information

is large when β0 and the mean of the alternative are well separated (with respect

to M). Heuristically, the second term of (1.29) tells us to maximize the “ratios”

of the prior (alternative) variance of each parameter to the regression estimate

variance. This is intuitive because we need the estimation variance to be small in

comparison to the prior variance in order to effectively distinguish β and η (and

hence further distinguish β from β0). The final term penalizes the alternative

for introducing uncertainty in β, i.e., for avoiding exclusion of the true model by

being vague.

The KLT-optimality criterion (1.29) is closely related to the D-optimality cri-

terion popular in estimation problems (e.g., see the review by Chaloner and

Verdinelli (1995)). The D-optimality criterion is derived from the expected es-
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timation information suggested by Lindley (1956), and is given by

ϕD(M) = − log |V |, (1.30)

where V = σ2(MTM+R−1)−1 is the posterior covariance matrix of β (for any value

of X). The criteria ϕD and ϕKLTbayes are both entropy based, but the dependence

of ϕKLTbayes on β0 and η distinguishes this criterion from ϕD and other estimation

focused criteria.

To gain some intuition let us consider a simple linear regression, with

MT =

1 1 · · · 1

t1 t2 · · · tn

 , R =

σ2
int σis

σis σ2
slope

 . (1.31)

It is well know that in this scenario, the D-optimality criterion leads to half of

the design points ti, i = 1, . . . , n, being at 1 and the other half at −1 (or, if n

is odd, (n + 1)/2 points at one boundary and (n − 1)/2 at the other). Let ∆ =

(ηint −β0,int)(ηslope −β0,slope)+σis, where ηint and ηslope are the mean intercept and

mean slope of the alternative model, respectively. If σis = 0, then the sign of ∆ tells

us if the lines β0,int + β0,slopet and ηint + ηslopet have greater separation at −1 or at

1. For any σis, it is easily shown that ϕKLTbayes is optimized by placing all points at

1 if ∆ > 0, by placing them at −1 if ∆ < 0, and by any design dividing the points

between the boundaries if ∆ = 0. Generally, designs based on test information

measures trade robustness for power in distinguishing particular models, and the

behavior just described is an instance of the inevitable sensitivity to the hypotheses
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mentioned in Section 1.1.1. However, in the current context, we found that designs

optimizing ϕPbayes are slightly more robust than those optimizing ϕKLTbayes in that

they divide the points between both the boundaries, unless the hypotheses are far

more separated at one boundary than at the other.

1.3 Observed test information in theory and ap-

plication

1.3.1 Observed test information: building blocks

Observed test information is key in practice when we have observed some data

and want to know how much information they contain in order to decide if we

should collect more. It is also important conceptually because it is the implicit

building block for expected and conditional test information.

First consider the estimation information introduced by DeGroot (1962) and

reviewed in Section 1.1.3. After an experiment ξ is conducted, the observed es-

timation information gained is the reduction in uncertainty, U(π) − U(p(·|x)),

where x ∈ X is the observed outcome. Observed estimation information is not

necessarily non-negative because, by chance, after observing x we may have more

uncertainty about θ as measured by U , e.g., the posterior may be more diffuse than

the prior due to likelihood-prior conflict; see Reimherr et al. (2014). (This poste-

rior “dilation” can even be deterministic; see Seidenfeld and Wasserman (1993).)

Interestingly, DeGroot (1962) did not explicitly mention observed information,
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but Lindley (1956) did define it (as above) in the case where U is the entropy

function (1.1). Ginebra (2007) restricted all observed information measures to

be positive and interprets them to be capturing model checking information, in

addition to information about θ, but does not explain why non-negativity can

ensure this interpretation is reasonable. From a Bayesian perspective, the defini-

tion given by Lindley (1956) is valid, and we therefore take this as the basis of

observed estimation information.

Following an analogous approach to Lindley (1956), we define observed test

information in Definition 1.5 (below) by simply removing the expectation appear-

ing in the expected test information of Definition 1.3. However, the resulting

relationship between observed and expected information is more subtle than in

the estimation case. Indeed, Definition 1.3 conditions on H1 to average over the

unobserved data, but the actual data used in Definition 1.5 may be generated

under H0.

Definition 1.5 The observed test information provided by the experiment ξ for

comparing the hypotheses H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, for a given evidence

function V and a proper prior π, is defined as

ITV (ξ;H0, H1, π, x) = V(1)− V(BF(x|H0, H1)), (1.32)

where x is the observed outcome of ξ, and Θ0 ∩Θ1 = ∅.

Since Bayesians condition on observed data, the prefix ‘observed’ is redundant,

but it is retained for clarity. The quantity defined by (1.32) is not necessarily
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non-negative. However, it is positive when V is increasing and the Bayes factor

favors H1, i.e., BF(x|H0, H1) < 1. Often, it seems sensible for V to be increasing

because we want (1.32) to increase as the Bayes factor decreases towards zero

(since observed test information should be compatible with Definition 1.3 which

assumes H1). For V increasing, a negative value of ITV (ξ;H0, H1, π, x) indicates

that the evidence in the observed data supports H0, either because H0 is in fact

the more accurate hypothesis or due to chance. Since the data can only support

one of the hypotheses, for increasing V it follows that exactly one of the dual

observed test information measures ITV (ξ;H0, H1, π, x) and ITV (ξ;H1, H0, π, x) will

be positive (unless they are both zero). Also, usually only one of ITV (ξ;H0, H1, π, x)

and ITV (ξ;H1, H0, π, x) will reasonably approximate the corresponding expected

test information, ITV (ξ;H0, H1, π) and ITV (ξ;H1, H0, π), respectively.

In the case of the sharp hypotheses H0 : θ = θ0 and H1 : θ = θ1, the Bayes

factor in (1.32) becomes the usual likelihood ratio LR(θ0, θ1|x), and plugging in

the MLE of θ for θ1 ensures the measure is non-negative, again provided V is

increasing. A more complete frequentist approach than plugging in the MLE of θ

is to provide a confidence interval for V(1)−V(LR(θ0, θ|x)) based on a confidence

interval for θ.

We highlight that, in the current observed data case, our use of dual measures is

again key because it ensures a symmetric treatment of the hypotheses, which is not

easily achieved by other means. For example, consider a V that is concave, increas-

ing, and passes through {0, 1} (for all non-zero prior probabilities π0 and π1 whose

sum is one), then V(z) + zV(1/z) is also concave, gives expected test information
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ITV (ξ;H0, H1, π)+ITV (ξ;H1, H0, π), and yields non-negative observed test informa-

tion, as required by Ginebra (2007). However, in many cases, excluding the case of

(1.20), this approach does not treat the hypotheses equally. For example, we can

modify the evidence function V(z) =
√
z−1 to V(z)+zV(1/z) = 2

√
z−1−z, but

the resulting observed test information has a maximum of one for data supporting

H1, and is unbounded for data supporting H0. Our approach using dual observed

test information measures is therefore more appealing because ITV (ξ;H0, H1, π, x)

and ITV (ξ;H1, H0, π, x) are symmetrically defined. This symmetry is even more

foundational than the coherence identity (1.15) because observed test information

identifies the underlying statistics of interest.

Next, in the same spirit, we define the observed conditional test information

provided by conducting the experiment ξ2 after observing the outcome x1 of an

experiment ξ1 to be

ITV (ξ2|ξ1;H0, H1, π, x1) = W (x1)− EX2 [W (x1, X2)|H1, x1]. (1.33)

This is simply the information given in Definition 1.4, but without an expectation

over x1, because it has been observed. In sequential design we require a version of

the coherence identity (1.16) to hold for (1.33). In particular, given some observed

data x1, we do not want the optimality of our design for new data to depend on

which hypothesis is true. If we assume the symmetry condition (1.15), then it

straightforwardly follows that

ITV (ξ2|ξ1;H0, H1, π, x1) = z(x1)ITV (ξ2|ξ1;H1, H0, π, x1), (1.34)
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for all x1 ∈ X , where z(x1) = BF(x1|H0, H1). The factor z(x1) appears in (1.34)

(but not in (1.15)) because the observed data x1 already favors one of the hy-

potheses before any new data are collected. If (1.34) holds, then the design that

optimizes ITV (ξ2|ξ1;H0, H1, π, x1) also optimizes ITV (ξ2|ξ1;H1, H0, π, x1), meaning

that, as required, we do not need to know which hypothesis is true in order to

find a good choice of ξ2.

1.3.2 Sequential design for linear regression coefficient tests

Consider the linear regression model (1.28) introduced in Section 1.2.5 and the

test of H0 : β = β0 against H1 : β ∼ N(η,R) (i.e., σ2 = 1). Given some initial

observed data xob, the sequential design problem is to choose a design matrix

Mmis for additional data Xmis. In our simulation study, we generate a parameter

vector β under H1 and then simulate the initial observed data xob according to a

cubic regression model of the form (1.28), i.e., the design matrix is

MT
ob =



1 1 · · · 1

t1 t2 · · · tnob

t21 t22 · · · t2nob

t31 t32 · · · t3nob


, (1.35)

where ti ∈ [−1, 1] are the design points, for i = 1, . . . , nob. Specifically, we set

nob = 5 and the observed data design points ti, i = 1, . . . , 5, are −1,−0.5, 0, 0.5,

1. Examples of xob are plotted in Figure 1.4.

Given the observed data, nmis = 5 new design points are chosen by optimizing
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the observed conditional test information (1.33) with respect to the design ma-

trix Mmis, under the posterior-prior ratio and log evidence functions. That is, we

optimize the conditional versions of the P-optimality and KLT-optimality criteria

discussed in Section 1.2.5. The conditional P-optimality criterion is the expected

reduction in posterior probability of the null when we collect Xmis relative to its

prior probability. We approximate it using a Monte Carlo estimate, under the

prior probabilities π0 = π1 = 0.5. The conditional KLT-optimality criterion is

straightforwardly given by log(z(xob))+ϕKLTbayes(M ; β0, ηob, Vob), where ϕKLTbayes

is specified in (1.29), and ηob and Vob are the observed data posterior mean and

covariance matrix of β under H1, respectively. For comparison, we also optimize

the conditional D-optimality criterion log |Vob|+log
∣∣∣(Mmis)

T Mmis + V −1
ob

∣∣∣ with re-

spect to Mmis. Often it is not clear how to use the D-optimality criterion and other

estimation based criteria to choose designs for testing, but the current scenario is

an exception because the hypotheses are nested.

To generalize beyond a single value of β, we generate β(j) ∼ N(η,R), for j =

1, . . . , 100, and for each j we generate observed datasets x(j,k)ob , for k = 1, . . . , 250.

Then, for each simulated dataset x(j,k)ob , we find the conditional P-optimal, KLT-

optimal, and D-optimal design for the missing data Xmis. To compare perfor-

mance, we also calculate the prior mean power (1.27) of the likelihood ratio test

under each of these three procedures. In our simulations, we set R = 0.2I4, and

use various values of η and β0 = (β0,int, β0,lin, β0,quad, β0,cubic). First, Figure 1.5 part

(a) corresponds to simulations with β0 = (0, 0, 0, 0) and η = (1.1, 0,−1.3, 0) (i.e.,

the alternative mean model is parabola shaped). For these choices, the maximum
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Figure 1.4: The null and true cubic regression models and the observed data posterior mean
fit. The observed data are indicated by large dots. The left and right plots show example
simulations used in producing parts (a) and (b) of Figure 1.5, respectively.

separation between the null and true model is usually not at the boundaries of

the interval [−1, 1]; see the example simulation given on the left of Figure 1.4.

The top row of Figure 1.5 shows the prior mean power of the three procedures

when any design points in [−1, 1] are allowed (i.e., Mmis is unconstrained) and also

when only two possibilities for Mmis are allowed (these latter results are for the

constrained optimization example discussed shortly). For part (a), the conditional

D-optimal procedure performs relatively poorly because it almost invariably places

all the new points at the boundaries, a good strategy for estimation but not for

hypothesis testing. The conditional P-optimality and KLT-optimality procedures

instead place the points near t = 0, and consequently are substantially superior

in terms of prior mean power.

For the simulations corresponding to Figure 1.5 part (b), we first generated the

null parameters β(j)
0,int, β

(j)
0,lin ∼ Uniform(−1, 1) and β(j)

0,quad, β
(j)
0,cubic ∼ Uniform(−10, 10),
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Figure 1.5: Prior mean power of the likelihood ratio test under the conditional D-optimality, P-
optimality, and KLT-optimality procedures, across 250 datasets simulated under β ∼ N(η, 0.2I4)
(first row, unconstrained values). The main text describes the generation of β0 and η for parts
(a) and (b). The first row constrained values show the prior mean powers when the only missing
data designs allowed are (i) and (ii) (see the main text). For this case, the second row shows
the percentage of simulations in which design (i) was selected.

and then we set η(j) = β
(j)
0 and drew β(j) ∼ N(η(j), R), for j = 1 . . . 100. Under

these settings, the maximum separation between the null curve and the observed

data posterior mean fit tends to be at one of the boundaries. Hence, the condi-

tional D-optimality procedure performs reasonably, because it again divides the

points between the two boundaries. Thus, in part (b) of Figure 1.5 the three

procedures perform similarly.

We now briefly investigate how the three criteria perform if we impose some

robustness to model misspecification. The points labeled “constrained” in the
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first row of Figure 1.5 show the prior mean power of the likelihood ratio test when

the three criteria are used to choose between two missing data designs: (i) the

spread of points tspread = {−1,−0.5, 0, 0.5, 1}; (ii) the narrower spread of points
1
5
tspread + sepmax, where sepmax is the location of maximum separation between

the observed data posterior mean model and the null mode. If sepmax is near a

boundary then all the points are shifted left or right to avoid any crossing the

boundary, but they still cover an interval of length 0.4. The results follow a

similar pattern to before, except that now the prior mean power is usually lower,

principally because designs placing all the points at a single location have been

excluded. The first row of Figure 1.5 shows that the constrained conditional P-

optimality procedure has prior mean power almost as high as the constrained

conditional KLT-optimality procedure, but the second row indicates that it also

selects the more robust design (i) far more often (usually when the posterior

probability of H1 is low). Thus, the conditional P-optimality procedure offers

a compromise between power for distinguishing the hypotheses of interest and

robustness.

1.4 Links between test and estimation informa-

tion

1.4.1 Fraction of observed test information

Nicolae et al. (2008) propose several measures of the fraction of observed test
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information to guide data collection decisions in genetic linkage studies (see Sec-

tion 1.1.2). In words, the fraction of observed test information is the ratio of the

observed test information and an estimate of the test information based on the

complete data. We provide the general mathematical form in Definition 1.6 (be-

low) because the fraction of observed test information is important in sequential

design and for establishing theoretical connections between test and estimation

information. In sequential design, it gives the relative amount of test information

still obtainable (under the alternative), and can also help in assessing the difficulty

of collecting each unit of that remaining test information. Analogously, finding

a specific subgroup of a population is on average more difficult per unit if the

subgroup is small compared to the population.

Definition 1.6 The fraction of observed test information provided by the first part

of the composite experiment ξ = (ξ1, ξ2) for comparing the hypotheses H0 : θ ∈ Θ0

and H1 : θ ∈ Θ1, for a given evidence function V and a proper prior π, is defined

as

FITV (ξ2|ξ1;H0, H1, π, x1) =
ITV (ξ1;x1)

ITV (ξ1;x1) + ITV (ξ2|ξ1;x1)
, (1.36)

where x1 is the observed outcome of ξ1, and Θ0 ∩Θ1 = ∅.

If ITV (ξ1;x1) ≥ 0 then it follows that (1.36) is between 0 and 1. In practice, if

FITV (ξ;x1) is close to one then we may decide not to perform ξ2, particularly if it

is expensive. The canonical example sets V(z) = log(z) and thus takes the ratio

of the observed data log Bayes factor and the expected complete data log Bayes
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factor. Similarly, in the frequentist case, Nicolae et al. (2008) suggest the measure

RI1 =
logLR(θob, θ0|xob)

EXmis [logLR(θob, θ0|Xob, Xmis)|θob, xob]
, (1.37)

where θob is the MLE of θ based on xob.

The decision whether to collect more data depends on which hypothesis is true,

because if the observed data supports the false hypothesis then our need for addi-

tional data is greater. Thus, it is unsurprising that there is no general coherence

identity for the fraction of observed test information. In practice, we suggest us-

ing FITV (ξ2|ξ1;H0, H1, π, x1) if z(x1) ≤ 1 and FITV (ξ2|ξ1;H1, H0, π, x1) otherwise.

The resulting measure has a similar interpretation as (1.36) but takes account of

which hypothesis is more likely, and is always between 0 and 1. In the special

case where V(1) = 0 (and (1.15) is satisfied), we have FITV (ξ2|ξ1;H0, H1, π, x1) =

FITV (ξ2|ξ1;H1, H0, π, x1), but this is not a coherence identity since the correspond-

ing observed test information is negative on one side of the equality and positive

on the other.

1.4.2 Connections between estimation and test informa-

tion

Meng and van Dyk (1996) show that the relative augmentation function,

RI(θ) = logLR(θob, θ|xob)

EXco [logLR(θob, θ|Xco)|θob, xob]
, (1.38)
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converges to the fraction of observed Fisher information,

RIE =
Iob

Iob + Imis
, (1.39)

as |θ − θob| → 0. Here, Iob is the usual observed Fisher information, and Imis is

the missing Fisher information which is given by

Imis = EXco

[
−∂

2 log f(Xco|xob, θ)

∂θ2

∣∣∣∣xob, θ

]∣∣∣∣
θ=θob

. (1.40)

As Nicolae et al. (2008) point out, replacing θ with θ0 gives us the same limit for

the measure RI1 in (1.37). This result is intuitive in that we might expect test

information to coincide with estimation information when the two hypotheses are

both very close to θob. The following theorem generalizes the equivalence, and its

proof is given in Appendix A.1.

Theorem 1.1 Let the hypotheses be H0 : θ = θ0 and H1 : θ = θ1, and suppose

that the derivatives of the evidence function V exist at 1. Then, for univariate θ

and θ1 = θob, we have

FITV (ξ2|ξ1;H0, H1, xob) =
V ′(1)Iob

V ′(1)Iob − V ′′(1)Imis
+Op(|θ0 − θob|), (1.41)

under the uniform integrability condition given in the proof in Appendix A.1.

It is possible to extend Theorem 1.1 to avoid the univariate condition and sharp

hypotheses (by using priors that converge to delta functions), but the current

form suffices to illustrate the connection between test and Fisher information.
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The theorem tells us that if V ′(1) = −V ′′(1), then FITV (ξ2|ξ1;H0, H1, xob) will

exactly correspond to RIE as |θ0 − θob| → 0. Otherwise, the relative conversion

number CV = −V ′′(1)/V ′(1) indicates how much of the missing data estimation

information is converted to test information in the limit, relative to the conversion

of observed estimation information. For example, under the posterior-prior ratio

evidence function (1.17) we have CV = 2π0, and therefore the stronger our initial

bias in favor of the null, the greater the importance of the missing data estimation

information, relative to the observed estimation information. This makes sense

because Fisher information measures our ability to estimate the true parameter,

and the value of successful estimation for testing depends on the strength of our

prior separation of the hypotheses. If π0 = 0.5, then all estimation information

will be helpful because the prior does not separate the hypotheses, hence CV = 1

and the fraction of observed test and estimation information coincide. When π0

is close to 0, the posterior probability of H1 (the hypothesis assumed true by

Definition 1.6) will be close to one, even though the observed data provides no

evidence. Thus, we have CV ≈ 0, because there is little to be gained by collecting

more data. When π0 is close to 1, the prior is in conflict with our assumption that

H1 is true, and therefore estimation information from new data not only has the

potential to distinguish the hypotheses, but also to overcome false information

from the prior. Hence, we expect CV > 1. In the current example, it turns out

that CV ≈ 2 because our choice of V sets CV ∝ π0 and CV = 1 for π0 = 0.5.

The relative conversion number has similar interpretations for other evidence

functions. In each case it indicates the relative worth of the missing data esti-
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mation information for testing, when there is no evidence in the observed data.

Thus, CV provides a characterization of the general approach to testing implied

by the evidence function, i.e., whether we would be likely to collect additional

data if the observed data did not separate the hypotheses.

1.5 Discussion and further work

1.5.1 Classification

We now briefly explain how our test information framework extends to classifi-

cation problems. Consider a classification problem with m classes (hypotheses)

denoted Ai, for i = 1, . . . ,m, and let zij(X) be the Bayes factor f(X|Ai)/f(X|Aj),

for i = 1, . . . ,m, j = 2, . . . ,m. The generalized evidence function Vm(z·j;Ai, Aj)

quantifies the evidence for class Ai under class Aj, and is a function of z·j = {zij :

i ∈ {1, . . . ,m}\{j}} (and the class prior probabilities π1, . . . , πm). Thus, under

Aj, the expected test information that is due to a reduction in evidence for Ai is

given by

ITVm
(ξ;Ai, Aj) = Vm(1m−1;Ai, Aj)− EX [Vm(z·j(X);Ai, Aj)|Aj] , (1.42)

where 1m−1 is a vector of m − 1 ones. For example, the posterior-prior ratio

evidence function can be generalized to

Vm(z·j;Ai, Aj) =
zij

πj +
∑

k ̸=j πkzkj
, (1.43)
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in which case (1.42) is the expected difference between the prior and posterior

probability of Ai, relative to its prior probability, under the assumption that X

will be generated under Aj. Since the information for separating each pair of

classes is important, we define the total expected test information to be

ITVm
(ξ;A1, . . . , Am) =

m∑
j=2

j−1∑
i=1

ITVm
(ξ;Ai, Aj). (1.44)

It is straightforward to show that, for any concave generalized evidence function

Vm, there exists a concave function V∗
m of z·m such that V∗

m(1m−1)−EX [V∗
m(z·m(X))|Am]

equals ITVm
(ξ;A1, . . . , Am). Therefore, (1.44) is a genuine extension of our frame-

work.

Next, if Vm satisfies a natural extension of the symmetry condition (1.15),

namely Vm(z·j;Ai, Aj)/Vm(z·i;Aj, Ai) = zij, then we have ITVm
(ξ;Ai, Aj) = ITVm

(ξ;Aj, Ai),

for i = 1, . . . ,m, and j = 1, . . . ,m, e.g., one such Vm is (1.43). From this condition

follows the generalized coherence identity

ITVm
(ξ;Ak1 , . . . , Akm) = ITVm

(ξ;Ak′1 , . . . , Ak′m), (1.45)

for all choices of (k1, . . . , km) and (k′1, . . . , k
′
m) that are permutations of (1, . . . ,m).

A generalized identity similar to (1.34) also holds for the observed conditional

test information corresponding to (1.44). In classification problems the practical

importance of such coherence identities becomes greater because there can be

many classes and often there is not a single special class that we are willing to

assume true. They are also again fundamental, and we cannot, for example,
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forgo (1.45) and instead replace each term on the right hand side of (1.44) by

ITVm
(ξ;Ai, Aj) + ITVm

(ξ;Aj, Ai), because this leads to observed test information

measures that treat the classes asymmetrically, see Section 1.3.1.

1.5.2 Discussion

In this paper, we propose a general framework for constructing test information

measures and illustrate their use in experimental design. Our simulation studies

show that, for linear regression coefficient tests, test information based designs

perform better than D-optimal designs. In the case of non-nested model selection,

it is unclear how to even construct estimation information based designs, but the

approach for test information based designs is straightforward, see Section 1.2.4.

Additionally, we identify an appealing posterior probability based test information

measure that has an intuitive interpretation, satisfies our fundamental coherence

identities, and is easily generalized for use in classification problems.

Our framework also helpfully rules out various measures of test information. For

example, the variance of the log Bayes factor is essentially a measure that Nicolae

et al. (2008) rejected after some consideration, but with our framework rejection

is immediate because the evidence function corresponding to this measure is of

the form V(z) = −(log z − c)2, which is not concave. Perhaps the most notable

quantity ruled out is power, and we now briefly discuss why it is omitted. The

obvious problem with power is that it is unclear how to calculate it in the presence

of composite hypotheses and nuisance parameters. The underlying power surface

can be summarized by quantities such as the prior mean power (1.27), but these
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summaries lose the frequentist interpretation, and can be particularly expensive

to compute. The second major problem is that there is not an intuitive measure

of observed power. Without a coherent relationship between observed and “ex-

pected” power, it is difficult to see how sequential design decisions (e.g., stopping

rules) could reasonably be based on power. A further fundamental difficulty is

that power does not have the maximal information interpretation discussed in

Section 1.2.1 because it incorporates an investigator-specific critical region.

1.5.3 Future work

A natural direction for future work is to investigate how test and estimation

information measures can be combined to find designs that are good for both

testing and estimation. Some work has been done along these lines by Borth

(1975) in the special case of the entropy approach taken by Lindley (1956) and

Box and Hill (1967). However, in general, test and estimation information are not

related simply, and therefore trying to directly find designs that are good for both

testing and estimation may not be an effective strategy. Instead, we can divide

up the design points and construct two designs, one that is good for testing and

one that is good for estimation. The overall design should then have reasonable

properties for both problems. Future work will be to explore this approach and

investigate methods for setting the proportion of the design points to be allocated

to each problem.
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2
Disentangling overlapping astronomical

sources using spatial and spectral

information

2.1 Introduction

When two or more sources are situated close enough to each other that there is a

substantial overlap of their Point Spread Functions (PSFs), they pose a many-fold

problem to astronomical analysis. The first is to recognize that there is an overlap,
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the second is to determine the number of distinct sources that are involved, the

third is to measure their relative intensities, and the fourth is to separate them suf-

ficiently to be able to carry out useful secondary analyses like spectral fitting and

variability analysis. These problems are especially complicated for high-energy

photon detectors, since the data are firmly in the Poisson regime, background is

often a significant component of the data, and the simplifying approximations of

a Gaussian process are usually inapplicable. Many researchers have considered

the simpler problem of a single source contaminated by background in the low

counts regime (e.g., Kraft et al. 1991, Loredo 1992, van Dyk et al. 2001, Park

et al. 2006, Weisskopf et al. 2007, Laird et al. 2009, Knoetig 2014, Primini and

Kashyap 2014), and have generally found that Poisson-likelihood based Bayesian

techniques are well suited to address this category of problems.

However, in the case of multiple sources, progress has been slow, and the choices

limited. One could construct approximate measures of intensities of the compo-

nent sources in the Gaussian regime via matrix inversion (Kashyap et al. 1994),

or choose to minimize contamination by limiting the sizes of the apertures to

cover only the cores of the PSFs (Broos et al. 2010), or carry out full-fledged

2-D spatial modeling. All these are approximate or computationally intensive

solutions. An important advance was made recently by Primini and Kashyap

(2014), who developed a fully Bayesian aperture photometry method that simul-

taneously models the intensities of the overlapping sources and the intensity of

the background. Their method can be applied to any counts image with multiple

overlapping sources, with a practical computational limit of up to five sources.
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Table 2.1: Symbols used in this chapter. Notation used only in a single section is defined
where it appears and is not included in this table.

Symbol Definition
(xi, yi) Location of photon i on the detector
Ei Energy (PI channel) of photon i
µj True location of source j (2-D coordinates)
fµj Point Spread Function centered at µj
αj Spectral shape parameter for source j (full model)
γj Spectral mean parameter for source j (full model)
αjl Spectral shape parameter l for source j (extended full model)
γjl Spectral mean parameter l for source j (extended full model)
πjl Weight of gamma component l in source j spectral model (extended full model)
Emin, Emax Minimum and maximum detected energy (PI channel)
wj Relative intensity of source j (j = 0 for background)
K True number of sources (Ktrue for emphasis)
k A possible value of K
κ Prior mean of K
si True source of photon i (takes the values 0, . . . , K, with 0 indicating background)
nj True number of photons detected from source j (j = 0 for background)
n Total number of photons detected i.e.

∑K
j=0 nj

θj Full model parameters for source j i.e. {wj, µj, αj, γj}
ΘK All full model source specific parameters i.e. {θ0, . . . , θK} where θ0 = w0

Lfull, Lsp, Lext Likelihood function of the full, spatial-only, and extended full models, respectively
ψ(t) The value of generic parameter ψ in iteration t of the algorithm
x, y, E, s Vectors of the corresponding photon specific variables (see earlier table entries)
IA Indicator function equal to 1 if the event A occurs (e.g. K = 3) and 0 otherwise

Despite this, most of the problems listed above are still extant.

Typically, X-ray data are collected as lists of events, with each event tagged by

its location on the detector, its energy,1 and its arrival time. Binning the posi-

tions into images causes a loss of information that could be alleviated by carrying

out the analysis on the unbinned event lists. In such a case, it becomes feasible

to disentangle individual events and allocate them probabilistically to the several
1The detector records the pulse height amplitude (PHA), which is roughly proportional to

the energy of the incoming photon. These values are often reported as pulse-invariant (PI)
gain-corrected PHAs. The distribution of PI for a photon at a given energy is encoded in the
detector’s Redistribution Matrix File (RMF). In the following, we use “energy” as a synonym
for this recorded PI, and clarify only if there is any ambiguity.
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sources that comprise the dataset. In the following, we describe an algorithm that

directly addresses three of the four problems listed above: it dynamically deter-

mines the number of overlapping sources, measures their intensities, and pools

individual events into clusters for which follow-up spectral analysis can be carried

out. There are related approaches for longer wavelength data originating from

an unknown number of sources, for example, Brewer et al. 2013 and Safarzadeh

et al. 2014. The former uses Gaussian process models to identify stellar oscillation

modes, and the latter uses simulated Herschel images based on Hubble data to

investigate a disentangling method. The principal difference between these meth-

ods and our approach is that they conduct analysis at the pixel level, whereas

we probabilistically assign individual photons to sources, a key distinction when

analyzing low-count X-ray data.

2.1.1 Statistical approach

Here we use finite mixture distributions to model several overlapping sources of

photons in a high-energy image. Finite mixture distributions are a useful class of

statistical models for data that are drawn from a mixture of several subpopula-

tions; these models are finite in that the (possibly unknown) number of subpopu-

lations is a finite positive integer. (See McLachlan and Peel 2004 and Titterington

et al. 1985 for comprehensive discussion of finite mixture distributions, and, for

example, Mukherjee et al. 1998 for a previous application in astronomy.) We take

a Bayesian perspective that allows joint inference for the parameters that describe

the photon sources (e.g., their number, intensities and locations), the basic shape
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of their spectra, and the probability that any particular photon originated from

each source, given its recorded location and energy.

Performing inference jointly on the image and spectra improves the precision of

the fitted parameters, and also provides more coherent measures of uncertainty

than would be available if the spatial and spectral data were analyzed separately.

Furthermore, unlike other methods for overlapping sources, our approach quanti-

fies uncertainty about the number of sources. Whether we are ultimately inter-

ested in spatial or spectral aspects of sources, identifying the correct number of

sources is clearly fundamental. Consequently, a coherent measure of the uncer-

tainty associated with the fitted number of sources is critical to the appropriate

interpretation of the fitted parameters of the individual sources.

In some applications inference for the number of sources may seem unneces-

sary because the sources are clearly identifiable. For instance, the XMM-Newton

observation of FK Aqr and FL Aqr analyzed in Section 2.6 has relatively weak

background noise, and the sources overlap only moderately. In such cases, the

main advantage of the proposed method is that it precisely quantifies the un-

certainties associated with the positions, intensities and spectral shapes of the

sources. As already mentioned, finite mixture analysis also yields, for each ob-

served photon, the probability that it originated from each inferred source (or the

background). In this way we do not deterministically assign photons to sources,

but rather properly assess the uncertainty of their origins. This is in contrast

to other methods, such as those based on source regions, which deterministically

assign photons to nearby sources, and therefore do not properly quantify uncer-
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tainties in fitted source parameters.

There is a potential for overfitting in finite mixture models if the number of

sources is unknown. This is mitigated when substantial prior information re-

garding the shape of the PSF or the number of sources is available, or both. In

practice, we have detailed information about the PSF, and hence know exactly

what the distribution of the recorded photon locations should be for each source.

(For point sources this is trivial, but even for extended sources one can easily

convolve the source model with the PSF.) Even if the PSF varies across the field,

the shape of the photon scatter is completely determined by the location of the

source. With this complete knowledge of the PSF, there is only a small risk of

overfitting, even with limited prior information regarding the number of sources

and their spectral shapes. Indeed, our results do not strongly depend on the choice

of prior distribution for the number of sources (see Section 2.5.1).

Our method is designed for analyzing images composed of an unknown num-

ber of point sources that are contaminated with background. However, it can be

applied to extended sources, with some modifications to account for spatial vari-

ations in intensity and spectra. We also mention that the success of our method

depends partly on our ability to use spectra to distinguish point sources from the

background, which is possible because a typical X-ray point source spectrum is

more peaked than the background. Because of this, we are able to use basic mod-

els that capture the rough spectral shape in order to exploit spectral information

whilst conserving computational resources. In the X-ray band, this approach of-

fers substantial improvements over analyses using only spatial data without the
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cost of precisely modeling the spectra. However, the utility of the method in other

wavelength bands will depend somewhat on the nature of the spectra typical of

those bands.

The remainder of the paper is organized into seven sections. Section 2.2 de-

velops the statistical model for isolated sources in the context of high-energy

datasets, and describes how these models are combined in the case of multiple

sources. Section 2.3 uses a motivating example to illustrate the method and the

benefits of incorporating spectral models for the sources. The beginning of Sec-

tion 2.4 gives a brief review of Bayesian inference. The remainder of Section 2.4

describes the details of the proposed Bayesian analysis and computational ap-

proach. Section 2.5 presents two simulation studies. The first illustrates that

inference for the number of sources is insensitive to the choice of prior distribu-

tion, and the second more thoroughly studies the advantages of using the spectral

data. Sections 2.6 and 2.7 present the results of our analysis of observations from

the XMM-Newton and Chandra X-ray observatories. The XMM observation is

of the apparent visual binary FK Aqr and FL Aqr, and the Chandra observation

is of approximately 14 sources from near the center of the Orion nebula. We

summarize in Section 2.8 and computational details are in the appendices. Our

Bayesian Separation of Close Sources (BASCS) software is available on GitHub

at https://github.com/astrostat/BASCS.
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2.2 Data and statistical models

2.2.1 Structure of the data

High-energy detectors record directional coordinates (xi, yi) and energy Ei for

each detected photon, where i = 1, . . . , n indexes the photons. As mentioned, in

practice, the PI channel is used to quantify energy. We denote the full set of spatial

and spectral information for n detected photons by (x, y, E). These observed

quantities are subject to the effects of the PSF and the spectral Redistribution

Matrix Function (RMF). We explicitly account for PSF effects in our model, but

model the observed spectra, the convolution of the source spectra and the RMF.

This strategy does not allow us to fit source spectral models, but does allow us to

leverage spectral data to separate the sources. Even though all the attributes are

recorded digitally and are binned quantities, we treat them as continuous variables

for simplicity, since this binning is at scales that heavily over-sample the PSF.

Each photon is assumed to originate from one of several point sources or the

background, but its exact origin is unknown. Furthermore, the number of point

sources contributing photons to the data, their locations, intensities, and spectral

distributions are all unknown. We assume background is distributed uniformly

across the image, its strength and spectral distribution are often not known.

2.2.2 Prototype model for a single source

To introduce notation and our model in the simplest case, we first suppose that the

data consist of photons from a single source, with no background contamination.
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Statistical models specify a distribution for the observed data conditional on a

number of typically unknown parameters; we discuss parameter fitting Section

2.4.3. In the current case, given the unknown position of the source, the detected

photons are assumed to be dispersed according to a PSF. That is,

(xi, yi)|µ ∼ PSF centered at µ (2.1)

for i = 1, . . . , n, where µ = (µx, µy) is the unknown position of the source2. We

use the same 2-D King profile3 in all the simulations and data analyses presented,

see Read et al. (2010) and King (1962). The King profile density, shown in Fig-

ure A.2 in Appendix A.4, has heavy tails and is essentially a bivariate Cauchy

distribution. Specific parameter values are detailed in Appendix A.4. More gen-

erally, although our method assumes that the PSF is known given µ, it may vary

with µ. Furthermore, the PSF may be any function which can be quickly evalu-

ated analytically or numerically. Even in cases where computationally expensive

evaluations are required our method is feasible if the PSF is first tabulated.

An important feature of our overall approach is that it also utilizes the spectral

data to better assess the likely origin of each photon (when background or more

than one source is present). With this end in mind, we propose a simple and

computationally practical model for the basic shape of the source spectrum. In
2The notation x|z ∼ F means that, the variable x has the distribution denoted by F if z is

fixed and known, and we say that x, given z, follows the distribution F . Throughout, when we
use this notation we mean that repeated realizations of x are independent given z.

3The beta2d model in CIAO/Sherpa.
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particular, we model photon energies using a gamma distribution,4

Ei|α, γ ∼ gamma(α, α/γ) (2.2)

for i = 1, . . . , n. Here, α and γ are the unknown shape and mean parameters

used to describe the basic spectral distribution.5 The gamma distribution allows

flexible modeling of positive quantities with right skewed distributions.6 We em-

phasize that we aim to summarize the essential shape of the spectral distribution,

rather than to model the details of emission lines and other spectral features. This

is practical because for high-energy missions, the effective areas are typically small

at low and high energies, with a broad peak in the middle; the resulting counts

spectrum is reasonably modeled by a single- or double-component gamma distri-

bution (particularly since we ignore the RMF). Our goal is to identify sources and

divide photons among them, not to carry out detailed spectral analysis. However,

our algorithm allows for complex spectral models to be built in if necessary. In ad-

dition, and computationally more feasible, once the gamma model has fulfilled its

role in separating sources, a more sophisticated spectral model may then be used

to draw scientific conclusions about the spectral distributions of the disentangled

sources. This final stage will be discussed in Section 2.7.2.
4A standard parameterization of the gamma(α, β) distribution yields the density f(x) =

βα

Γ(α)x
α−1e−βx = αα

γαΓ(α)x
α−1e−

α
γ x, x > 0. Here α and β = α/γ are the shape and rate parame-

ters, respectively.
5We parameterize the gamma distribution using the shape and mean, instead of the shape

and rate, for interpretability and because computationally it is best to avoid rates, which in our
applications tend to be close to the parameter space boundary at zero.

6Indeed, the Exponential and Chi-squared distributions are special cases, and a gamma can
also closely resemble a (truncated) Gaussian distribution.
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2.2.3 Prototype model for multiple sources

In practice there are multiple sources and background contamination, hence we

introduce a finite mixture model. Let K be a parameter denoting the number of

sources and µ = (µ1, . . . , µK) be a 2 × K matrix giving the source positions i.e.

µj = (µjx, µjy), for j = 1, . . . , K. If we knew the origin of every photon then,

we could model the spatial and spectral data associated with each point source

as we did in Section 2.2.2. We thus introduce a new variable si which indicates

the source number associated with photon i. Each si takes on a value between 1

and K, and we let s denote the vector (s1, . . . , sn). Note that si is never actually

observed and thus is a latent variable. A latent variable is essentially an unknown

parameter which is useful for modeling, but may not be of direct interest in itself.

Here, we have introduced si to simplify the model and to facilitate the algorithms

used for inference, which are described in Section 2.4.3.

As a parameter, si is also conditioned on in our spatial model, which now

becomes

(xi, yi)|(µ, si = j) ∼ PSF centered at µj (2.3)

for i = 1, . . . , n. As an unknown parameter, si, plays a role similar to µ; it is

“given” in (2.3). The spectral model can also be straightforwardly generalized to

the multiple source case. We have

Ei|(αj, γj, si = j) ∼ gamma(αj, αj/γj) (2.4)
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for i = 1, . . . , n, where the parameters αj and γj usually differ among the sources.

In addition to point sources, we must model the background. To this end we

extend the set of possible values of si to include 0. Throughout, symbols indexed

by 0 refer to the background. We assume that photons originating from the

background are uniformly distributed across the image,

(xi, yi)|(µ, si = 0) ∼ Uniform (2.5)

for i such that si = 0. Instrument effects may cause the background to be non-

uniform, and a refinement would be to model such effects.

The background spectrum is also assumed to be flat over the energy range

of the source spectra. That is, it is assumed to have a uniform distribution on

(Emin, Emax), where Emin and Emax are the minimum and maximum photon energy

observed. This is a good approximation because the background spectrum is

expected to be less peaked than that of a point source.

So far we have not considered the intensities of the different sources and the

background. Naturally there should be a parameter for each source, and one for

the background, to specify the intensities. Let nj denote the number of photons

originating from source j, for j = 0, . . . , K (with zero denoting the background),

mathematically,7 nj =
∑n

i=1 I{si=j}. We can realistically model nj as a Poisson

variable with some mean mj, for j = 0, . . . , K. Because these Poisson means vary

with exposure time, however, the relative intensities, wj = mj/
∑
mj, are of more

direct interest. Writing w = (w0, . . . , wK), and given n, the Poisson model for
7I is an indicator function that is zero if its argument is false and one otherwise.
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(n0, . . . , nK) yields a Multinomial model,8

(n0, . . . , nK)|w, n,K ∼ Multinomal(n;w), (2.6)

where
∑K

j=0wj = 1. Under this parameterization, the relative strengths of

the sources and background can be succinctly expressed by the vector w =

(w0, . . . , wK) without further reference to n. Accordingly, all inference is per-

formed given n, because its value tells us nothing about the number of sources or

their parameters.

To complete our introduction of the model we derive the likelihood function,

which is the probability of the data expressed as a function of the parameters. The

likelihood tells us what values of the parameters are supported by the data and is

a key component for principled statistical inference. Let Ij be the set of photons

originating from source j (including j = 0) and let I be the entire collection of

observed photons.9 Also, denote the value of the PSF centered at µ and evaluated

at (x, y) by fµ(x, y). Lastly, here and throughout, we let θj = {wj, µj, αj, γj}

denote the parameters associated with source j, for j = 1, . . . , K. Similarly, for

the background, we let θ0 = w0. We let ΘK denote all the source (and background)

specific parameters i.e. ΘK = {θ0, . . . , θK}. The remaining parameters are K and

s. As already discussed, we treat n as fixed, and impose the constraint that the

likelihood is zero unless
∑K

j=0 nj = n. Combining the different parts of the model
8The Multinomial distribution assigns the probability (n!/(n0! · · ·nK !))

∏
wn0

0 · · ·wnK

K to the
allocation given by (n0, . . . , nK) of n =

∑K
i=0 ni objects into K + 1 categories.

9Mathematically, Ij is the set of photon indices associated with source j, that is, Ij = {i :
si = j}, for j = 0, . . . ,K, and I =

∪K
j=0 Ij = {1, . . . , n}.
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yields the full model likelihood

Lfull
n (ΘK , K) ≡ p(x, y, E|ΘK , K, s, n) ∝

∏
i∈I/I0

fµsi (xi, yi)gαsi ,γsi
(Ei), (2.7)

where

gαsi ,γsi
(Ei) =

α
αsi
si

γ
αsi
si Γ(αsi)

E
αsi−1

i e−αsiEi/γsi . (2.8)

The maximum energy Emax and the image area are assumed to be known quan-

tities, rather than parameters to be inferred. They are therefore omitted from

the likelihood, as are all terms not involving the parameters. In later sections, we

compare analyses under the full model to analyses under the spatial-only model

that does not use the spectral information. The likelihood of the spatial-only

model is

Lsp
n (Θ

sp
K , K) ≡ p(x, y|Θsp

K , K, s, n) ∝
∏

i∈I/I0

fµsi (xi, yi). (2.9)

The notation Θsp
K = {w0, . . . , wK ;µ1, . . . , µK} represents the set of spatial param-

eters. Note that, although w does not explicitly appear in either likelihood, the

data does nevertheless constrain w in both cases. In particular, the likelihoods

indicate probable values of s which in turn indicate probable values of w. Concep-

tually, our method is to apply Bayes rule, briefly reviewed in Section 2.4.1, to the

likelihoods displayed in (2.7) and (2.9) to yield a distribution summarizing our

knowledge of the parameters given the data, i.e. the joint posterior distribution.
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Figure 2.1: Fitting gamma distributions to a counts spectrum. The histogram shows the
observed spectrum of the brightest of the Chandra sources in the Orion field in Section 2.7.2
(from one iteration of our algorithm; see Section 2.4.3), and the curves show gamma model fits.
The solid line (green) is the extended full model fit of the two-gamma spectral model and the
dashed line (red) is the maximum likelihood fit of the one-gamma model.

2.2.4 Extensions of the spectral model

In some situations the gamma spectral model given by (2.4) is not sufficiently flex-

ible to capture the spectral shape of the observed sources. For example, Figure 2.1

shows the observed spectrum of the brightest source in the Chandra observation

analysed in Section 2.7. In particular, the histogram shows the spectrum using

one likely assignment of photons produced during the iterations of our algorithm

(see Section 2.4.3). The dashed red curve shows the maximum likelihood fit of

the gamma distribution to the observed spectrum. The gamma does not fit the

distribution closely. This causes a problem because inference based on the (mis-

specified) gamma spectral model will suggest there are two sources instead of one

in order to better capture the spectral distribution of the source.

To solve this problem, we use a mixture of two gamma distributions for a more
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general spectral model. That is,

Ei|(αj1, αj2, γj1, γj2, πj1, πj2, si = j) ∼
2∑
l=1

πjlgamma
(
αjl,

αjl
γjl

)
, (2.10)

for i = 1, . . . , n, where the parameters πj and πj2 = 1 − πj1 are the weights of

the two gamma components. When this two gamma mixture spectral model is

substituted for the one gamma spectral model in (2.7) we obtain the following

extended full model likelihood

Lext
n (Θext

K , K) ≡ p(x, y, E|Θext
K , K, s, n)

∝
∏

i∈I/I0

(
fµsi (xi, yi)

2∑
l=1

πsilgαsil
,γsil

(Ei)

)
. (2.11)

The notation Θext
K denotes {θext

0 , . . . , θext
K }, where θext

j = {wj, µj, αj1, αj2, γj1, γj2,

πj1, πj2} gives the parameters associated with source j, for j = 1, . . . , K, and

θext
0 = θ0. The solid green curve in Figure 2.1 shows the extended full model fit

of the gamma mixture spectral model. In this example, the mixture of gammas

quite closely fits the observed spectrum and generally there did not appear to

be unwarranted splitting of sources into two in our numerical studies using this

model.

Even greater flexibility of the spectral model could be gained by considering a

mixture of more than two gammas, but this was not necessary in our numerical

studies. For the XMM data of Section 2.6, the one-gamma spectral model is

sufficient in that, for both of the sources, the maximum likelihood fit of the one-
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gamma and the two-gamma models resulted in essentially identical fits when using

a feasible allocation of photons. In the interest of simplicity, we only use the

extended full model when necessary (i.e., in Section 2.7), and elsewhere use the

full model given in (2.7).

Detecting spectral model inadequacy

A natural question is how one should decide if the source spectral model is in-

adequate for our purpose of allocating photons among the different sources (and

background). There are two potential indications of spectral model misspecifica-

tion. Firstly, analysis may tend to divide bright sources into two. In particular,

when the algorithm (see Section 2.4.3) finds many instances of sources very close

together this indicates that the spectral model is probably not adequate.10 A

second indication of inadequacy of the spectral model comes from considering in-

ference under the spatial-only model. We can inspect the empirical distribution of

the photons assigned to a source in iterations of the spatial-only algorithm. If this

empirical distribution differs substantially from a gamma distribution then it is

unlikely that the one-gamma spectral model is sufficiently flexible. Clearly, look-

ing at the empirical spectral distribution of a source under the spatial-only model

is only reliable if we can accurately assign photons based on spatial data alone.

Thus, when possible it is best to select a bright source which is relatively isolated.

In the presence of uncertainty about the shape of the spectral distributions to

expect then it is usually sensible to use a mixture of at least two gammas (or
10Misspecification of the PSF, and specifically under-estimation of its width, could have a

similar effect.
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perform analysis several times using mixtures of different numbers of gammas).

In the presence of uncertainty about the shape of the spectral distributions to

expect then it is usually sensible to use a mixture of at least two gammas (or per-

form analysis several times using mixtures of different numbers of gammas). One

should be cautious of using a spectral model that is too complicated11 because

overfitting may decrease the benefits of modeling the spectral data.

2.3 Illustrative example

To motivate our method we present a simple simulated data example that illus-

trates the potential gains made possible by using the full model instead of the

spatial-only model. We emphasize that this is a walk-through, designed to clarify

the conceptual foundations of the method. A detailed description of our method

is in Section 2.4. The simulated data consist of the spatial and spectral details of

photons detected from three weak sources contaminated with background. The

spatial data and the spectral distributions used for simulation are shown in Figure

2.2. The background average is 10 photons per unit square, and the numbers of

photons from each source are drawn from Poisson distributions with means 100,

50 and 25, respectively. Thus, the background is very strong and contributes

about 85% of the photons over the entire image, and about 40%, 53%, and 66%

respectively in the three source regions. The true source positions are (1.5, 0),

(0, 1), and (−2, 0), and their source regions are approximately circles of radius
11We can avoid an overly complicated model by imposing parametric constraints or utilizing

substantial prior information to be sure only scientifically plausible spectral shapes are allowed.

65



Figure 2.2: Illustrative simulation setup. Locations of three weak sources are shown as red
dots over a scatter plot (left), as also are the adopted counts spectra of the sources and the
background (right).

1. All three sources have the same PSF, the 2-D profile density shown in Figure

A.2 in Appendix A.4. The source spectral data is drawn from a gamma distribu-

tion plotted in Figure 2.2 (mean parameter 600 and shape parameter 3). In this

simple illustration, all the sources have the same theoretical spectral distribution;

however, this is not assumed in the fitted model, which is based on the likelihood

in (2.7). The theoretical background spectrum was uniform on (0, 5000).

We fit both the spatial-only and the full model to the simulated data. The

resulting posterior probability distributions for K are shown in Figure 2.3. With

the spatial data alone it is difficult to detect the faintest source, and consequently

the most likely value of K is 2 rather than 3. The situation is much improved when

we include the spectral data. The advantage of using the spectral information is

due to a greater ability to distinguish the sources from the background, owing to
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Figure 2.3: Probability distribution of the number of sources based on the spatial-only model
(left) and the full model (right). In this simulation, the true value is K = 3.

Table 2.2: Fitted parameters under the full and spatial-only models. The columns in bold
give the fits that would likely be relied upon in practice for the two models. The intervals in
parentheses indicate the 16% and 84% posterior quantiles, i.e., Bayesian 1σ equivalent intervals.

Truth Full model Spatial-only model
k 3 3 2 3
P (K = k|data) – 0.95 0.85 0.14
µ1x 1.5 1.51 (1.41,1.61) 1.43 (1.27,1.58) 1.44 (1.29,1.59)
µ1y 0 −0.01 (−0.10,0.09) 0.04 (−0.08,0.17) 0.02 (−0.10,0.14)
µ2x 0 −0.08 (−0.20,0.04) −0.09 (−0.28,0.12) −0.03 (−0.22,0.15)
µ2y 1 1.11 (1.00,1.23) 0.96 (0.80,1.13) 0.99 (0.84,1.15)
µ3x −2 −1.96 (−2.17,−1.76) – – −1.37 (−2.40,0.35)
µ3y 0 0.06 (−0.15,0.27) – – −0.24 (−1.44,0.75)
w1 0.083 0.068 (0.057,0.078) 0.063 (0.049,0.076) 0.062 (0.049,0.076)
w2 0.058 0.064 (0.053,0.076) 0.055 (0.041,0.068) 0.052 (0.039,0.066)
w3 0.033 0.028 (0.019,0.036) – – 0.017 (0.003,0.030)
w0 0.826 0.841 (0.826,0.855) 0.883 (0.866,0.900) 0.868 (0.848,0.887)
γ1 600 536 (478,592) – – – –
γ2 600 735 (646,820) – – – –
γ3 600 634 (397,826) – – – –
α1 3 3.92 (2.89,4.97) – – – –
α2 3 2.94 (2.18,3.69) – – – –
α3 3 2.76 (1.62,3.82) – – – –

Table 2.3: Photon allocation proportions for the spatial-only and full models.

Source (true intensity) No. Photons
in simulation

Average allocation probabilities
Spatial-only model Full model

Background Right Middle Left Background Right Middle Left
Background (10/sq) 1001 0.917 0.037 0.033 0.013 0.940 0.022 0.026 0.012
Right (100) 84 0.566 0.354 0.068 0.012 0.318 0.557 0.113 0.012
Middle (70) 67 0.593 0.073 0.303 0.031 0.313 0.122 0.505 0.060
Left (40) 42 0.800 0.034 0.071 0.095 0.431 0.066 0.145 0.358
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the difference between the source spectra and the background spectrum.

Modeling the spectral data also improves estimation of the other parameters,

even if we consider the fits based on K = 3. (This is the correct value of K

and is identified by the full model but not the spatial-only model.) In Table

2.2, the first bold column and the last column (not bold) show a summary of

the fitted parameters for K = 3 under the full model and spatial-only model,

respectively. When we consider K = 3, the greatest gains of using the full model

are in estimating the parameters of the faintest source because this source is the

hardest to distinguish from the background when using only spatial data.

In practice, the advantage of using the spectral data for estimating the source

parameters is greater than is apparent when we only consider K = 3. When

confronted with the summary of the fit of K under the spatial-only model (given

in the left panel of Figure 2.3), a researcher is likely to rely on the parameter fits

assuming K = 2. Thus, it is fair to compare the K = 3 fit under the full model

with the K = 2 fit under the spatial-only model (i.e., the bold columns in Table

2.2). The latter is clearly substantially worse than the former, because the faint

source goes undetected and has no fitted parameters.

The improvement in separation of the sources (and background) can be further

understood from Table 2.3, which summarizes the probability that each photon

originated from each source or the background, again under the optimistic as-

sumption that K = 3 (see Section 2.4.3 for additional details). The rows of the

table indicate the true photon origin, and the columns indicate the fitted origins.

The table entries are the average probabilities, across photons, of the different
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fitted origins. Ideally the matrices would be identity matrices with ‘1’s along

the diagonal and ‘0’s elsewhere, but because of the strength of the background

many source photons are mixed up in the background. For example, for a photon

originating from the leftmost source, the spatial-only model on average assigns

probabilities of 0.095 and 0.800 that it originated from the correct source and the

background respectively, reflecting the difficulty in detecting the location of this

faint source. Under the full model, the average probability of correct assignment

is increased to 0.358, a substantial improvement. Indeed, for each of the three

sources, nearly half as many photons are mixed up with the background under the

full model. Our improved ability to correctly assign photons under the full model

(relative to the spatial-only model) naturally leads to improved estimation of the

parameters of the faint source, as illustrated in Table 2.2. There is a similar effect

for the other sources though it is less pronounced because, being brighter, they

are easier to detect from the spatial data alone.

2.4 Bayesian model fitting

2.4.1 Bayesian inference

The Bayesian perspective provides a coherent approach for combining all available

information to infer the unknown model parameters ΘK , K, and s. Firstly, our

knowledge (or lack of knowledge) as to the likely values of the parameters before

seeing the current data is quantified using a prior distribution. Once the data

are observed, Bayes’ Theorem allows us to combine the likelihood and the prior
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distribution to yield the posterior distribution of the parameters. Recall, the

likelihood is the probability of the data given the parameters. The posterior

distribution expresses our updated knowledge of the parameters after seeing the

data. Bayes’ Theorem states that, for generic data and parameter vector ψ, the

posterior distribution is

p(ψ|data) = p(data|ψ)p(ψ)
p(data) , (2.12)

where p(data|ψ) is the likelihood function and p(ψ) is the prior distribution. The

denominator p(data) is simply a normalizing constant which ensures the posterior

integrates to one. In our case, the data is (x, y, E) and under the full model

ψ = {ΘK , K, s} so

p(ΘK , K, s|x, y, E) =
p(x, y, E|ΘK , K, s)p(ΘK , K, s)

p(x, y, E)
. (2.13)

Here, all probabilities are conditional on n but this is suppressed. The likelihood

p(x, y, E|ΘK , K, s) is given in (2.7), and the prior distribution p(ΘK , K, s) is de-

scribed in Section 2.4.2. Referring back to the illustrative example in Section 2.3,

the marginal posterior distribution of K,

p(K|x, y, E) =
∑
s

∫
p(K, s,ΘK |x, y, E)dΘK , (2.14)

is displayed in Figure 2.3. Given the number of unknown parameters, it is not

possible to plot their joint posterior distribution, but we can derive and plot the
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marginal posterior distribution of any one parameter, as in (2.14) and Figure 2.3.

2.4.2 Completing the model formulation: prior distribu-

tions

Following the Bayesian approach, we specify prior distributions for each of the

unknown parameters. Firstly, the positions of the point sources are a priori

assumed to be independently and uniformly distributed across the image. That

is,

µj ∼ Uniform (2.15)

for j = 1, . . . , K. In principle, informative priors can be used if prior information

on source locations is available. For example, we might set µj ∼ N(µj0, σ
2
j0),

where (µj0, σj0), for j = 1, . . . , K, specifies knowledge of the source locations.12

Next, the vector w, that specifies relative intensities, is given a Dirichlet13 prior

distribution with parameter (λ, . . . , λ). A Dirichlet random variable is a proba-

bility vector, i.e., it is a vector with non-negative entries that sum to one. We

set λ = 1 throughout. This choice is uniform on the probability vector, but very

slightly favors sources of equal size. Indeed, setting λ = 1 means the Dirichlet

prior has as much information as a single photon count added to each source
12The notation N(µj0, σ

2
j0) denotes a Gaussian distribution with mean µj0 and variance σ2

j0.
13The Dirichlet density is f(p0, . . . , pK) =

(
Γ(
∑K

i=0 λi)/
∏K

i=0 Γ(λi)
)∏K

i=0 p
λi−1
i , for all pi

such that
∑K

i=0 pi = 1 and pi ≥ 0 for i = 0, . . . ,K, and is zero otherwise. Here, (λ0, . . . , λK) is
a parameter, and Γ is the gamma function.
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(including a single count added to the background).14 Regarding the realized

vector of source and background counts (n0, . . . , nK), recall that (2.6) specifies a

Multinomial distribution for (n0, . . . , nK), given w, n, and K. Since (n0, . . . , nK)

is a function of the parameter (or latent variable) s, (2.6) is effectively a prior

distribution for s.15

External information about the number of sources is amalgamated into a prior

for K, which we assume to be Poisson with mean parameter κ.16 Under the

Poisson prior, the fitted value of K is relatively robust to the choice of κ because

the PSF is completely specified.17 Indeed, we show in Section 2.5.1 that the

posterior mode for the number of sources may correctly identify the true value of

K, even when κ is quite different from K. Therefore, in practice it is adequate to

use the Poisson prior for K with κ set to any reasonable guess of the number of

sources.
14Suppose the source counts are observed to be (n0, . . . , nK) and follow a Multinomial distri-

bution with probability vector w. Then, assuming a priori w ∼ Dirichlet(λ0, . . . , λK), it can be
shown that w|(n0, . . . , nK) ∼ Dirichlet(n0 + λ0, . . . , nK + λK). Because λj is treated just like
nj in this posterior distribution, λj can be viewed as a “prior count” and we say the Dirichlet
prior is as informative as λj counts added to source j, for j = 0, . . . ,K.

15The parameter w is called a hyper-parameter because it appears in the prior distribution of
s but is itself of interest and thus has its own prior distribution.

16While other priors for K are possible, the Poisson is simple and only moderately informative.
Indeed, the equality of mean and variance captures the typical level of prior information we
expect, e.g., if we suspect 10 sources, then an analysis yielding between 8 and 12 sources would
seem quite reasonable, but we are unlikely to consider, say, 100 sources as a realistic possibility.
Even less informative priors may sometimes be desirable, but it generally makes sense to use
any reliable prior information that is available to guard against model misspecification. (Prior
information about K also helps our algorithm to converge slightly more quickly.)

17If the PSF were not fully specified, it would be difficult to distinguish a few sources with
a wide PSF from many sources with a narrow PSF. Thus, the fitted number of components of
a general finite mixture model can be quite sensitive to the choice of prior on this parameter.
Accounting for misspecified PSFs or uncertainties in their calibration is beyond the scope of this
work (see Lee et al. 2011 and Xu et al. 2014 for possible strategies).
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To complete the model specification, we must assign prior distributions for

the source spectral distribution parameters αj and γj, for j = 1, . . . , K. Typ-

ically there is sufficient data to overwhelm these prior distributions. Thus, we

are not overly concerned with the exact form of these priors. For concreteness,

however, we mention that one set of priors we use is αj ∼ gamma(2, 0.5) and

γj ∼ Uniform(Emin, Emax), for j = 1, . . . , K, where Emin is the minimum observed

energy.18

To summarize, our prior distribution for the full model parameters ΘK , K and

s is

p(ΘK , K, s) = p(µ, α, γ, s|K,w)p(w|K)p(K)

∝

(
K∏
j=0

αje
−0.5αj

)
K∏
j=0

w
nj

j

(
K∏
j=0

wj

)λ−1

κK

K!
, (2.16)

where µ, α and γ denote (µ1, . . . , µK), (α1, . . . , αK), and (γ1, . . . , γK), respectively.

The second term on the second line of (2.16) comes from the Multinomial prior

distribution for s. In the case of the extended full model given in (2.11), the

priors for αjl, γjl, l = 1, 2, are the same as those for αj, γj, and the prior for πj1 is

a Beta(2, 2) distribution,19 for j = 1, . . . , K. (No prior for πj2 is needed because

this parameter is determined by πj1, for j = 1, . . . , K.) The prior for the spatial
18More generally, if K is large and some of the sources are faint, it may be beneficial to

model the distribution of the spectral parameters across the sources. This strategy is known as
hierarchical modeling and is known to have statistical advantages in terms of the estimates of
the individual spectral parameters. Such hierarchical spectral structures are left as a topic for
future work.

19For α, β > 0, the Beta(α, β) distribution density is f(x) = (Γ(α+ β)/Γ(α)Γ(β))xα−1(1 −
x)β−1 for x ∈ [0, 1], and is zero otherwise. Here, Γ is the Gamma function.
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model parameters is (2.16) without the first term.

2.4.3 Statistical computation and model fitting

Given the likelihood in (2.7) and the prior distribution in (2.16), we can apply

Bayes’ Theorem to obtain the posterior distribution of ΘK , K and s (see (2.13)).

The resulting posterior distribution is a complicated function, which we summarize

by the low-dimensional marginal distributions as described in Section 2.4.1 and

their means and standard deviations. These summaries are used to estimate the

model parameters and their error bars.

We accomplish the necessary numerical integration, e.g., as in (2.14), using

Monte Carlo methods, a cornerstone of statistical computing (Shao and Ibrahim

2000, Liu 2008, Brooks et al. 2011). The idea of Monte Carlo algorithms is to

simulate values of the generic parameter ψ from the posterior distribution in (2.12)

to obtain a Monte Carlo sample {ψ(1), . . . , ψ(T )}. For example, in Figure 2.3, the

height of the bin centered at k is the proportion of the Monte Carlo draws with

K(t) equal to k, i.e.,

P (K = k|x, y, E) ≈ 1

T

T∑
t=1

I{K(t)=k}, (2.17)

for k = 1, . . . , K.

A somewhat unusual feature of our model is that the number of parameters is

determined by the value of K, the unknown number of sources. This necessarily

conditional structure means that it only makes sense to consider the posterior
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distributions of the other parameters for a given inferred value of K (Park et al.

2008 discuss a somewhat similar conditional inference in the context of locating

emission lines). For an illustration of why this is so, consider the intensity w3

of the ‘third’ source in an image. The parameter w3 does not have the same

interpretation when there are three sources versus four, because what is the ‘third’

source in the first scenario may combine two sources from the latter scenario. In

fact, for K = 2 the parameter w3 does not even exist. In general, there is no

clear relationship between the parameters under scenarios with different values

of K. This prevents us from considering the unconditional posterior distribution

of, say, w3. Instead, we are interested in posterior summaries given a particular

value of K, such as p(w3|K = k, x, y, E). For example, the second row of Table

2.2 provides an estimate of the posterior mean of w2 conditional on K = 3, under

the full model,20

ŵF2 (k) =

∑T
t=1w

(t)
2 I{K(t)=k}∑T

t=1 I{K(t)=k}
= 0.080. (2.18)

More generally, for each one-dimensional parameter τ , we calculate the Monte

Carlo estimate

τ̂(k) =

∑T
t=1 τ

(t)I{K(t)=k}∑T
t=1 I{K(t)=k}

. (2.19)

In practice, we choose a value of k at which K has relatively high posterior prob-

ability, such as the posterior mode, because otherwise the parameters estimated
20The superscript F in (2.18) indicates that the Monte Carlo samples were drawn from the

posterior derived under the full model.
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are unlikely to correspond to properties of real sources. (Indeed, our algorithm

does not accurately estimate parameters under unlikely values of K.) We may

decide to consider several different values if the posterior of K is not concentrated

on one value. This can be useful despite the fact that, as we have mentioned, the

number and interpretation of the parameters is not consistent across values of K.

The most popular method for obtaining the Monte Carlo samples needed for

estimates such as that in (2.18) is Markov chain Monte Carlo (MCMC). This an

iterative algorithm in which we generate a new value of the parameters ψ(t) at

each iteration by drawing from a distribution F that only depends on ψ(t−1) (and

the data) and not earlier members of the Monte Carlo sample. Continuing for

T iterations we obtain a sample {ψ(1), . . . , ψ(T )} of correlated parameter values,

which is usually called an MCMC chain. Appropriate choice of F ensures that the

sample mimics the posterior distribution in the sense that as T → ∞ the sample

empirical distribution approaches the posterior distribution. In implementation, a

draw from an appropriate F is typically achieved through two steps: firstly a new

value of the parameters ψ∗ is proposed, and then this value is either accepted or

rejected with some probability.21 The Metropolis-Hastings algorithm (Metropolis

et al. 1953 and Hastings 1970) is an example of such an algorithm. The reader

is referred to Gelman et al. (2013) for details, including discussion of efficient

choices of F and monitoring of convergence to the posterior distribution (which

is usually done by running multiple MCMC chains in parallel and checking that
21An appropriate choice of F and the corresponding rejection probability to use, to ensure

convergence of the sample empirical distribution to the posterior, can be calculated by appealing
to the ‘reversibility condition’ (see texts on the theory of Markov chain convergence e.g. Feller
(1968)).
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their behaviour is sufficiently similar based on some criterion).

In standard MCMC algorithms the parameter space being explored is fixed

throughout. In our context this means the number of sources would have to

be known. We therefore turn to reversible jump Markov chain Monte Carlo

(RJMCMC) algorithms (first introduced by Green 1995), which allow configu-

rations with differing numbers of sources to be explored. There have been a

number of uses of RJMCMC in other astronomy contexts, for example, Umstät-

ter et al. 2005, Brewer and Stello 2009, Jasche and Wandelt 2013, and Walm-

swell et al. 2013. In RJMCMC algorithms, so called ‘jump’ steps update the

value of K, the name referring to a jump between parameter spaces (or ‘models’).

These steps are performed by drawing K(t) from a distribution only depending on

ψ(t−1) = (Θ(t−1), K(t−1), s(t−1)), in the same spirit as ordinary MCMC iterations.

Feasible values of the parameters Θ(t) and s(t) must simultaneously be drawn

because their dimension and interpretation change with K. It is this high dimen-

sional sampling that makes RJMCMC challenging. In RJMCMC algorithms, K(t)

is only allowed to differ from K(t−1) by at most one. This constraint facilitates the

proposal of appropriate parameters Θ(t) and s(t); RJMCMC moves between config-

urations by splitting, combining, creating or destroying sources in the model. The

standard RJMCMC algorithm for Gaussian mixtures was introduced in Richard-

son and Green (1997), and Wiper et al. (2001) illustrated RJMCMC for gamma

mixtures. Our BASCS software essentially combines these two algorithms. Ad-

ditional details are given in Appendices A.2 and A.3. For the analyses found in

Sections 2.5 and 2.7 we specify the number of iterations for which our RJMCMC
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algorithm was run (which depended on the observed convergence rate and run

time). A single iteration of our RJMCMC algorithm consists of one proposal to

change K and ten MCMC updates of the other parameters, i.e., the number of

MCMC iterations is ten times greater than the stated number of RJMCMC it-

erations. In Section 2.6 we fix K and use MCMC, and thus directly specify the

number of MCMC iterations. Our standard approach is to run ten RJMCMC (or

MCMC) chains to allow monitoring of convergence, but for simplicity the final

results are always computed using a single chain.

As discussed in Section 2.4.2, having detailed information about the PSF means

our estimates are insensitive to the prior on K (see also Section 2.5.1). Knowledge

of the PSF also aids computation in that it limits the number of feasible config-

urations, meaning the RJMCMC algorithm does not have to jump across many

values of K. This keeps the number of iterations until approximate convergence

comparatively low. Thus, knowledge of the PSF means that, despite the difficul-

ties that are commonly thought to surround mixture models fit with RJMCMC

algorithms, our proposed approach is relatively stable and robust. Nonetheless,

when the number of sources is clear, MCMC algorithms should be used because

they are computationally preferable to RJMCMC algorithms (see Section 2.6 for

an analysis using an MCMC algorithm). In particular, MCMC algorithms are

faster per iteration and fewer iterations are needed to obtain enough samples for

a given K value of interest. One further challenge is moderate sensitivity to the

spectral model, which is the reason why in some applications the gamma spec-

tral model must be replaced by the gamma mixture spectral model introduced in
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Section 2.2.4.

2.5 Simulation studies

Simulated data are used to assess two important aspects of our method: (i) the

sensitivity of the fit for K on its prior distribution; and (ii) the performance of

the method under a range of different source and background parameters. In the

second case, of particular interest is the comparison of inference for the parameters

under the spatial-only model and full models (given in (2.7) and (2.9)).

2.5.1 Sensitivity to prior distribution on K

To illustrate robustness to the prior on K, we simulated data for a one-source

(Ktrue = 1) and a ten-source (Ktrue = 10) reality and drew inference for the

number of sources under three different settings of the prior mean κ (1, 3, and

10). Ten datasets were simulated under each reality, each consisting of images

of 20 by 20 spatial units and spectral data (simulated under the single gamma

spectral model). We randomly placed the sources in the central 18 by 18 region of

the image, avoiding the edges so that source photons are largely contained within

the image. The mean number of photons mj from source j was chosen randomly

from the interval 100 to 500, for j = 1, . . . , K. The mean total number of photons

from the background in each dataset, m0, was set to 400, an average of 1 photon

per unit square. The number of photons from source j (or the background) was

then simulated from a Poisson distribution with mean mj, for j = 0, . . . , K.
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Figure 2.4: Simulated dataset for the 10 source case. The simulated spatial counts distribution
(left) and the adopted spectra for each source and the background (right) are shown. The true
locations of the 10 sources are marked by large (red) dots in the left plot.

Spatial coordinates for the photons were chosen by sampling from the PSF (or

the Uniform distribution in the case of the background). We used the King profile

density for the PSF; the same PSF is used for analysis of the datasets in Section

2.6 and Section 2.7.

To complete the datasets, we simulated spectral data under the single gamma

spectral model (and from a Uniform distribution in the case of the background).

We drew the spectral distribution parameters αj (shape) and αj/γj (rate), j =

1, . . . , K, from the Gaussian distributions N(3, 0.22) and N(0.005, 0.0012) respec-

tively, truncating both distributions to be strictly positive. The resulting spectral

parameters are similar to those fitted for the XMM dataset in Section 2.6. An

example simulated dataset is shown in the left panel of Figure 2.4. The right

panel shows the true spectral distributions for the same dataset.
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For each of the 20 simulated datasets, ten RJMCMC chains were run to assess

convergence, but for simplicity only one chain per dataset was used in the final

analysis.22 The chains were run for 200,000 RJMCMC iterations, the first 100,000

of which formed the convergence period (or burnin) and were discarded. For each

dataset, the posterior probability of being in state K = k was calculated, using

(2.17), for all feasible values of k. Figure 2.5 summarizes the inference for K under

the ten-source (Ktrue = 10, left panels) and one-source (Ktrue = 1, right panels)

realities, for κ = 1, 3 and 10 (top, middle and bottom panels respectively). Recall

that κ is the prior mean number of sources. The 25% and 75% quantiles of the

posterior probabilities across the ten datasets are indicated for each value of K.

Figure 2.5 shows that, for the ten-source reality, the posterior probability is

concentrated around K = 9, 10 and 11, regardless of which of the three values

of κ is used. Indeed, the prior probability of ten sources specified by the prior

with κ = 10 is nearly 1.25 million times that of the probability specified by the

prior with κ = 1. Despite the difference in the prior probability as a function of

κ, the posterior probabilities of K = 10 are quite consistent; the average (across

simulations) differs by only about 0.1 (comparing κ = 1 with κ = 10, see Figure

2.5). In other words, there is about a 1.25 multiplicative increase in the posterior

probability of ten sources when the prior mean is changed from κ = 1 to κ = 10.

This modest difference in posterior probability is acceptable as it is unlikely that

prior information would allocate the truth 1.25 million to one odds.
22For the purposes of convergence diagnostics, we initialized each chain by randomly choosing

between 1 and 20 sources and then deterministically spreading them out around the edge of the
image space.
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Figure 2.5: Average posterior probabilities of plausible values of K across ten datasets. Left
plots show posteriors for the ten-source reality (Ktrue = 10) with prior mean values of κ = 1, 3, 10
from top to bottom. Right plots show posteriors for the one-source reality (Ktrue = 1) with
κ = 1, 3, 10. In each plot, the 25% and 75% quantiles across the 10 datasets are indicated by
the vertical error bars for each value of K.
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There are appreciable differences among the simulated datasets as indicated by

the quantiles in Figure 2.5. This is to be expected because the source positions and

intensities are chosen randomly. Some of the simulated datasets have two sources

very close to each other, making it hard to determine that they are distinct.

In some cases, it is possible to separate these very close sources based on the

spectral data (using the full model), i.e., if the spectral data appear to come from

two gamma distributions rather than one. However, in other cases it is difficult

to separate such nearby sources, even with the spectral data. Indeed, checks

confirmed that datasets with sizeable posterior probability at K = 9 under the

full model include overlapping sources that cannot be separated by eye and have

similar spectral distributions. Posterior probability at K values of 11 and above

appear because chance clusters of photons are sometimes mistaken for separate

sources. The precise location of these ‘ghost’ sources, however, is highly erratic

across RJMCMC iterations. There is limited evidence for them in the data and

thus wide error bars for their “locations” in the posterior distribution.

Inference is also robust to the choice of κ under the one-source reality (Ktrue =

1). The posterior mode is clearly K = 1 for all three values of κ. Owing to

the skewness of the Poisson density, the difference in prior probability of K =

1 across the different κ values is less dramatic than that for K = 10. When

κ = 1 the a priori probability of K = 1 is around 800 times that when κ =

10. Consequently, the difference in posterior probabilities is also less noticeable.

Indeed, the qualitative difference in the posteriors under κ = 1 and κ = 10 is

marginal, see Figure 2.5.
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Our key conclusion is that the posterior probability of the true number of

sources K seems insensitive to the prior probability assigned to K, at least when

using the Poisson prior. Consequently, the value of κ only needs to be in the

region of the true number of sources in order for the fit for K to be reasonable.

These conclusions match our intuition that knowing the precise PSF statistically

constrains the mixture model sufficiently for the data to drive the fitted values

of the parameters. Our simulations are representative of typical datasets, but

establishing similar conclusions for smaller datsets may require more studies. A

dataset could also be larger than those in our simulations, but as κ (and K)

increases, greater Poisson variance means that the absolute deviation of κ from

the true number of sources has progressively less influence on posterior inferences.

(Intuitively, it is more reasonable to a priori suspect 101 sources when there are

110, than to suspect 1 when there are 10). In our context, prior information typi-

cally consists of previous observations, possibly from a different wavelength band.

Therefore, it can be assumed that the information is quite reliable and gross prior

‘misspecification’ is unlikely. Clearly, priors other than the Poisson distribution

can be considered if a more diffuse prior distribution is desired.

2.5.2 Utility of the spectral model

Here we investigate the performance of our model and methods for a range of

background intensities, source separations and relative source intensities. We

compare the performance of the spatial-only and full models. For simplicity, we

simulated data for a two-source (Ktrue = 2) reality. In each simulation, the number
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of photons from the background and the number from each source were drawn

from Poisson distributions with respective means m0,m1,m2. We set m2 = 1000

and m1 = m2/r, for r = 1, 2, 5, 10, 50. We refer to r as the relative intensity of the

two sources. To set m0 and quantify the strength of the simulated background in

an astronomically meaningful way we define a source region in terms of the PSF.

Specifically, we again use the King profile PSF and define the source region as the

region with PSF greater than 10% of its maximum. (The King profile density has

no finite moments). We next define q to be the probability that a photon from a

source falls within its source region and set the background per source region to be

m0 = bqm2, for b = 0.001, 0.01, 0.1, 1. That is, the mean number of background

photons in the faint source region was varied between 1/1000 and 1 times the

mean number of photons from the faint source falling in the same region. As we

shall discuss and unsurprisingly, the faint source was difficult to locate in datasets

that were simulated with b = 1 and less so for those simulated with b = 0.001.

Finally, the separation of the two sources was set to be 0.5, 1, 1.5 or 2 distance

units. These separations can be interpreted using the fact that our source regions

are approximately circles of radius 1.

Spectral data was also simulated for source and background photons. An aim

of this simulation study aims is to investigate how much using the spectral data

improves the fitted parameters. Since sources can only be distinguished by their

spectra if their spectra are different, we used different spectra for the two simulated

sources; specifically we set α1 = 3, γ1 = 600, α2 = 6 and γ2 = 1500.

In summary, our simulation study consists of a 5 × 4 × 4 grid of configura-
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Figure 2.6: Exploring the sensitivity of our algorithm to source separation, relative strengths,
and background level. The median posterior probability of K = 2 across the 100 simulations
is shown; Ktrue = 2 in all cases. The results from the spatial-only model (left column) and the
full model (right column) are both shown. Red indicates probabilities less than 0.1, and white
indicates probabilities greater than 0.5. (Intermediate colors indicate probabilities between 0.1
and 0.5.)
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tion settings (r = 1, 2, 3, 5, 10, 50; b = 0.001, 0.01, 0.1, 1; and source separations

of 0.5, 1, 1.5, 2). One hundred datasets were simulated for each of the result-

ing 80 configurations, and analyzed using first the spatial-only model and then

the full model. In particular, for each dataset our algorithm was run for 20,000

RJMCMC iterations, the first 10,000 of which formed the convergence period (or

burnin) and were discarded.23 The median posterior probability of two sources

is shown in Figure 2.6 for each of the different simulation settings. The left and

the right panels correspond to the spatial-only and full models, respectively. We

use the median posterior probability across the 100 simulated datasets because

in a few simulations the faint source is unusually bright or unusually faint, which

noticeably effects the mean posterior probability of two sources. Nevertheless,

summaries based on the mean posterior probability are qualitatively very similar,

albeit with slightly more noise. We have organized the results by background

intensity because in practical applications background is often well determined.

In images simulated with relative intensity 50 the posterior probability of two

sources tends to be low. This is because r = 50 corresponds to a faint source

intensity of m2 = 20, while the brighter source has intensity m1 = 1000. Thus,

the faint source is typically not bright enough to be distinguished from noise; its

photons can be adequately explained as a random cluster formed of photons from

the brighter source or the background. In this case the posterior probability peaks

sharply at K = 1. The spatial-only model is more likely to mistake a cluster of

background photons for a faint source and therefore, in the case of r = 50 and
23This is a relatively small number of RJMCMC iterations, but since our simulated datasets

were quite small images each including only two sources, we found it to be sufficient.
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small source separation, typically gives slightly higher posterior probabilities of

two sources than the full model (but the probabilities are still very small). For less

extreme relative intensities, using the full model increases the posterior probability

of two sources. The improvement is particularly noticeable for relative intensities

5 and 10, regardless of the background strength. The spectral distribution of

source counts reduces the plausibility that the faint source is just a cluster of

photons from the background or the bright source. When both sources are bright

and reasonably separated both the spatial-only and full models give high posterior

probability at K = 2.24

To fit the source parameters, we fix K at its posterior mode value and use (2.19).

Although the fitted parameters of the bright source are always accurate, those for

the faint source may be poor, especially if the posterior mode of K is at 1 or if

“ghost” sources have appreciable posterior probability. The accuracy of the faint

source’s fitted parameters essentially follows the pattern seen in Figure 2.6. When

the real faint source is very weak or located too close to the bright source, then

a fitted second source (when the posterior mode of K is greater than 1) is likely

to be a “ghost” consisting mainly of a cluster of photons from the background

or the bright source. In which case, its fitted parameters bear little resemblance
24One curiosity, present in the left panels of Figure 2.6 (spatial-only model), is that when

both of the sources are reasonably bright, greater median posterior probability of two sources
is obtained when the background is stronger. This phenomenon occurs because, in the presence
of strong background, deviations between the PSF and the observed counts are difficult to
detect, whereas, with weak background, such deviations may be attributed to spurious additional
sources. (Indeed, the posterior probability of K = 3 is typically greater at low background levels
than at high background levels). When the full model is used this effect is diminished. The
curiosity is not qualitatively important because the bright sources are well identified in all cases.
Clearly weaker background is preferred as it improves the chance of detecting (real) faint sources.
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Figure 2.7: Sensitivity of location determination as a function of source separation, relative
strength, and background level. The simulation is the same as that in Figure 2.6. Mean posterior
locations of two sources for each of 100 simulations, under the spatial-only model (top 20 plots)
and the full model (bottom 20 plots). Red and blue dots give the mean posterior locations for
each simulation of the bright and faint sources respectively. The large ‘X’s of corresponding
color indicate the true locations. The diameters of the dots are proportional to the posterior
probabilities of two sources. The relative background, relative source intensity, and source
separation are indicated by b, r and d respectively.
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to those of the true faint source. This is illustrated in Figure 2.7, which shows

the mean (conditional on K = 2) posterior locations of the two sources for all

100 datasets under each configuration of simulation settings. Crosses indicate the

true locations of the sources. The mean posterior locations of the bright source

(red dots) are not always visible in the plots because they are often in the middle

of the red crosses. The location of the bright source becomes slightly harder to

fit as the intensity of the faint source increases. (This is at least partly because

the background intensity is proportional to the faint source intensity). The size

of the dots indicate the posterior probability of two sources.

The full model again yields more accurate fits. The fitted locations of the

faint source (blue dots) center around its true location (blue crosses) for r ≤ 10,

even when the source separation is small. For the spatial-only model there is

more scatter. Under both models, when r = 50 we can see that many of the

fitted faint source locations correspond to spurious clusters of photons surrounding

the bright source. As the separation increases some of the fitted faint source

locations are halfway between the true locations of the two sources. This occurs

when the posterior distribution of the faint source x-coordinate is bimodal, a

spurious cluster of photons and the real faint source both being supported as

possible second sources. In an actual analysis this bimodal behaviour would be

apparent from inspection of the posterior draws of the source location. For r = 50

and large separation, the full model sometimes accurately fits the faint source

location, but the spatial-only model never does. The behavior of the other fitted

parameters follows the same pattern illustrated in Figure 2.7 because the fitted
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source locations indicate how well photons are allocated to the correct source.

This is confirmed by inspecting tables of the mean (or median) squared error of

each parameter (not shown).

The number of Monte Carlo samples used in estimating the mean posterior

locations (conditional on K = 2) is determined by the posterior probability of

two sources, and thus is indicated by the size of the dots. Very small dots may

have non-negligible Monte Carlo error i.e. the true posterior mean location (con-

ditional on K = 2) may be somewhat inaccurately approximated. This is because

applying (2.19) for each parameter does not accurately compute the mean of

p(ΘK |K,x, y, E) for values of K that have low posterior probability.25 However,

in practice, when the number of sources is unknown, it makes sense to only con-

sider values of K with relatively high posterior probability. Furthermore, one

typically checks the level of Monte Carlo error for the values of K of interest, by

running multiple chains. Large variation in the parameter estimates across the

chains indicates high Monte Carlo error. In which case, one should run the chains

longer in order to obtain a larger Monte Carlo sample.

2.6 Application I: XMM dataset

We now apply the spatial-only and full models to an XMM observation (obs_id

0151450101) of the apparent visual binary FK Aqr and FL Aqr. The data con-
25We could instead fix K = 2 and run a standard MCMC algorithm to obtain a large enough

posterior sample to accurately fit the mean posterior locations. We do not pursue this strategy
because the fitted parameters that are conditional on unlikely values of K are of little practical
use.
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sist of the spatial and spectral information of around 540,000 photons detected

during a 47ks exposure. The spatial data is displayed in Figure 2.8 as both an

image (left) and a scatter plot (right), and the spectrum is plotted in Figure 2.9.

The moderate overlap of the sources and high counts make this a good test of

our model. In particular, we expect that the spatial-only model and full model

analyses to be similar (for the spatial parameters) because of the large amount of

spatial information. Furthermore, since the data clearly indicate two sources, we

can concentrate on verifying that our model yields sensible posterior inference us-

ing standard MCMC. (This gives draws from the joint posterior for a fixed number

of sources and therefore results in inference that is simpler to interpret than infer-

ence resulting from RJMCMC.) Use of the more complicated RJMCMC analysis

is reserved for the Chandra dataset in Section 2.7 because there is non-negligible

uncertainty in K for that dataset.

In the image shown on the left of Figure 2.8 the sources seem to have faint

‘spokes’. Approaches for modeling these features are suggested in Read et al.

(2010) and Read and Saxton (2012), but we use the unaltered King profile PSF

for simplicity. As mentioned in Section 2.2.1, the spatial data are binned when

recorded on the observatory LCD screen. However, the bins are small in compar-

ison to the XMM PSF so our use of a model that treats the data as unbinned is

reasonable. (See Section 2.8 for further discussion.)

For the spatial-only model and the full model, ten MCMC chains (with K fixed

at 2) were run for 20,000 MCMC iterations, the first 10,000 of which formed

92



Figure 2.8: Visual binary FK and FL Aqr observed with XMM-Newton (FK is the brighter
source at bottom). The XMM obs_id is 0151450101. Shown is a counts image with 10′′ bins
and arbitrary origin (left), and a scatter plot of a subset of 6,000 events over a 5ks subexposure
(right).

Figure 2.9: A histogram of the spectral data in the XMM observation of FK Aqr and FL Aqr.
Plotted are 1,000 spectra for the bright (solid black lines) and faint (dashed red lines) sources,
each corresponds to a posterior sample of the spectral parameters. (The posterior variance is
small on this scale.) The background spectra is shown by the dotted green line.
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Table 2.4: Posterior means under the spatial-only model and the full model. The parenthetic
intervals are 1σ error bars computed using 16% and 84% posterior quantiles.

Spatial-only model Full model
µ1x 120.974 (120.973,120.975) 120.973 (120.973,120.974)
µ1y 124.873 (124.873,124.874) 124.873 (124.872,124.874)
µ2x 121.396 (121.394,121.398) 121.397 (121.395,121.399)
µ2y 127.319 (127.317,127.321) 127.326 (127.324,127.328)
w1 0.717 (0.716,0.718) 0.732 (0.731,0.732)
w2 0.182 (0.181,0.182) 0.189 (0.189,0.190)
w0 0.102 (0.101,0.102) 0.079 (0.079,0.079)
γ1 – – 664.86 (664.43,665.30)
γ2 – – 662.78 (661.78,663.87)
α1 – – 3.205 (3.199,3.211)
α2 – – 3.131 (3.118,3.144)

the convergence period (or burnin) and were discarded.26 The large amount of

data means that the source locations are precisely fit by both models, as can be

seen in Table 2.4. However, the posterior mean of the relative intensity of the

background is about 20% lower for the full model. This is presumably due to

a greater ability to separate source and background counts with the additional

information given by the spectral data. In particular, photons from the sources

can be found across the entire image so there is a tendency to over-estimate the

background intensity without some non-spatial way of distinguishing its photons

from those of the sources.

Until now, it has not been possible to distinguish the spectral distributions

of these two sources. Conventional fitting of the spectra extracted from non-

overlapping source regions give statistically indistinguishable results, with iden-

tical column density NH≈1.0− 1.6 (1020 cm−2), double temperature components

kT1≈0.25 − 0.26 (keV), kT2≈0.78 − 0.82 (keV), and metallicities Z≈0.12 − 0.14.
26Note that, since we used standard MCMC and there are only two bright sources, the number

of MCMC iterations until convergence was relatively small.
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Figure 2.10: Posterior distributions of the parameters of the gamma distributions used to
model the spectra of FK Aqr and FL Aqr. The posterior distributions of the shape and rate
parameters are shown in the left and right panels, respectively.

This remarkable coincidence could be attributed to strong contamination of FL

Aqr by photons from FK Aqr. Our algorithm, which eliminates such contami-

nation, can answer the question of how similar the two sources are. Of course,

a comparison of the source spectra shapes is only possible using the full model.

Figure 2.9 shows 1,000 spectra sampled from the posterior distribution27 for the

bright (black solid lines) and faint (red dashed lines) sources; for each source, all

1,000 spectra are very similar and so appear as a single curve. We observe that

the bright source spectra are very similar to the faint source spectra, which is

consistent with the difficulty in distinguishing the spectral distributions of the

two sources in previous analyses.

Although the overall shapes of the two spectral are similar (Figure 2.9), we can
27To reduce correlation, every 10th sample of the original 10,000 stored MCMC samples of

the spectral parameters was used.
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distinguish them by examining the parameters of their underlying gamma distri-

bution. Figure 2.10 plots the posterior distributions of these parameters for the

two sources and shows that they clearly differ. We have plotted the shape and

rate parameters, because the shape and variance differ more than the mean. The

posterior distributions in Figure 2.10 indicate that there is very little uncertainty

in the spectral parameters; the intervals in Table 2.4 convey a similar message.

This precision is obtained because of the large amount of data combined with

the fact that our method properly accounts for uncertainty in photon origins and

jointly fits spectral and spatial parameters. Although our analysis is only phys-

ically accurate to the extent that the source spectra can reasonably be modeled

with gamma distributions, it nevertheless provides evidence that the spectra do

differ in some way. More detailed conclusions would be possible with a physics-

based spectral model that accounts for emission lines and other spectral features.

A possible extension of this work is to replace the gamma spectral model with a

more complete model. A computationally less intensive approach is described in

Section 2.7.2.

2.7 Application II: Chandra dataset

We analyze a Chandra observation of the Orion Nebula Cluster using the spatial-

only model and the extended full model given in (2.11). The extended full model

is used because the full model is not sufficiently flexible to capture the shape of

the source spectra, as explained in Section 2.2.4. The specific dataset we analyze
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is a subset of ObsID 1522 that omits the central source, a region where the PSF

is distorted due to strong pile-up (Figure 2.11). The data include events that

occurred within the first 20ks of the observation, of which there are ≈ 14, 000.

2.7.1 Spatial-only and extended full model analyses

For both models, ten RJMCMC chains were run for 150,000 RJMCMC iterations,

the first 100,000 of which formed the convergence period (or burnin) and were

discarded. The posterior distribution of the number of sources, under the spatial

and extended full models, is displayed in Figure 2.12. The mode of both posteriors

is at 14. However, the spatial-only model shows slightly more uncertainty, and

some support for 15 sources.

As mentioned in Section 2.4, K determines the number and meaning of the

other model parameters and therefore we must condition on a value of K to draw

meaningful inferences for them from the RJMCMC output. Figure 2.11 shows

90% posterior credible regions (blue) for the locations of the sources under the two

models, given K = 14. Each credible region shows an area which has 0.9 posterior

probability (given K = 14) of containing the location of the relevant source, i.e.,

an integral of the posterior distribution of the source location (given K = 14) over

this area would evaluate to 0.9. The credible regions look to be similar under the

two models. The estimated relative intensities also appear in Figure 2.11 and are

also similar, but are slightly lower under the spatial-only model for most sources.

This is due to a higher estimate of the relative background intensity under the

97



Figure 2.11: Chandra observation of a crowded field near the center of the Orion Nebula
Cluster. This field is approximately 25′′×25′′ in size, and is centered at (RA,Dec)=(5:35:15.4,-
05:23:04.68). Shown in blue are approximate 90% posterior credible regions for source locations,
under the spatial-only model (left), and the extended full model (right). The figures next to the
regions indicate the estimated relative intensities. The credible region of the source with the
largest location uncertainty is circled in green (right panel). The red rectangular box encloses
two overlapping sources (right panel) for which we carry out a detailed follow-up spectral analysis
(Section 2.7.2).

Figure 2.12: Number of sources detected in the analysis of the Chandra observation in Figure
2.11. Posterior of K based on the spatial-only model (left) and the extended full model (right).
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Table 2.5: Extended full model fit for the Chandra observation in Figure 2.11. Posterior mean
locations and relative intensities (as percentages), with 68% intervals indicated.

COUP # µjx µjy Relative intensity (%)
732 4054.42 (4054.41,4054.43) 4149.45 (4149.44,4149.46) 34.59 (34.16,35.03)
745 4052.83 (4052.81,4052.84) 4140.67 (4140.66,4140.68) 28.11 (27.71,28.51)
689 4069.93 (4069.91,4069.94) 4175.93 (4175.91,4175.94) 14.10 (13.79,14.40)
724 4058.57 (4058.56,4058.59) 4176.73 (4176.71,4176.74) 11.43 (11.16,11.71)
744 4051.53 (4051.50,4051.55) 4147.57 (4147.55,4147.60) 7.41 (7.14,7.68)
765 4045.40 (4045.35,4045.46) 4181.20 (4181.15,4181.25) 1.42 (1.32,1.53)
649 4088.16 (4088.08,4088.24) 4165.95 (4165.87,4166.03) 0.57 (0.50,0.63)
766 4045.36 (4045.27,4045.45) 4155.18 (4155.10,4155.25) 0.77 (0.68,0.87)
788 4043.48 (4043.36,4043.61) 4155.74 (4155.64,4155.84) 0.56 (0.47,0.64)
682 4072.11 (4072.01,4072.21) 4181.12 (4181.03,4181.22) 0.46 (0.39,0.52)
640 4091.73 (4091.53,4091.92) 4137.42 (4137.26,4137.59) 0.13 (0.10,0.16)
664 4081.43 (4081.22,4081.63) 4159.41 (4159.21,4159.61) 0.11 (0.08,0.14)
665 4082.84 (4082.67,4083.02) 4137.28 (4137.14,4137.43) 0.15 (0.12,0.19)
779 4044.39 (4043.86,4044.60) 4140.72 (4140.43,4140.90) 0.14 (0.09,0.18)

Background – – – – 0.06 (0.01,0.10)

spatial-only model (0.0053 versus 0.0006 under the extended full model28). Table

2.5 gives the the posterior mean fit of the source locations and relative intensities

under the extended full model for K = 14. The detected sources are also matched

to the source catalog from the Chandra Orion Ultradeep Project (COUP; Getman

et al. 2005).

Other observations of Orion suggest that the source circled (in green) in the
28The background is likely inaccurately estimated by both models because the King profile

PSF that we use is an approximation to the Chandra PSF; the latter is more concentrated at
its center. Thus, in our analysis, too many photons are allocated to the wings of the sources,
deflating the background. That our analysis has still found genuine sources illustrates that it is
not too sensitive to the PSF, at least in the case of specifying overly heavy wings. If instead the
raytraced PSF (ChaRT: http://cxc.cfa.harvard.edu/chart/) is used, then the estimate of
the background is higher because this PSF has lighter wings than the King profile. The lighter
wings also lead to the detection of four additional faint sources: one has an optical counterpart,
one does not, and two cannot be confirmed optically because they are close to a bright source.
Further investigation of these sources and modeling possible variations in the PSF are topics
for future work. For example, temporal information can potentially be used as a diagnostic to
assess whether any of the detected weak sources are in fact due to fluctuations in the PSFs of
the bright sources.
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right panel of Figure 2.11 is a genuine source. Its location is more uncertain than

other sources because it is more difficult to detect. Indeed, with an estimated in-

tensity between 13 and 25 counts, this source is at the edge of detectability of local

detection methods, particularly since the estimate of the local background in such

methods would be high due to contamination from nearby bright sources. Thus,

we expect that more basic approaches would either have failed to find this source,

or would only find it by rendering their detection threshold to a point where spu-

rious detections became problematic. Indeed, the reason the spatial-only model

gives non-negligible weight to 15 sources (see Figure 2.12) is that it tends to split

sources into two. The problem is that a single empirical PSF may exhibit chance

variations that appear to be evidence for multiple PSFs. The spatial-only model

also mistakes clusters of background photons for sources. The locations and spec-

tra of these spurious sources show considerable posterior variability. Although

any particular instance has low probability, there are multiple instances that to-

gether create erroneous support for an additional source. The main advantage of

using the spectral information, in this example, is that it mitigates these issues,

leading to a greater certainty that there are really 14 sources. Additionally, under

the extended full model, the standard deviations of the parameters are almost

invariably slightly smaller.

2.7.2 Spectral analysis of the disentangled sources

The extended full model only captures the basic shape of the source spectra and

we now illustrate how detailed follow-up spectral analysis can incorporate proba-
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bilistic event allocations. We perform this analysis for the two overlapping sources

that are enclosed in the red box in the right panel of Figure 2.11 (COUP sources

#732 and #744 (Getman et al. 2005). Their estimated relative intensities are

0.3459 and 0.0741 under the extended full model. This is a good example to test

the probabilistic event allocations, since the sources are close together (separa-

tion ≈1.7′′), each have sufficient counts for a useful spectral fit (≈4350 and ≈910

counts between 0.5−7 keV for the bright and faint sources, respectively), and one

source is substantially weaker than the other.

As described in Section 2.2.3, si indicates the source (or background) number

associated with photon i. These are unknown parameters (or latent variables)

that are updated at each iteration of the RJMCMC sampler. The variability

in si indicates the uncertainty in the source of photon i (due to the PSF and

uncertainty in the source parameters). We can account for this uncertainty by

conducting many spectral analyses, each according to a sampled photon allocation

(i.e., sampled values of si), and combining the results. We focus on photons with

spatial location in the red box in Figure 2.11 (right panel) and to values of si

sampled conditional on K = 14. Since we are only interested in COUP sources

#732 and #744 we ignore any photons that are attributed to one of the other

sources (in a given allocation). (The photons in the red box in Figure 2.11 are

attributed to one of the other sources only rarely).

Based on the photon allocations, we construct a sample of 1000 simulated spec-

tral datasets for both sources, constructed from photon allocations based on every

10th iteration of the RJMCMC algorithm that sets K = 14 (up to the 10, 000th
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RJMCMC iteration that sets K = 14). The variability in the source counts across

the 1,000 iterations is ±17 for both the bright and faint sources. The specific

photons that are allocated to each source also varies, even when the total source

counts do not. Each individual spectrum is fit with an absorbed single tempera-

ture thermal model (xsphabs*xsapec in CIAO/Sherpa v4.6) fitting the absorption

column (NH), temperature (kT ), metallicity (Z), and normalization. A pile-up

correction is needed for all spectra for the bright source since the measured count

rate of 0.7 counts frame−1 is higher than the threshold at which pile-up becomes

significant (≈0.3 counts frame−1). We use the jdpileup model in Sherpa, fitting

the grade migration parameter α and the pile-up strength parameter f (Davis

2001). We call the entire collection of spectral fits the disentangled analysis.

For comparison, we also carry out a spectral analysis of the sources based on a

naïve allocation of photons that collects events from within 1′′ of the fitted location

of each source and assumes that there is no contamination from the other source.

The only difference in the spectral model for the naïve and disentangled analyses

is in how the effective areas are defined. In the case of the naïve analysis, a

correction is made post-facto to the normalization based on how much of the

source is expected to be included within the 1′′ source photons extraction radius.

In the disentangled analysis, the assumed extraction radius for the spectra with

allocated events is set to be 2.5′′ and the subsequent correction is negligible.

The results of the spectral fits to the disentangled spectra are shown as his-

tograms of best-fit values for NH, kT , Z, and model flux computed for each of the

1000 spectra, see Figure 2.13. In several cases, a bimodal distribution is apparent.
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Figure 2.13: Detailed spectral analysis of overlapping COUP sources #732 and #744. Best-fit
values of absorption column ((a), (b)), temperature ((c), (d)), metallicity ((e), f)), and flux
((g), (h)) for the disentangled analysis, for each of 1000 allocations of the photons are shown
as histograms. Panels (a), (c), (e), and (g) correspond to the bright source and panels (b), (d),
(f), and (h) correspond to the fainter source. The naïve analysis best-fit values and their 68%
intervals are shown by the solid and dashed red vertical lines, respectively. The width of the
histograms only account for uncertainty due to the allocation of photons, and not additional
statistical error, which is well described by the intervals shown for the naïve analysis.
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This suggests that a multi-temperature component spectrum would be a better

fit. The separation of the modes, however, is generally too small to be picked up

by typical multi-temperature model fits. Not shown are the pile-up parameters

for the bright source, which are consistent between the naïve and disentangled

analyses ((α, f) = (0.6, 0.93) for naïve, and (0.53, 0.89) for the disentangled spec-

tra), though the former indicates that the pile-up strength is slightly higher. This

is to be expected, since the naïve analysis is carried out for photons in the core

of the PSF, where naturally pile-up is most significant. The disentangled spectra

include photons from the wings, thus reducing the strength of pile-up effects and

decreasing the correction needed to the source flux by about 60%.

The spread in the histograms in Figure 2.13 indicates the uncertainty in the

best-fit values due to uncertainty in the allocation of photons. The best-fit val-

ues from the naïve calculation are shown as solid red vertical lines. The dashed

red vertical lines give 68% intervals indicating the statistical errors, due to ran-

domness in the photons emitted and detected, under the naïve analysis. These

statistical errors do not account for uncertainty in the photon allocations. The

histograms, on the other hand, represent only errors due to uncertainty in the

photon allocations, but do not account for statistical errors (due to randomness

in photon emission and detection). Because the two sources of error are indepen-

dent, and because we expect the statistical errors for the disentangled analyses

to be similar to those for the naïve analysis, the total errors could be represented

by a perturbation of the histograms with σ equal to the statistical errors from

the naïve analysis. For these data, with the exception of flux (panels (g) and (h)
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of Figure 2.13), the statistical errors dominate the errors due to uncertainty in

the photon allocation. Despite this, the disentangled analysis provides reasonable

evidence that the absorption column of the faint source (panels (b) of Figure 2.13)

and the flux of the two sources (panels (g) and (h) of Figure 2.13) are different

from the best-fit values under the naïve analysis.

The variability of the true parameters around each of the best fit values recorded

in the histograms is expected to be similar to that indicated for the naïve fit. How-

ever, we did not calculate these uncertainties because of the large computational

cost. For these data, with the exception of flux (panels (g) and (h) of Figure 2.13),

the variability in the true spectral parameters around the best fit values is likely

larger than the uncertainty in the best fit values (due to the uncertainty in the

allocation of photons). Despite this, the disentangled analysis provides reasonable

evidence that the absorption column of the faint source (panel (b) of Figure 2.13)

and the flux of the two sources (panels (g) and (h) of Figure 2.13) are different to

the naïve analysis best-fit values.

Overall, the naïve analysis best-fit values for the fainter source are in greater

disagreement with the disentangled analysis than those for the bright source.

This is to be expected, since in the naïve analysis, the contamination of the

fainter source by the brighter source is larger. Our algorithm effectively removes

this contamination. This causes the spectral fit parameter values to change and

the measured source flux of the fainter source to decrease. In summary, the

observed changes to the spectral model parameters are as would be expected

when contamination is reduced and the data quality is improved.
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2.8 Summary

We have developed a Bayesian statistical method that models spatial and spectral

information from overlapping sources and the background, and jointly estimates

all individual source parameters. The key contributions of our approach are the

use of spectral information to improve spatial separation, coherent quantifica-

tion of uncertainty, including that of the number of sources, and the probabilis-

tic assignment of photons to the different sources. Our simulation studies show

that using spectral information improves the detection of both faint and closely

overlapping sources and increases the accuracy with which source parameters are

inferred.

We have analyzed data from two sets of overlapping sources observed with

XMM and Chandra. Traditional analysis of XMM observations of FK and FL

Aqr, thought to be a visual binary, show that their spectra are not distinguishable.

Our analysis confirms that the spectra are indeed similar, but nonetheless shows

that they are separable. We have also carried out detailed spectral analysis on

disentangled photons from a pair of close sources from near the center of the Orion

Nebula Cluster observed with Chandra. We find that the spectral parameters

change significantly after contamination is removed.

The data we have considered consists of event-level observations. In the more

usual case of spatially binned data, the PSF could be updated to take account

of the binning. If the spatial pixels are larger, the importance of spectral data

is greater, because it is harder to spatially distinguish sources from each other

and the background. Clearly however, unbinned data is preferred when available,
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and our method has the ability to use all the information in such data. Similar

comments apply when the spectral data are grouped.

As with other detection procedures, an important question is how to combine

information from multiple observations. Since our approach gives the posterior

distribution of all the parameters, this can be used as the prior distribution is

subsequent analyses. Thus, under the Bayesian framework it is straightforward

to analyze the available observations sequentially, which is convenient in that

different PSFs, for example, can be used for each analysis. This is critical if the

observations are recorded by different observatories.

Another advantage of the Bayesian framework is that more complex models can

straightforwardly be built in. For example, using a location or spectral dependent

PSF would require only minimal changes to the method and code. Another ex-

tension is to include the different temporal signatures of overlapping sources to

further separate them. Future work will focus on these and related issues as well

as computational scalability.
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3
Likelihood methods for

Monte Carlo estimation

3.1 Introduction

The normalizing constant of a density, or more generally an arbitrary function q,

is defined as

c =

∫
Ω

q(x)dµ(x), (3.1)

108



where µ is the baseline measure and Ω is the support of q. In statistics, important

quantities such as Bayes factors and observed data likelihoods can often be com-

puted by calculating appropriate normalizing constants, e.g., the observed data

likelihood is the normalizing constant of the complete data likelihood. Physicists

are also routinely interested in normalizing constants, such as partition functions,

see for example Bennett (1976) and Voter (1985). However, it is common for nor-

malizing constants to be analytically intractable, and even numerical integration

is often infeasible for computing (3.1), especially in high dimensional settings. To

tackle this difficulty, a wealth of Monte Carlo methods have been developed to es-

timate normalizing constants, see for example the many approaches reviewed and

proposed in Liu (2008). Broadly, Monte Carlo methods consist of drawing random

samples and using them in approximating a quantity of interest, e.g., researchers

often use Markov chain Monte Carlo (MCMC) algorithms to draw random but

correlated samples from a posterior distribution and then average these samples

to estimate the posterior mean. The literature on Monte Carlo approaches has

mainly focused on how to draw useful samples in an efficient way, and the second

step of constructing an estimate based on the samples has received relatively lit-

tle attention. Indeed, in practice, the final estimator is often a default moment

estimator which is typically not known to be globally optimal in any sense.

To address this gap in the literature, Kong et al. (2003) proposed a maximum

likelihood approach for deriving Monte Carlo estimators of normalizing constants

by treating the baseline measure µ as the unknown and “estimating” it to pro-

duce an optimal discrete approximation of integrals such as (3.1). Their method
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shows that some familiar Monte Carlo approaches such as importance sampling

and bridge sampling (Meng and Wong 1996) are in fact optimal. It also provides

a convenient framework for trading off computational efficiency with statistical

efficiency through the selective use of our knowledge of the true measure. In par-

ticular, by considering sub-models that restrict our attention to a certain class of

measures, we can obtain more precise estimates with the same number of samples,

but still avoid the intractable integral (3.1) that we recover by blindly including

all information we have about the measure. One appealing type of sub-model

specifies the measure to be invariant to a finite group of transformations, such

as particular reflections or rotations. For example, by reflecting about the origin

we utilize −x as well as the sample x in computing an approximation to (3.1).

Thus, the gain in precision comes from increasing the number of points at which

the density q is evaluated. The class of group invariant sub-models is particularly

powerful because the baseline measure is nearly always the Lebesgue measure or

the counting measure so there are many symmetries that can be exploited. The

best sub-model to consider depends on the densities we have samples from and

the integrals of interest, but group invariant sub-models are useful in almost any

problem. Other options, such as parametrization of the measure, are much less

generally applicable in practice.

Two constraints on the invariance groups are that they must be finite and

their transformations must leave normalizing constants unchanged, or changed in

known ways. The finite group constraint rules out translations and many other

useful transformations. This thesis greatly expands the collection of transforma-
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tions that the group invariant sub-model framework may exploit by introducing

a simple augmentation of the Monte Carlo samples that allows any one-to-one

transformation to be used, provided we can compute the transformation Jaco-

bian. Important additions to the group invariant sub-model framework under

this extension include the “warp transformations” that Meng and Schilling (2002)

suggested and demonstrated to be very effective at increasing the precision of

bridge sampling estimators for ratios of normalizing constants, e.g., translations

and scalings. As in the bridge sampling context, our main focus will be on esti-

mating ratios of normalizing constants, but the approach is general since we can

estimate a ratio in which one of the normalizing constants is known.

The group invariant sub-models we propose modify the underlying Monte Carlo

samples, as opposed to using them as building blocks to generate more points,

which is the idea in the original group invariant sub-model formulation, e.g., in the

simple reflection example above, x is used to generate −x. Thus, in our extension,

estimation precision is gained by using symmetries of the measure to facilitate

density evaluations that are more useful, as opposed to using the symmetries to

introduce additional density evaluations.

We also explore two methods for optimizing the parameters of an invariance

group, such as the line of reflection or the scaling parameter. The first opti-

mization method follows the decision theoretic approach proposed by Meng and

Schilling (2002) for choosing warp transformations, and the second method is an

approximate likelihood approach. Neither method is entirely satisfactory and the

search for an approach that falls completely under the likelihood framework and
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gives optimal joint estimation of the estimands and the invariance group param-

eters is the topic of ongoing work. The difficulties in achieving this are closely

linked with the discussion in Vardi (1985) regarding the existence and uniqueness

of a non-parametric maximum likelihood estimate of a cumulative distribution

function (CDF) based on samples drawn from multiple weighted versions of the

CDF, i.e., biased samples. The identification of this challenge underlying the like-

lihood method proposed by Kong et al. (2003) and the connection to Vardi (1985)

is the second main contribution of this chapter since the ultimate success of the

overall approach is likely to depend on resolving this issue. In the meantime, de-

spite the challenges in identifying an optimal procedure, the methods we suggest

for choosing invariance group parameters are nonetheless better than more basic

approaches, such as matching density modes to estimate a translation parameter.

Section 3.2 reviews the maximum likelihood framework for Monte Carlo esti-

mation and group invariance sub-models introduced in Kong et al. (2003) and

further developed in Kong et al. (2006). Section 3.3 extends the group invariance

sub-model framework to include the warp transformations of Meng and Schilling

(2002). Section 3.4 discusses two methods for choosing invariance group param-

eters, their limitations, and further exploratory ideas to investigate in the search

for a fully optimal approach.
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3.2 Likelihood methods for optimizing Monte Carlo

integration

It is often infeasible to compute normalizing constants analytically and so ap-

proximations are routinely required. The simplest approach is to sum rectangular

areas but this is extremely inefficient in higher dimensions so researchers turn

to Monte Carlo techniques. Monte Carlo methods are themselves wide ranging

in their efficiency, and a naive application using uniform sampling can similarly

run into problems in high dimensions; many of the Monte Carlo samples may be

in unimportant regions and the sampling itself can be challenging. To overcome

these difficulties, researchers often draw samples from more carefully chosen dis-

tributions using methods such as rejection sampling or Monte Carlo Markov chain

(MCMC) algorithms. In addition to the question of which distribution(s) should

be simulated from and how to do this, there is also the question of what should

be done with the samples obtained, which is the focus of this chapter. We do

not further discuss exactly how samples are obtained but assume that they are

expensive and therefore it is of interest to optimize the efficiency of our estimation

procedure given the set of samples. For simplicity, we assume that the samples

are independent, which is reasonable since approximately independent samples

can often be obtained by, for example, thinning MCMC samples. Even when ap-

proximate independence is not achievable, methods such as bridge sampling work

with a few simple modifications provided the samples are not too strongly corre-

lated, see Meng and Wong (1996). In any case, understanding the independent
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samples case is an essential step to knowing how to proceed in the more complex

case of dependent samples.

Given n samples, the Monte Carlo literature often suggests using moment esti-

mators to estimate normalizing constants or their ratios. For example, given the

samples x1, . . . , xn ∼ p2, the well known importance sampling estimator of the

normalizing constant c1 in (3.1) is

ĉ1 =
1

n

n∑
i=1

q1(xi)

p2(xi)
, (3.2)

where ps = qs/cs is a probability density, cs is a normalizing constant, and qs is

the unnormalized density, for s = 1, 2. We will use Ωs to denote the support of

ps, for s = 1, 2, but if the support of all densities under consideration is the same

we will simply write Ω.

The importance sampling estimate (3.2) is not vastly different from the basic

numerical integration method of summing rectangular areas (or volumes) that are

of equal width and whose midpoints and heights are mi and q1(mi), respectively,

for i = 1, . . . , n. Indeed, if we draw from a fine bin approximation to p2 and

use the midpoints of the sampled bins as our samples xi = mi, for i = 1, . . . , n,

then (3.2) is a random summation of rectangles with the heights now chosen to

be q1(xi)
p2(xi)

, for i = 1, . . . , n. The adjusted heights correct for the fact that our

samples are concentrated in regions of high density of p2 rather than covering

the whole support of p1 evenly. (Alternatively, we may view 1/p2(xi) as playing

an analogous role to the widths of rectangles in the basic numerical integration
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method.) Provided that Ω1 ⊂ Ω2, the importance sampling estimator (3.2) has

the benefit of being unbiased for c1 without requiring the large computational

cost that is incurred by using many rectangles in the basic numerical integration

method. However, the variance of (3.2) may be large, particularly if p1 and p2 are

not similar, and therefore a lot of care may be required in choosing p2.

From a fundamental perspective, the appearance of 1/p2(xi) in (3.2) is curious

because the constant c1 is unrelated to p2. Kong et al. (2003) point out that it is

the common baseline measure µ of the densities p1 and p2 which connects c1 and

p2, and that the weight (np2(xi))−1 is in fact an estimate of µ(xi), for i = 1, . . . , n.

Furthermore, by maximizing the likelihood, we can show that the approximation

µ̂(xi) = (np2(xi))
−1 in (3.2) is optimal. The correct likelihood is

L(µ;x) =
n∏
i=1

p2(xi)µ(xi), (3.3)

with the important constraint

∫
Ω

p2(x)dµ(x) = 1. (3.4)

Here and elsewhere µ(xi) denotes the measure of the set {xi}, for i = 1, . . . , n.

Since the baseline measure µ is the only unknown quantity, the likelihood is

clearly maximized by µ̂(xi) = (np2(xi))
−1 as required. Thus, by invariance of the
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maximum likelihood estimate (MLE), the MLE of c1 is given by

ĉ1 =

∫
Ω

q1(x)dµ̂(x) =
1

n

n∑
i=1

q1(xi)

p2(xi)
, (3.5)

which is exactly (3.2). The power of this likelihood formulation is two-fold: (i) it

allows us to check the (asymptotic) optimality of (3.2) and other existing estima-

tors and thus conserve research time and effort, and (ii) it provides a principled

method for finding optimal estimators in more complex situations where it is

difficult to construct good estimators.

An important caveat to keep in mind is that estimating the baseline measure

µ on the whole real line is neither a tractable nor a useful goal. Our real goal is

to obtain an approximation to µ in regions where the integrands of interest are

large. In order to have some chance of success, we must assume that the integrands

and sampling densities have sufficient smoothness and that the measure does as

well (but here we assume the baseline measure to be the Lebesgue measure and

therefore smoothness constraints are not a concern). Even with well-behaved

integrands and sampling densities, the difficulty in approximating the baseline

measure presents some unsolved problems which we discuss in Section 3.4.

3.2.1 Bridge sampling

Meng and Wong (1996) introduced the bridge sampling method for estimating

ratios of normalizing constants and Kong et al. (2003) demonstrated its optimal-

ity using the likelihood perspective reviewed in the previous section. The main
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example in this chapter extends the likelihood for the bridge sampling context

identified by Kong et al. (2003), and we therefore now begin by describing bridge

sampling and the setup used by Kong et al. (2003).

Suppose that we do not know cs, for s = 1, 2, but that we have samples from p1

and p2 and want to estimate r = c1/c2. Meng and Wong (1996) propose computing

an estimate r̂ using the following iterative scheme.

Algorithm 1: computing the bridge sampling estimate.

1. Choose r̂(0) and a positive integer Tmax (in practice, Tmax is usually suffi-

cient).

2. Starting at t = 0, iteratively compute an estimate of r according to

r̂(t+1) =

1
n2

∑n
i=n1

q1(xi)
n1
n
q1(xi)+

n2
n
r̂(t)q2(xi)

1
n1

∑n1

i=1
q2(xi)

n1
n
q1(xi)+

n2
n
r̂(t)q2(xi)

, (3.6)

until convergence or t = Tmax. Here, the samples xi, for i ∈ N1 = {1, . . . , n1},

are from p1 and the samples xi, for i ∈ N2 = {n1 + 1, . . . , n}, are from p2.

For convenience we also write N = N1 ∪N2 = {1, . . . , n}.

The numerator and denominator of (3.6) are of the form 1
ns

∑
N\Nr

qs(xi)α(xi),

for s = 1 and s = 2, respectively. Among estimators of this form, Meng and

Wong (1996) and Bennett (1976) demonstrate that the bridge sampling estimator

given by Algorithm 1 is asymptotically optimal in terms of relative mean squared

error. Thus, it turns out that it is better to set the inverse weight (α(xi))−1 to be a

mixture of the two sampling densities evaluated at xi, rather than simply setting it
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to be the density from which the sample xi was drawn evaluated at xi, which would

be the choice if we estimated r by taking the ratio of two importance sampling

estimates. The mixture form of the inverse weights explains the word “bridge” in

bridge sampling: a stratified sample was indeed drawn from the mixture, and the

mixture is being viewed as an importance sampling density that has more overlap

with the two densities than they do with each other, i.e., it is a bridge between

them.

Kong et al. (2003) assume the generalized scenario in which there are k ≥ 2

densities whose pairwise normalizing constant ratios are of interest and there are

samples from at least one of the densities, with ns denoting the number of samples

from ps, for s = 1, . . . , k. In this case, the likelihood is

L(µ) =
n∏
i=1

pyi(xi)µ(xi), (3.7)

where yi = s if the ith sample is drawn from ps, for s = 1, . . . , k. The parameter

µ is subject to the crucial constraints

∫
Ω

1

cs
qs(x)dµ(x) = 1, (3.8)

for s = 1, . . . , k. Ignoring constants it follows that the log-likelihood is

l(µ) =
n∑
i=1

θi −
k∑
s=1

ns log cs = n

∫
Ω

θdP̂ −
k∑
s=1

ns log cs, (3.9)

where θi = log(µ(xi)), for i = 1, . . . , n, and P̂ denotes the empirical distribution
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of the samples. Since the integral on the right hand side is actually a finite sum,

we see that (3.9) has the form of an exponential family log density with canonical

parameter θ = (θ1, . . . , θn) and canonical sufficient statistic P̂ . Exponential family

theory tells us that we can estimate the canonical parameter by first setting the

canonical sufficient statistic equal to its expectation, which in this case gives

P̂ (dx) =
k∑
s=1

ns
n

1

ĉs
qs(x)µ̂(dx), (3.10)

and consequently the MLE of µ is

µ̂(dx) =
P̂ (dx)∑k

s=1
ns

n
1
ĉs
qs(x)

. (3.11)

Throughout we will simply write µ̂ to denote the MLE of µ. The corresponding

MLEs of the normalizing constants are

ĉs =

∫
Ω

qs(x)dµ̂(x) =
n∑
i=1

qs(x)∑k
t=1 nt

1
ĉt
qt(xi)

, (3.12)

for s = 1, . . . , k. Finally, for any s, t ∈ {1, . . . , k}, we estimate rst = cs/ct by

r̂st =
ĉs
ĉt
. (3.13)

Simple algebra utilizing the constraints (3.8) verifies that this is the same as the

bridge sampling estimator given by Algorithm 1 in the case where s = 1, t = 2,

k = 2, and n1, n2 > 0. In all cases, the normalizing constants and µ are only
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estimated up to a common constant of proportionality, because the estimate of

the measure depends on the normalizing constants and vice versa. Thus, only

estimates of ratios such as rst, for s, t ∈ {1, . . . , k}, are meaningful estimates.

As might be anticipated from the bridge sampling estimator computed by Al-

gorithm 1, µ̂ ignores the information about which density each sample xi comes

from. It is therefore apparent that it is the constraints given in (3.8) that al-

low us to “estimate” the measure, and the samples themselves only determine

where µ̂ should be non-zero. The fact that the MLE of the measure should only

be non-zero at the sampled points was established by Vardi (1985), and in par-

ticular is because setting µ̂(x) to be zero at any point x that was not sampled

minimizes the estimated normalizing constants ĉs, for s = 1, . . . , k, and hence

maximizes the likelihood. We also suggest the work of Vardi (1985) to those who

seek a more mathematically transparent approach to arriving at the MLE (3.11)

since he derives a technically similar result to Kong et al. (2003) without invoking

exponential family theory.

3.2.2 Asymptotic variance

Kong et al. (2003) and Kong et al. (2006) show that, under the maximum like-

lihood framework described in the previous section, the asymptotic covariance

matrix for log(ĉ) can be calculated, where ĉ = (ĉ1, . . . , ĉk). Since the normalizing

constants can only be estimated up to a common constant of proportionality, only

contrasts of log(ĉ) have meaningful variance. Statistically, it is key to be able to

approximate the variance of the estimates r̂st, for s, t ∈ {1, . . . , k}, and we there-
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fore briefly outline a practical way to calculate the variance, but refer the reader

to Kong et al. (2006) for further technical details since variance estimates are not

crucial for understanding our main contribution.

By comparing (3.9) with a multinomial log-likelihood, or appealing to the Fisher

information measure (see McCullagh 1999), it can be established that the infinite

dimensional Fisher information matrix for θ = log µ is

nIθ(A,B) =
k∑
s=1

ns(Ps(A ∩B)− Ps(A)Ps(B)), (3.14)

where A,B ⊂ Ω, and Ps(dx) = 1
cs
qs(x)µ(dx), for s = 1, . . . , k. The difference

between (3.14) and the multinomial Fisher information is that the “categories”

A and B may overlap. At θ = θ̂, the matrix in (3.14) can be expressed in finite

dimensional form because the MLE θ̂ of the log measure has finite support. In

particular, if P̂ is the n× k matrix with (i, s) element

P̂s(xi) =
1
ĉs
qs(xi)∑k

t=1 nt
1
ĉt
qt(xi)

, (3.15)

and W = diag(n1, . . . , nk), then the Fisher information matrix nIθ̂ for θ at θ̂ is In−

P̂WP̂ T , where In is the n×n identity matrix. This can be verified by computing

(3.14) for A = {xi} and B = {xj} for each pair (i, j) ∈ N × N , and noting that

in the case A = B = {xi} we have
∑k

s=1 ns(Ps(A ∩ B) =
∑k

s=1 nsP̂s(xi) = 1,

for i = 1, . . . , n. It follows, albeit with some technical clarifications, that the
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asymptotic covariance matrix of log(ĉ) is

V̂ = P̂ T (In − P̂WP̂ T )−P̂ . (3.16)

The superscript “−” denotes a generalized inverse matrix which in the current

context is the inverse of In − P̂WP̂ T + 1n1
T
n/n, where 1n is a vector of n ones (a

generalized inverse of a matrix M is a matrix M− such that MM−M = M). If

k = 2, the asymptotic variance of log(r̂ML) is given by

Var(log(r̂ML)) = V̂11 + V̂22 − 2V̂12. (3.17)

and we can of course convert to the variance of r̂ML by multiplying by r̂2ML,

3.2.3 Group invariance sub-models

It is possible to improve our estimates of rst, for s, t ∈ {1, . . . , k}, by incorpo-

rating some of our knowledge of the true underlying measure µ. In practice, we

know the measure to be the Lebesgue measure, but if we invoke this knowledge

completely then the MLE of the measure will no longer have finite support and

we will again be faced with an intractable integral when we try to estimate nor-

malizing constants (and their ratios). Instead, we must choose some knowledge

of the true measure to incorporate in the likelihood, and in particular knowl-

edge that improves the MLE approximation to the measure in regions where our

unnormalized densities have large values.

One useful way of incorporating some knowledge about the measure is to con-
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strain our estimate of µ to be invariant to a group of transformations that we

know µ to be invariant to, e.g., the group of reflections about the origin. That

is, if we can identify a compact group of transformations G that we know satisfies

the invariance µ(A) = µ(g(A)), for all g ∈ G and A ⊂ Ω, then we can incorpo-

rate this information when we write down the likelihood, and consequently µ̂ will

have the same invariance. The benefit of imposing this group invariance is that

the new MLEs for the normalizing constants utilize all the points in the orbit

G(xi) = {g(xi), g ∈ G} of each sample xi, for i = 1, . . . , n, and therefore our “sam-

ple size” is larger by a factor of |G|. Following Kong et al. (2003), we describe this

approach as imposing a group invariant sub-model because, out of the collection of

all possible measures, we are confining our attention to the smaller collection that

have the specified invariance. Note that invariance simply means the Jacobians of

the transformations g ∈ G are equal to one, because a Jacobian specifies the way

that the measure is altered by a transformation. Transformations with Jacobians

equal to one have the important property that they leave normalizing constants

unchanged.

Kong et al. (2003) incorporate group invariance of the measure into the like-

lihood by imagining that before seeing xi we randomly select a transformation

g ∈ G (that is not observed) and apply it to xi (with each g ∈ G having equal

probability of being selected). Thus, the observed data is g(x1), . . . , g(xn) and

each sample g(xi) is equally likely to have been generated from any of the |G|
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densities of the form pyi(g(·)), where g ∈ G. Hence, the likelihood becomes

L(µ) =
n∏
i=1

1

cyi
q̄yi(xi)µ(xi), (3.18)

under the constraints

∫
Ω

1

cs
q̄s(x)dµ(x) = 1, (3.19)

for s = 1, . . . , k, where

q̄s(x) ≡
1

|G|
∑
g∈G

qs(g(x)). (3.20)

Importantly, the likelihood (3.18) utilizes the invariance µ(x) = µ(g(x)), for all

g ∈ G. Now, setting the canonical sufficient statistic equal to its expectation, the

MLE of µ is

µ̂(x) =
1∑k

s=1 ns
1
ĉs
q̄s(x)

, (3.21)

if x ∈
∪n
i=1 G(xi), and zero otherwise. Equations (3.11) and (3.21) are the same

except that (3.21) replaces qs with q̄s and has larger support due to the imposed

invariance, i.e., µ̂(x) = µ̂(g(x)) for all g ∈ G. Lastly, since

cs =

∫
Ω

q̄s(x)dµ(x), (3.22)
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the normalizing constant cs is estimated by

ĉs =
n∑
i=1

q̄s(xi)∑k
t=1 nt

1
ĉt
q̄t(xi)

, (3.23)

which is the same as (3.12) except that again q̄s has replaced qs. An estimate

of the variance of the corresponding r̂st, for s, t ∈ {1, . . . , k}, can similarly be

obtained by replacing qs by q̄s in (3.15).

The above approach of Kong et al. (2003) is very intriguing since it incorpo-

rates our knowledge of the invariance of the baseline measure into the likelihood

by discarding the corresponding information in the data, i.e., by discarding the in-

formation about which of the densities {pyi(g(·)) : g ∈ G} generated sample i, for

i = 1, . . . , n. This general principle of simultaneously inserting knowledge into the

measure and taking information from the data could be very useful in further de-

velopments. Taking information from the data expands the sufficient statistic: in

Section 3.2.1, the sufficient statistic was the empirical measure or simply the col-

lection of samples, but now the sufficient statistic additionally includes the orbits

of the samples. Intuitively, this expansion of the sufficient statistic corresponds

to the fact that the empirical measure now has greater entropy or uncertainty.

The corresponding increased knowledge or certainty about the measure, namely

the group invariance constraint, means that the estimates (3.23) are essentially

“Rao-Blackwellized” versions our previous estimates (3.12), see Liu (2008) Section

2.5.5. Importantly, this Rao-Blackwellization ensures that we cannot do worse by

using invariances of the measure. (The alternative argument that the maximum
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likelihood method ensures we cannot do worse is not quite valid in this case be-

cause we change the data, and in fact reduce the information they provide, when

we impose invariances.) The guarantee of improvement is in contrast to alter-

native methods based on symmetries of the densities, rather than symmetries of

the measure, because these approaches sometimes result in worse estimators, e.g.,

methods based on the antithetic principle.

We emphasize that, in the current context, improvements in estimation pre-

cision are due to additional density evaluations, and therefore come at a com-

putational cost. Consequently, we are generally interested in small invariance

groups, with the main examples being reflection and rotation groups, and per-

mutation groups for discrete spaces. Small well chosen groups can potentially

greatly increase precision at little additional computational cost (we are assuming

evaluation of the densities is fast compared with generating additional samples).

However, we note that some valuable transformation groups are excluded from the

group invariant sub-model framework because they are infinite, e.g., translation

groups (which are otherwise ideal since their transformation Jacobians are equal

to one). Indeed, the reason we concentrate on the special case of groups is because

otherwise repeatedly applying a transformation will generate an infinite number

of points of invariance from just one sample. It can be argued that we only want

to apply a given transformation once, but we must then find a way to impose this

as a meaningful a priori constraint on the measure, which is the topic of Section

3.3.
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3.3 Warp transformations and beyond

Location shifts and scale changes of the samples can greatly improve the per-

formance of bridge sampling estimators, as demonstrated by Meng and Schilling

(2002). The idea behind these transformations is to gain greater estimation pre-

cision by selectively modifying the sampled points to be used in integral approxi-

mations, rather than by evaluating integrands at more points, as is the idea under

the group invariant sub-model framework discussed in the previous section. This

sample modification method can intuitively be understood as “warping” the inte-

grands and sampling densities into similar shapes, hence the name “warp transfor-

mations” introduced by Meng and Schilling (2002). In this section, we show that a

simple augmentation of the samples places warp transformations under the group

invariant sub-model framework, despite the apparent differences between the two

approaches. This gives warp bridge sampling estimators a maximum likelihood

interpretation, and allows us to improve estimation precision by both modifying

the sample points and introducing orbits of the modified points, all under a sin-

gle framework. Some essential details of warp bridge sampling will be mentioned

but for a full exposition the reader is referred to Meng and Schilling (2002). For

conciseness of the exposition, in the remainder of this chapter we will focus on

the k = 2 case and denote the estimand of interest and its MLE by r and r̂ML,

respectively.

127



3.3.1 Warp I

The Warp I bridge sampling estimator translates the unnormalized densities before

applying Algorithm 1, and in particular changes the iterative update (3.6) to

r̂(t+1) =
1
n2

∑n
i=n1+1 q1(xi +D)α(xi)

1
n1

∑n1

i=1 q2(xi −D)α(xi −D)
, (3.24)

where

α(x) =
1

n1q1(x+D) + n2r̂(t)q2(x)
. (3.25)

Intuitively, if µ1 and µ2 are measures of the “center” of densities p1 and p2, re-

spectively, then we should choose D = µ1 − µ2 (the subscripts distinguish µ1 and

µ2 from the measure). The Warp I estimator does not immediately fall under the

group invariant sub-model maximum likelihood framework of the previous section

because, for one thing, the orbit generated by the translation g(x) = x + D is

infinite. However, the difficulty can be overcome by using the label information

that specifies which density each sample originated from. The label information

naturally must play a key role in the warping context because the transforma-

tions are density specific. We augment the data space with the label information

so that observations are {xi, yi}, for i = 1, . . . , n. Next, we introduce a new trans-

formation group GD = {I, g} on the augmented space, where I is the identity
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transformation, and

g(x, 1) = {x−D, 2}

g(x, 2) = {x+D, 1}. (3.26)

Here and throughout, g(x, y) is understood to mean the transformation g applied

to the ordered pair {x, y}, i.e., g({x, y}). By using the label information to only

allow alternating translations, we have reduced the infinite translation group to

a cyclic group of order two! Furthermore, this choice exactly recovers the Warp

I transformation under the sub-model theory as we now show. The definition of

the density ps on the augmented space is

ps(x, y) =
1

cs
qs(x, y) ≡


1
cs
qs(x) y = s

0 y ̸= s,

(3.27)

for s = 1, 2, because we know that {x, y} cannot be from ps unless s = y. Here

and throughout, it is convenient to let qs denote both the function acting on

{x, y} and the function only acting on x, and there is no confusion because we

always specify the argument when distinction is necessary. The group invariant

sub-model framework now tells us that MLEs of the normalizing constant are

given by (3.23), and since k = 2, we have

r̂ML =
ĉ1
ĉ2

=

∑n
i=1

q̄1(xi,yi)
n1q̄1(xi,yi)+n2r̂MLq̄2(xi,yi)∑n

i=1
q̄2(xi,yi)

n1q̄1(xi,yi)+n2r̂MLq̄2(xi,yi)

. (3.28)
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which is exactly the Warp I bridge sampling estimate (3.24) upon convergence

(after some simple algebra verifying that summing over all n in (3.24) would

not change the value of r̂(t+1)). Note that, since we have modified the samples

rather than generating additional evaluation points, Warp I bridge sampling does

not have Rao-Blackwellization interpretation discussed in Section 3.2.3 and its

optimality is conditional on the translation parameter D. We discuss methods

for choosing D in Section 3.4. In the next section, we apply our formulation to

generalized warp transformations, which have the additional complication that

their Jacobians may not be equal to one.

3.3.2 Generalized warping

Our augmentation approach used to place translations under the group invari-

ant sub-model framework is very convenient because it works for any invertible

transformation of the samples. We now take the remaining step needed to verify

this, namely to incorporate transformations whose Jacobians are not equal to on.

We illustrate with Warp II transformations, which center and scale densities, and

Warp III transformations which additionally symmetrize densities.

Consider the group GT = {I, g} with non-identity element

g(x, 1) = {T (x), 2}

g(x, 2) = {T−1(x), 1}. (3.29)

To accommodate instances of T whose Jacobians are not equal to one, we gener-
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alize the definition of group averaging given in (3.20), at least for the case where

k = 2 and the invariance group has order two. Specifically, we set

q̄s(x, y) ≡
1

2
qs(x, y) +

1

2
qs(g(x, y))|Js(x)|, (3.30)

for s = 1, 2, where J1 is the Jacobian of T−1 and J2(x) = (J1(x))
−1. For any x,

one of the two terms in (3.30) is zero due to the definition of qs. To obtain r̂ML,

we now simply use (3.30) in place of qs(x) in Algorithm 1, for s = 1, 2. For clarity,

we denote the resulting estimator by r̂ML(GT ) and will use similar notation for

other estimators.

In the case of deterministic transformations, Meng and Schilling (2002) give a

general form of their warp bridge sampling method in which the two densities are

both warped to a standard shape (e.g., a Normal distribution) by the transfor-

mations H1 and H2, yielding the final estimator r̂GW (H1, H2) (where GW stands

for generalized warp bridge sampling estimator). This generalized warp bridge

sampling estimator is the solution to

r̂ =

1
n2

∑n
i=n1+1 q1(H

−1
1 (H2(xi)))|JH−1

1
(H2(xi))|α(H2(xi))

1
n1

∑n1

i=1 q2(H
−1
2 (H1(xi)))|JH−1

2
(H1(xi))|α(H1(xi))

, (3.31)

where JH−1
s

is the Jacobian of H−1
s and

α(x) =
1

n1q1(H
−1
1 (x))|JH−1

1
(x)|+ n2r̂q2(H

−1
2 (x))|JH−1

2
(x)|

. (3.32)

If we choose T = H−1
2 H1 in (3.29), then carefully accounting for Jacobian terms
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gives r̂GW (H1, H2) = r̂ML(GT ), see Appendix A.5. Thus, in the case of deter-

ministic transformations, all warp bridge sampling estimators can be expressed as

maximum likelihood estimators under an appropriate group invariant sub-model.

The Warp II transformation centers and scales the two densities and therefore is

a specific example in which the corresponding transformation T in (3.29) will not

have a Jacobian equal to one. In Meng and Schilling (2002), the density specific

Warp II transformations are given by

Hs(x) = S−1
s (x− µs) (3.33)

where µs and Ss are measures of the center and spread of the density ps, for

s = 1, 2. Therefore, under our sample augmented group invariant sub-model

approach, the corresponding transformation g is

g(x, 1) = {Sx+D, 2}

g(x, 2) = {(x−D)/S, 1}, (3.34)

where S = S2S
−1
1 and D = µ2 − Sµ1. The jacobians used in the group averaging

(3.30) are J1(x) = S and J2(x) = S−1, for all x ∈ Ω. We denote {I, g} and the

resulting estimator by GW2 and r̂ML(GW2), respectively.

Warp III transformations make densities symmetric by using

q̄s(x) =
1

2
(qs(x) + qs(−x)) (3.35)
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Table 3.1: Cayley table of the invariance group GW3 used by the sub-model of the measure
that corresponds to Warp III transformations.

I g h gh
I I g h gh
g g I gh h
h h gh I g
gh gh h g I

in place of qs(x) in Algorithm 1, for s = 1, 2. Meng and Schilling (2002) point out

that this can be interpreted as bridge sampling estimation following a stochas-

tic transformation of the samples, namely multiplying each by an independent

random sign. From the maximum likelihood perspective, the use of (3.35) is

clearly a direct application of the group averaging method reviewed in Section

3.2.3; there is no need for our sample augmentation. However, to obtain the best

results we would usually combine (3.35) with the Warp II transformation, which

does require augmented samples for the group invariant sub-model interpretation.

Specifically, the corresponding invariance group is GW3 = {I, g, h, gh}, where g

is given by (3.34) and h is the same except that the parameter D is replaced by

D′ = µ2 + Sµ1. Note that, gh(x, y) = hg(x, y) = {−x + 2µy, y} and therefore gh

is simply a reflection about the center µy of the density py, for y = 1, 2. Thus, it

is easily verified that r̂W3(H1, H2) = r̂ML(GW3) through an alternative calculation

of r̂ML(GW3): first replace qs(x, y) by

q̌s(x, y) =
1

2
(qs(x, y) + qs(gh(x, y))) =

1

2
(qs(x, y) + qs(−x+ 2µs, y)) , (3.36)
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(x,1)

g(x,1)

h(x,1)

g(h(x,1))

y = 1 space

y = 2 space

Figure 3.1: Orbit of (x, 1) under the invariance group GW3 that corresponds to Warp III
transformations.

for s = 1, 2, and then compute r̂ML(GW2) (with g given in (3.34)).

The group GW3 is illustrated in Table 3.1 and Figure 3.1, and is helpful for

gaining insight regarding further developments. It is straightforward to introduce

more densities (that we may or may not sample from) by allocating some to live

on the y = 1 space and some to live on the y = 2 space for the purposes of

transformation and group averaging. However, in pursuing other developments,

we must take note of the fact that the dashed lines in Figure 3.1 are parallel,

since without this feature the transformations g and h could be combined to form

an infinite orbit. For example, this means that expanding the invariance group

to include further transformations must be done with care and the necessary

modifications are discussed in the next section.

3.3.3 Larger invariance groups

When there are only two densities of interest the invariance groups can easily be

extended by adding more transformations that map within the y = 1 or y = 2

space and do not create infinite orbits, e.g., orthogonal reflections. The within

134



y = 1 space

y = 2 space

y = 3 space

Figure 3.2: Illustration of a sample augmentation that facilitate multiple cross space transfor-
mations in a group invariant sub-model.

space transformations do not have to be the same for the two spaces, and indeed

they are not for the GW3 group. Through the group averaging, these within space

transformations increase the precision of the maximum likelihood estimator by

increasing the number of density evaluation points.

Cross space transformations are more complex and there can only be one such

transformation under the two space augmentation. A second transformation

would not be “parallel” (see Figure 3.1), and therefore the orbit of each sample

would become infinite because we could traverse a space indefinitely by alternat-

ingly applying the cross space transformations. Furthermore, if there are only two

densities there would be no need for another cross space transformation; the one

transformation we have should be our best attempt to transform one density to

the other. It is possibly of interest to consider several cross space transformations

in an attempt to include the optimal one, though this is likely to be inefficient.

In the next section more will be said about how to choose the transformations.
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If we have more than two densities, then further cross space transformations

will be needed to make the most of the group averaging. To illustrate, suppose

there are three unnormalized densities, with q1 living on y = 1 and q2 and q3 living

on y = 2. The points from space y = 1, say, will not map to points of space y = 2

for which both q2 and q3 have high values unless they happen to overlap a lot.

Considering this it becomes apparent that it is natural to introduce one space per

density. Then, we can link each space to y = 1 through a transformation, warping

density ps (on space y = s) to density p1 as accurately as possible, for s = 2, . . . , k.

This extension is illustrated in Figure 2. The result is that for any two densities

qs and qt, we can approximately transform between them by first transforming qs

to q1, and then transforming q1 to qt. As we have already shown this is essentially

equivalent to the idea in Meng and Schilling (2002) of transforming every density

to look like a standard Normal density, except that here we use q1 as the reference

rather than the standard Normal.

3.4 Choosing invariance group transformations

It desirable to optimize the invariance group transformations because a smaller

group is both computationally cheaper and often more interpretable. We should be

careful to make optimization fast so that it does not require as much computation

time as just expanding the invariance group in a non-optimal way or drawing more

samples. It is sufficient to optimize the transformations using a reasonably sized

subset of the samples and then proceed to estimating r with all the samples. If
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the sample size was large, this would clearly compare favorably with using a large

non-optimized invariance group because for large sample sizes the cost of group

averaging becomes important.

Section 3.4.1 provides a practical decision-theoretic approach to choosing in-

variance group transformations, that follows the method that Meng and Schilling

(2002) suggested for choosing warping parameters. Despite the fact that this

approach works well, it is somewhat unsatisfying because it breaks from the like-

lihood framework, and thus, may not correspond to optimal joint estimation of

the transformation parameters and the measure. This may lead to sub-optimal

estimation of r and leaves us uncertain if further development of estimators is

warranted. It is therefore of interest to formulate a complete (possibly hierarchi-

cal) model under which the maximum likelihood approach can be used to jointly

estimate the measure and the optimal transformation parameters. The “reverse

mixture” likelihood based method explained in Section 3.4.3 offers a first step and

appears to be only slightly inferior to the decision theoretic approach. Of course,

a complete likelihood approach would not be inferior and may be superior. By

presenting the reverse mixture based method, and other likelihood ideas, we aim

to create a clearer understanding of the difficulties to encourage and facilitate

further investigations.
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3.4.1 Decision theoretic approach

Theorem 1 of Meng and Wong (1996) gives the asymptotic relative mean square

error (RME) of the bridge sampling estimator as

E[(r̂ − r)2]

r2
.
=

1

n

[∫
Ω1∩Ω2

(
1

n1

n
p1(x)

+
1

n2

n
p2(x)

)−1

dx

]−1

− 1

n1

− 1

n2

. (3.37)

The dot over the equals sign indicates this is a first order equality and thus asymp-

totically an equality in the usual sense that the ratio of the two sides converges to

1. An essentially equivalent result was given in the physics literature by Bennett

(1976).

Given the above results, one way to choose warp bridge sampling parameters is

to minimize the (scaled) harmonic distance

[∫
Ω1∩Ω2

p1(x)p2(x)

n1p1(x) + n2p2(x)
dx

]−1

(3.38)

once we have replaced the densities with their warped counterparts. Exactly the

same approach can be applied for choosing any invariance group transformations;

we can simply replace qr with q̄r and minimize the harmonic distance. Of course,

it is impossible to calculate the harmonic distance H without knowing the nor-

malizing constants, but we can estimate the harmonic distance, up to a constant,

by

Ĥr̂(ψ) =
n∑
i=1

q̄1(xi, yi)q̄2(xi, yi)

(n1q̄1(xi, yi) + n2r̂q̄2(xi, yi))2
, (3.39)
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where r̂ is our current estimate of r, and ψ denotes the invariance group parame-

ters. Thus, denoting the invariance group corresponding to ψ by Gψ, the following

algorithm can be used to estimate r:

Algorithm 2 (RME method): decision-theoretic choice of invariance group

parameters.

1. Choose an initial r̂ and ψ̂ and then iterate steps (1) and (2) until conver-

gence.

2. Calculate r̂ using the scheme in (3.6) with qs replaced by q̄s, for s = 1, 2,

where the group averaging is over Gψ̂ (we must also replace xi with {xi, yi}).

3. Update ψ̂ by minimizing Ĥr̂(ψ) with respect to ψ.

To save computation we could begin by optimizing with respect to a small group,

such as the Warp I translations, in order to obtain a reasonably good estimate

of r̂. Then, we could run a few iterations of Algorithm 2 beginning at step (3)

and iterating between steps (2) and (3). This method is likely to work quite

well in most cases because r̂ will not change massively once the densities are

aligned. Indeed, the diminishing return of adding further transformations mean

it is generally not a good a idea to use groups that are very large.

Since the proposed ψ̂ does not clearly correspond to the MLE (see the the next

section), we do not know if the above scheme yields an optimal r̂. Simply arguing

that we chose ψ̂ to minimize the asymptotic relative error of r̂ is not sufficient

because this was only done approximately; the harmonic distance H is not known

exactly. The general method implemented can be summarized as choosing ψ,
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the nuisance parameter, to maximize the Fisher information (or minimize the

asymptotic variance) of µ, the parameter of interest. In general, this does not

provide the best estimate of µ unless the parameters ψ and µ are orthogonal.

Furthermore it is not clear what is the best way to adapt Algorithm 2 to more

than two sampling densities, and a complete maximum likelihood formulation may

shed some light on this problem. It would also have the advantage of using the

sufficient statistic which would potentially yield better estimates of r and ψ for

finite sample sizes, though this is not guaranteed.

These issues aside, Algorithm 2 provides the best method we currently have for

selecting invariance group parameters and it is easy to implement. In a test exam-

ple, using a Normal and Skewed-Normal as the two sampling densities, Algorithm

2 provided noticeably better results than cruder approaches such as choosing a

translation parameter by matching modes of the two densities. We mention in

passing that Meng and Schilling (2002) also developed bounds for the asymptotic

relative error of r̂ in terms of the Hellinger distance. Thus, we could update ψ̂

by minimizing the upper bound if this was for some reason computationally more

practical than step (3) of Algorithm 2.

3.4.2 Difficulties with the ML approach

Intuitively, we would like to use the likelihood framework to jointly estimate the

invariance group parameters and the measure. However, this idea has many diffi-

culties rooted in the fact that the MLE of the measure turns out to be a function

of the MLE of the invariance group parameters. For example, in the Warp I case,
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we have µ̂ = (D̂, û), where û tells us the weight the estimated measure assigns to

each of the observed points and D̂ tells us the (translational) invariance property

of the estimated measure. We intuitively imagine D̂ to be telling us about the

densities and, in particular, how best to transform between them, but it is actu-

ally telling us about the measure. This is on reflection unsurprising because the

measure is the only unknown appearing in the likelihood (3.18).

For the remainder of this section, we will restrict attention to the Warp I case of

translations (i.e., g is given by (3.26)), but the discussion is relevant to the general

formulation detailed in Section 3.3. For the Warp I case, we now mathematically

demonstrate that attempting joint estimation by directly applying the likelihood

approach discussed so far is unfruitful. From (3.18)and (3.26), the likelihood is

L(D,w) =

n1∏
i=1

1

c1
q1(xi, yi)ui

n∏
i=n1+1

1

c2
q2(xi, yi)ui, (3.40)

where

c1 =

n1∑
i=1

q1(xi, 1)ui +
n∑

i=n1+1

q1(xi +D, 1)ui, (3.41)

and similarly for c2. Now, suppose that the MLE is (D̂, û), and consider the

corresponding normalizing constants ĉs, for s = 1, 2. Increasing the magnitude of

D̂ sufficiently will decrease the estimates of ĉs, for s = 1, 2, and therefore increase

the likelihood; a contradiction. Thus, the likelihood cannot be maximized with

finite D̂. If the unnormalized density q2g, say, has no mass at {xi, 1}, for i =

1, . . . , n1, this allows higher likelihood because then the constraint on the integral
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of p̄2 (which must be equal to one) does not restrict our choice of µ(xi, 1), for

i = 1, . . . , n1. Thus, the likelihood chooses D such that qsg has very little mass at

{xi, s}, and µ̂(xi, s) = µ̂(g(xi, s)) ≈ ĉs/(nsqs(xi, s)), for i ∈ Ns and s = 1, 2. The

maximum likelihood approach therefore recovers the ratio of importance sampling

estimators, which we know to be inferior to Warp I bridge sampling, at least for

some choices of D.

The above arguments are difficult to reconcile because we expect the maximum

likelihood approach to yield the optimal joint estimation procedure that we desire.

It is tempting to think that the problem lies in the fact that the measure is an

infinite dimensional parameter and therefore cannot be estimated. However, even

for densities and measures with a finite support, we can still increase the likelihood

by choosing D to minimize, rather than maximize, qsg at the points {xi, s}, for

i ∈ Ns and s = 1, 2. For fixed D, the mixture form of the maximum likelihood

estimator of the measure is not clear from the “likelihood” itself, but rather from

the constraints on the measure, i.e., from the fact that the densities must integrate

to one. Indeed, the bridge sampling estimator is of a different form to importance

sampling estimator because there are more restrictions, which give us additional

information about the measure. As we have seen, when we allow D to vary, this

information is lost and µ̂ is again the importance sampling estimator. In general,

the warp bridge sampling estimator is not necessarily better than the ratio of

importance sampling estimators, but for a good choice of D it is. In conclusion,

the trouble is that what constitutes a good choice of D is not currently found

anywhere in the data generating model, but is only realized through a study of r̂
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itself.

Vardi (1985) investigates a closely related topic, namely the conditions required

for the non-parametric MLE of a CDF F to exist in the scenario where samples

are drawn from multiple weighted versions of F , i.e., when the sampling is biased.

The k different weighted sampling schemes are described by the CDFs

Fs(t) = Ws(F )
−1

∫ t

−∞
wi(u)dF (u) s = 1 . . . , k, (3.42)

with

Ws(F ) =

∫ ∞

−∞
ws(u)dF (u) s = 1 . . . , k. (3.43)

Vardi (1985) shows that for the MLE to exist, any subset B of the sampling

densities must contain an s ∈ B such that ws has non-zero weight for at least

one of the samples drawn from the remaining densities not in B. This condition

essentially means that there is sure to be some “empirical overlap” whichever way

you divide up the sampling densities into groups B and BC , i.e., at least some of

the samples that came from one group of densities could have come from the other

group. In our case, there is no direct overlap between the densities because of the

space augmentation, and the overlap through the invariance group transformations

is lost when we estimate the transformations, i.e., when the transformations are

not fixed. We therefore need to change the knowledge we input into the likelihood

in a similar fashion as we did when introducing group invariances of the measure

in Section 3.2.3. Indeed, the input knowledge can dramatically influence the part
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D plays, as illustrated in the next section.

3.4.3 Reverse mixture method

We now investigate the method of discarding the information about whether a

sample was generated from p̄1 or p̄2, because this ensures that the resulting likeli-

hood must contain information to estimate the “distance” between the densities,

i.e., D. Usually we want to disentangle components of a mixture distribution,

but here we want to make them as similar as possible and we therefore call our

approach the reverse mixture method. The method is slightly inferior to the de-

cision theoretic approach of the previous section, but it illustrates the powerful

role of the information we select to include in the likelihood and can potentially

motivate further ideas. After discarding the sample label information, the Warp

I likelihood is

L(µ,D) =
n∏
i=1

(
n1

n

1

c1
p̄1(xi, yi) +

n2

n

1

c2
p̄2(xi, yi)

)
µ(xi, yi). (3.44)

This likelihood is appealing for the following reasons: (i) it appears that the

maximum likelihood method must optimize g to map one density to the other;

(ii) maximizing the likelihood has a nice interpretation as minimizing entropy of

the empirical mixture; (iii) the estimate of the measure was not using the label

information anyway so it seems we have recovered information about the “real” D

at no cost. Unfortunately there are two objections that dramatically weaken the

approach: (i) equation (3.44) assumes the real g transforms between the densities
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exactly; (ii) D is not identifiable.

Regarding problem (i), the issue is that {x̄i, ȳi} is not a sample from the den-

sity n1

n
p̄1 +

n2

n
p̄2 unless g perfectly transforms between p1 and p2. In particular, if

(xi, 1) is drawn from p1 then it is not true that g(xi, 1) is a draw from p2, which is

what we are assuming in (3.44). If we considered a sufficiently flexible transforma-

tion g (with more parameters) then the assumption would likely be a reasonable

approximation. However, the parameters would still be non-identifiable because

the MLE of µ(xi, yi) is simply the reciprocal of n1
1
ĉ1
q̄1+n2

1
ĉ2
q̄2 and the maximum

likelihood is equal to one for any transformation parameters, i.e., we are in the

importance sampling situation of Section 3.2. This difficulty is also possible to

overcome because we know the true measure. We propose the following scheme:

Algorithm 3 (RM method): reverse mixture method for choosing invariance

group parameters.

1. First choose an initial r̂ and ψ̂ and then iterate steps (2) and (3).

2. Calculate r̂ using the scheme in (3.6) with qs replaced by q̄s, for s = 1, 2,

where the group averaging is over Gψ̂ (we must also replace xi with (xi, yi)).

3. Multiply (3.44) by c1 and insert r̂ in place of r. Then find the MLE of

ψ while fixing µ to be the true measure, i.e., minimize the entropy of the

empirical mixture.

In the case ψ = D, this scheme produces similar estimates of r̂ as the MRE method

of Section 3.4.1, but results in slightly higher mean squared error (see Figure 3.4,

discussed below). Algorithm 3 is likely to perform better as we increase the
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Figure 3.3: Plots of the N(10, 2) and Skew-Normal(0, 3, 10) probability densities used in our
simulation study.

number of transformation group parameters, because then the assumption that g

transforms between the densities exactly will become more reasonable. Therefore,

when using Warp I, II, and III instead of only Warp I we may expect the MRE

and RM methods to closely agree. Furthermore, the RM method does have one

practical advantage over the decision-theoretic approach in that it has an intuitive

generalization to more sampling densities; in step (3) of Algorithm 3 we simply

minimize the entropy of the empirical mixture of all the sampling densities (step

(1) and (2) also require minor alterations). Finally, it should be noted that,

asymptotically the two approaches give very slightly differing values of D because

we are optimizing entropy in one case and and harmonic distance in the other.

We now give a representative example of how the suggested methods compare

when choosing the translation parameter D. We set p1 to be a N(10, 2) density

and p2 to be a Skew-Normal(0, 3, 10) density, see Figure 3.3 for plots of these den-

sities. The r was set to 2.5, and we estimated it using the maximum likelihood
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Figure 3.4: Estimates of r across the 500 simulations; the rows correspond to the three methods
of choosing D (described in the main text) and the columns correspond to the two simulation
settings n1 = n2 = 20 (left) and n1 = n2 = 100 (right).
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Warp I estimator given in (3.28) with D chosen using three different methods: (i)

the decision-theoretic method (MRE), (ii) the reverse mixture method (RM), and

(iii) matching the true modes of the densities. The simulation was performed 500

times for each of the two settings n1 = n2 = 20 and n1 = n2 = 100. Each panel

in Figure 3.4 shows a histogram of the estimates of r across the 500 simulations;

the rows correspond to the three methods of choosing D and columns correspond

to the two simulation settings. As can be seen from the spread of histograms, the

MRE approach did best in both simulations, though is only marginally better that

the RM method for the larger sample sizes. The mean squared errors correspond-

ing to the MRE, RM, and matching modes methods under n1 = n2 = 20 were

0.078, 0.182, and 0.171, respectively, and under n1 = n2 = 100 they were 0.0098,

0.0101, and 0.0192, respectively. The matching modes approach cheats slightly in

that it uses the true modes of the densities which would be unknown in most ap-

plications. It is therefore perhaps unsurprising that the mode matching approach

works slightly better than the RM method for the small sample simulation, but

compares poorly when the sample size is increased.

3.5 Summary and future work

In this chapter we demonstrate that the Warp bridge sampling methods proposed

by Meng and Schilling (2002) fall under the likelihood framework for Monte Carlo

integration introduced by Kong et al. (2003) and Kong et al. (2006). Previously,

Kong et al. (2003) and Kong et al. (2006) showed that statistical efficiency could
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be gained by selectively inserting our knowledge about invariances of the base-

line measure into the likelihood of the Monte Carlo samples, and in particular by

use of the group invariant sub-models for the measure reviewed in Section 3.2.3.

Statistical efficiency is gained through evaluating the integrand at more points

introduced by the invariances of the measure, but importantly the method does

not require additional samples, and thus is often possible even when only minor

increases in computation time are acceptable. Rotations and reflections were the

main invariances that could previously be exploited, but we introduce a simple

augmentation of the Monte Carlo samples and measure that allows any one-to-one

transformation for which we can compute the Jacobian to be used in the group

invariant sub-model framework. This greatly increases the power of the sub-model

framework and shows that Warp bridge sampling methods have a maximum like-

lihood interpretation. We also suggest both a decision-theoretic and a likelihood

based method for choosing the optimal invariances within a given class.

Our future work will focus on identifying a likelihood that allows the normalizing

constants (or other integrals) and the optimal sub-model parameters to be jointly

estimated, since neither of our current approaches yet does this satisfactorily. The

successful method will achieve approximate invariance of the measure based on the

observed samples, as opposed to the exact invariance imposed in the likelihood

(3.40) between the observed samples and the hypothetical samples in their orbits.

Since approximate invariance is required, a hierarchical model could be useful

for including our knowledge of the measure, although the specifics are not yet

clear to us. Potentially related is the seminal work of Efron and Morris (1975)
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who point out that the James-Stein estimator, which initially seems to be at odds

with usual maximum likelihood theory, is natural given an appropriate hierarchial

model. Indeed, some analogies can be made between our samples and the half

season and full season batting averages in the infamous baseball example used by

Efron and Morris (1975).

Another intriguing direction for future work is to identify conditions under

which it is possible to estimate a function of an infinite dimensional parameter

consistently. There will need to be conditions on both the sampling method and

the type of function that is being estimated. In our case the function is integration

with respect to the infinite dimensional measure. We need to invoke some form

of smoothness and also some form of concentration of “mass” otherwise a finite

approximation to the measure will not allow accurate estimation. An appropri-

ate theorem would provide a stronger foundation for the likelihood approach to

Monte Carlo integration, because for example so far it has not been rigorously

demonstrated that the likelihood approach of Kong et al. (2003) and Kong et al.

(2006) leads to consistent estimators.
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A
Appendices

A.1 Proof of Theorem 1.1

A Taylor expansion in θ0 shows that V (f(x|θ0)/f(x|θ1))− V(1) is equal to

(
δ
f ′(x|θ1)
f(x|θ1)

+
δ2

2

f ′′(x|θ1)
f(x|θ1)

)
V ′(1) +

δ2

2

(
f ′(x|θ1)
f(x|θ1)

)2

V ′′(1) +R3(x), (A.1)
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where δ = (θ0 − θ1), and R3(x) = R3(x; θ0, θ1) is the standard Taylor expansion

remainder term. If we set θ1 = θob, then ITV (ξ1;xob) becomes

1

2
(θ0 − θob)

2IobV ′(1) +O
(
(θ0 − θob)

3
)
. (A.2)

Next, for a sequence {θ(m)} such that |θ(m)−θ1| ≤ 1
m

, we assume that the sequence

{R3({xob, Xmis}; θ(m), θ1)} is uniformly integrable. Then, inserting (Xmis, xob)

for x in (A.1), setting θ1 = θob, and taking an expectation with respect to

f(Xmis|xob, θob) we obtain

V(1)− 1

2
(θ0 − θob)

2 (IobV ′(1)− ImisV ′′(1)) +O
(
(θ0 − θob)

3
)
. (A.3)

Hence, for θ1 = θob, we have

FITV (ξ2|ξ1;xob) =
IobV ′(1) +O(θ0 − θob)

IobV ′(1)− ImisV ′′(1) +O(θ0 − θob)
, (A.4)

and letting θob → θ0 the result (1.41) follows.

A.2 Split and combine proposals in reversible

jump MCMC

The purpose of this appendix is to detail our implementation of split-combine

moves in the BASCS code. We assume the reader is familiar with MCMC and

RJCMC algorithms. Those unfamiliar with MCMC we refer to Gelman et al.
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(2013) and the appendix of Xu et al. (2014). Those unfamiliar with RJMCMC

we refer to Richardson and Green (1997) and Green (1995). The basic properties

of the algorithm follow from the reversibility condition and the theory of Markov

chain convergence dealt with in many probability and stochastic processes books,

for example Feller (1968).

We concentrate on the split proposals used in BASCS because they are more

complex than the combine proposals. In particular, we detail the steps of a split

proposal in BASCS for the extended full model (the most complex case consid-

ered). The corresponding combine proposals are straightforwardly obtained by

solving the equations appearing in our split proposal scheme for the parameters

of the combined source (i.e., the parameters of the yet to split source). Conditions

that are required of newly split sources must also be satisfied when sources are

combined. Following the algorithm is a short description of the reasons that its

novel features are necessary in the current context.

Let µj = (µjx, µjy) be the location of the source the algorithm is attempting

to split. Throughout this appendix, the parameters for the two newly proposed

sources formed by a split will be subscripted as in the main parts of the paper

except that a 1 will appear after the subscript j to indicate the first newly proposed

source, and similarly a 2 will indicate the second newly proposed source e.g. µj1x

will denote the x-coordinate of the first newly proposed source formed by a split.

The newly proposed sources are ordered so that min(γj11, γj12) ≤ min(γj21, γj22),

i.e., the smallest gamma distribution mean of the spectral model for the first

newly proposed source is smaller than that of the second newly proposed source.

153



For the full model the ordering used is γj1 ≤ γj2, and for the spatial-only model

it is µj1x ≤ µj2x. These orderings are solely for the purposes of proposals; the

label switching problem is discussed separately in Appendix B. A split proposal

is performed as follows:

Step 1: Spectral parameters proposal: simulate u ∼ Uniform(0, 1).

(a) If u > 0.5, simulate u1 ∼ Beta(2, 2), t, v2, v3 ∼ Uniform(0, 1) and v4, v5 ∼

gamma(5, 5). For a = πj/u1 and b = (πj + u1 − 1)/u1 define

f(u1, πj) =


a if a < 1

1 + e
10
a
−10 log (a) otherwise,

(A.5)

g(u1, πj) =


b if b > 0

be10b log (b) otherwise.
(A.6)

Then set

πj1 = tg(u1, πj) + (1− t)h(u1, πj) (A.7)

πj2 =
πj − u1πj1
1− u1

(A.8)

γj11 = v2γj1 (A.9)

γj21 =
1− v11v2
1− v11

γj1 (A.10)

γj12 = γj11 +
v3
v12

(γj2 − γj11) (A.11)

γj22 = γj11 +
1− v3
1− v12

(γj2 − γj11) (A.12)
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αj11 = v4αj1 (A.13)

αj12 = v5αj2 (A.14)

αj2l =
ρj2lγ

2
j2l

Ajl
for l = 1, 2, (A.15)

where

Ajl = ρj1γ
2
jl

(
1 +

1

αjl

)
− ρj1lγ

2
j1l

(
1 +

1

αj1l

)
− ρj2lγ

2
j2l, (A.16)

and ρj1 = wjπj, ρj11 = wj1πj1, ρj12 = wj2πj2, ρj2 = wj(1 − πj), ρj12 =

wj1(1− πj1), and ρj22 = wj2(1− πj2).

The split proposal is immediately rejected if πj1 is not between min
(
1,

πj
u1

)
and max

(
0,

πj+u1−1

u1

)
, or γj21 > γj22, or any of γj11, γj21, γj12, γj22 are outside

the range of the spectral data E.

(b) If u ≤ 0.5, simulate πj1, πj2 ∼ Beta(10, 1), v2, v3 ∼ Uniform(0, 1), and v4, v5 ∼

Beta(1, 5). Then set u1 = πj, γj11 = γj1, γj21 = γj2, αj11 = αj1, αj21 = αj2,

and

γj12 = γj1 + v2(Emax − γj1) (A.17)

γj22 = γj2 + v3(Emax − γj2) (A.18)

αj12 = 20v4 (A.19)

αj22 = 20v5. (A.20)
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Step 2: Spatial parameters proposal: simulate u1 ∼ Beta(2, 2), u2 ∼ S2Beta(2, 2),

and u3 ∼ S3Beta(2, 2) (where S2 and S3 are independent random signs) and set

wj1 = wju1 (A.21)

wj2 = wj(1− u1) (A.22)

µj11 = µjx − u2σ

√
wj2
wj1

(A.23)

µj21 = µjx + u2σ

√
wj1
wj2

(A.24)

µj12 = µjy − u3σ

√
wj2
wj1

(A.25)

µj22 = µjy + u3σ

√
wj1
wj2

. (A.26)

In our algorithm σ = 1 (tuning parameter).

Step 3: If (µj1x−µj′x)
2+(µj1y−µj′y)

2 < (µj1x−µj2x)
2+(µj1y−µj2y)

2, for some

j′ ∈ {1, . . . , K}/{j}, then the split proposal is rejected. We also reject the split

proposal if the proposed source locations are outside the convex hull of the spatial

data (x, y).

Step 4: To update s to s′ randomly assign photon i to the first newly proposed

source with probability pi = pi1/(pi1 + pi2), and otherwise to the second newly

proposed source, for each i ∈ Ij. Here

pil = wjlf(µjl1,µjl2)(xi, yi)
2∑
r=1

πjlrgαsjlr
,γsjlr

(Ei), (A.27)
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for l = 1, 2. We denote the probability of the particular allocation realized by

Palloc.

Step 5: Simulate usplit ∼ Uniform(0, 1) and accept the proposed split if usplit <

min{1, A} where

A =



p(Θ′
K+1,K+1,s′|x,y,E)

p(ΘK ,K,s|x,y,E)

dK+1

bKPalloc

× 1
1
4
b2,2(u1)b2,2(|u2|)b2,2(|u3|)

× 1
g5,5(v4)g5,5(v5)

|Ja| if u > 0.5 (Step 1)

p(Θ′
K ,K+1,s′|x,y,E)

p(ΘK ,K,s|x,y,E)

dK+1

bKPalloc

× 1
1
4
b2,2(|u2|)b2,2(|u3|)b10,1(πj1)b10,1(πj2)

× 1
b1,5(v4)b1,5(v5)

|Jb| otherwise.

(A.28)

Here, the notation bS,R and gS,R denotes the Beta(S,R) and gamma(S,R) densi-

ties, respectively, and

bK =


1
K

if K = 1

1
2

1
K

otherwise,
(A.29)
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dK+1 =



1
K+1

if ||(µj1x, µj1y)− (µj2x, µj2y)||2

≤ ||(µj1x, µj1y)− (µj′x, µj′y)||2,

∀j′ ∈ {1, . . . , K}/{j}

1
2

1
K+1

otherwise.

(A.30)

The Jacobian |Ja| is the determinant of a 16× 16 block matrix. The determinant

of the upper-left 6 × 6 block is wjσ2/(u1(1 − u1)), and this is multiplied by the

determinant of the lower-right block which is calculated numerically. The Jacobian

|Jb| is 202(Emax − γj1)(Emax − γj2)wjσ
2/(u1(1− u1)).

There are two features of BASCS that are not explicitly dealt with in standard

approaches. The first is that the distributions we split and combine are themselves

mixture distributions. The second is that BASCS randomly chooses from two

proposal schemes for the spectral parameters in Step 1 because a single approach

does not address all the possibilities. The approach in Step 1(a) splits each gamma

distribution in the current source’s spectral model into two, thus forming two new

spectral models for the newly proposed sources. The key aspect of this approach

is that the new spectral models are designed to both be similar to the original.

This makes sense in a situation where two similar sources have been mistaken

for one. The approach in Step 1(b) is designed to split one true source into two,

with each newly proposed source accounting for one gamma component of the

true spectral model. Thus, the two new source spectral models each typically

have nearly all their weight on a single gamma, which is almost invariably the
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first component in the extended full spectral model (we sort the gammas by their

means, in increasing order). Of course, we do not want to split a true source, but

this split proposal is necessary in order to allow the reverse combine proposal,

because the reversibility condition must be satisfied.

A.3 Label switching

A computational challenge is that the enumeration, or labelling, of individual

sources changes stochastically during the iterations of an RJMCMC algorithm

(and even during the iterations of an MCMC algorithm for a mixture model with

a known number of components). For example, Figure A.1 shows the value of

µ5x at each iteration of our algorithm (after convergence) before and after the

labelling has been corrected (the data are from the simulation study involving

ten sources described in Section 2.5.1, and in particular, µ5x is the x-coordinate

of the fifth source). Clearly, some such correction will be necessary in order for

estimates such as that in (2.18) to be meaningful.

We implemented two approaches to relabelling and, in our real data analyses,

they gave essentially identical results. The first method was to impose a hard

constraint. In one dimension a hard constraint typically involves ordering the

component locations, but it is not clear how best to impose such a constraint in

two dimensions. As most of the source positions were precisely fitted, we simply

ran the RJMCMC algorithm until convergence and then selected a posterior draw

of the positions and weights to use as a reference. Running the algorithm again

159



Figure A.1: Trace plot of the parameter µ5x from a simulation with ten sources (Section 2.5.1)
before (left) and after (right) relabelling.

(or continuing the initial run), at each iteration we labelled the current source

closest to the brightest reference source as source one, then we looked for the

source closest to the second brightest reference source, and so on. As in the

one dimensional case, this approach has the limitation that artificial ‘boundary’

effects may be introduced when the posteriors of two source positions overlap.

These effects indicate that the real posterior uncertainty has not been correctly

recovered (unless there is some real information to support a hard constraint in our

prior). However, in our real data analyses there was no evidence of such boundaries

because, for probable values of K, all the source positions were precisely fitted

and there was little overlap between the posteriors of source positions. In the case

of the Chandra observation and K = 14, the fact that the posteriors of the source

locations are non-overlapping can be seen from Figure 2.11.

We also implemented the approach suggested by Cron and West (2011), by
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Figure A.2: 2-D King profile density (left), and its contours (right).

modifying their publicly available code to work for our model. This method also

uses a reference and is based on a loss function. At iteration t, the most likely

assignment of each photon is computed treating the current parameter values as

the true parameters, and then again treating the reference parameters as the true

parameters. If, assuming the current parameter values, photon i is most likely

to have originated from component two, but another origin is most likely when

assuming the reference parameter values, then we say there is a mismatch in al-

location of photon i. The method used by Cron and West (2011) is to choose

the relabeling that minimizes the number of mismatches at iteration t, and then

proceed to the next iteration. This second approach is substantially more compu-

tationally expensive than the first. Therefore we use the first approach online and

apply the second only if there are potential ‘boundary’ effects (neither method

is effected by the initial labels and therefore no problems are caused by applying
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both).

A.4 King profile

The functional form of the 2-D King profile is

f(d) =
C

(1 + (d/d0)2)η
(A.31)

where

d(x, y, ω) = (A.32)√
(x cosω + y sinω)2 +

(y cosω − x sinω)2

(1− ϵ)2
. (A.33)

The constant C is determined numerically. The particular parameters we use

for the 2-D King profile are as follows; off-axis angle θ = 0 arcmin, core radius

d0 = 0.6 arcsec, power-law slope η = 1.5, ellipticity ϵ = 0.00574. The resulting

probability density is displayed in Figure A.2.
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A.5 Equivalence of the ML and warp bridge sam-

pling estimators

Let

ai = q1(H
−1
1 (H2(xi)))|JH−1

1
(H2(xi))|α(H2(xi)) (A.34)

bi = q2(H
−1
2 (H1(xi)))|JH−1

2
(H1(xi))|α(H1(xi)) (A.35)

for i = 1, . . . , n. Equation (3.31) can then be rearranged to give

n1

n2

n∑
i=n1+1

ai − r̂

n1∑
i=1

bi = 0 (A.36)

=⇒1− r̂

(
n∑

i=n1+1

q2(xi)|JH−1
2
(H2(xi))|α(H2(xi)) +

n1∑
i=1

bi

)
= 0 (A.37)

Setting T (x) = H−1
2 (H1(x)) we have |J1(x)| = |JH−1

1
(x)|/|JH−1

2
(x)| and |J2(x)| =

1/|J1(x)|. It follows that the left hand side of (A.37) is equal to

1− r̂
n∑
i=1

1

n1li + n2r̂
= 0, (A.38)

where

li =



q1(xi,yi)
q2(g(xi,yi))|J2(xi)| for i = 1, . . . , n1

q1(g(xi,yi))|J1(xi)|
q2(xi,yi)

for i = n1 + 1, . . . , n.

(A.39)
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Utilizing the constraints in (3.19), we see that (A.38) is equivalent to

r̂ =

1
n

∑n
i=1

li
n1
n
li+

n2
n
r̂

1
n

∑n
i=1

1
n1
n
li+

n2
n
r̂

, (A.40)

which is the definition of the group invariant sub-model MLE of r given in (3.28)

(here we use the generalized group averaging specified in (3.30)), and therefore

the proof is complete.
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