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Abstract

This thesis presents efficient computational and inferential statistical techniques

for highly structured and complex models with various applications. Ever in-

creasing computational power along with ever more sophisticated statistical com-

puting techniques is making it possible to fit ever more complex statistical mod-

els. Among the popular, computationally intensive methods, Markov chain Monte

Carlo samplers have been spotlighted because of their power to effectively gener-

ate samples from a high-dimensional distribution. However, their sometimes slow

convergence has been a long standing complaint, especially when the complex

models are fitted. In this thesis, we provide useful techniques to achieve quicker

convergence with additional, but not substantial, human effort. In particular, we

develop efficient Markov chain Monte Carlo samplers by generalizing the compo-

sition of conditional distributions used to construct the samplers. This allows the

samplers to be constructed using a set of incompatible conditional distributions.

Such incompatibility has been generally avoided in the construction of Markov

chain Monte Carlo samplers because the resulting convergence properties are not

well understood. We, however, capitalize on the set of incompatible conditional

distributions to improve the convergence characteristics of a Markov chain Monte

Carlo sampler, while maintaining the transition kernel of the Markov chain con-

structed by the sampler. This thesis mainly explores the utility of our strategy in a

wide range of applications involving computational challenges.
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Chapter 1

Introduction

1.1 A Harmony of Dissonance

A Gibbs sampler (Geman and Geman, 1984) is a simple but powerful sampling

technique used to effectively sample from a (high-dimensional) joint distribution

by iteratively sampling from its conditional distributions. Such a Gibbs sampler

is generally expected to be composed of compatible conditional distributions that

are defined on the same space. Despite its simplicity to implement and describe,

however, the Gibbs sampler is criticized for its sometimes slow convergence, es-

pecially when it is used to fit complex models. In Chapter 2, we present partially

marginalized Gibbs sampling strategies that improve the convergence character-

istics of the Gibbs sampler by capitalizing on a set of incompatible conditional

distributions that has inconsistent dependence structure. Such incompatibility has

been simply avoided in the construction of Gibbs samplers because the resulting

convergence properties are not well understood. We, however, introduce three

prescriptive tools (marginalization, permutation, and trimming) which allow us

to transform a Gibbs sampler into a partially marginalized Gibbs sampler with

known stationary distribution and fast convergence. That is, one may create dis-



sonant sound using incompatible instruments, but the coordination of a conductor

can make the discordant sound even more harmonious than harmonious sound

using compatible instruments.

As an illustration, we apply our partially marginalized Gibbs sampling strategies

to a variety of examples with complex models presented in Chapters 2, 3, and 4.

In particular, Chapter 3 describes a highly structured multilevel spectral model to

account for the distribution of the energies of photons emitted from an astronomi-

cal source with data contaminations by several non-trivial physical processes. The

shape and structure of this distribution gives clues as to the composition, density,

temperature, relative velocity, and distance of the source. Thus, spectral analysis

is key to our understanding of the physical environment and structures of astro-

nomical sources, the processes and laws which govern the births and deaths of

planets, stars, and galaxies, and ultimately the structure and evolution of the uni-

verse. From a statistical point of view, a typical stellar spectrum can be formulated

as a finite mixture distribution composed of one (or more) continuum terms and

a set of emission line terms. While the continuum describes the general shape of

a spectrum, each emission line represents a positive aberration from the contin-

uum in a narrow band of energies. Emission lines are used to model the emission

resulting from electrons falling to a lower energy shell in a particular ion. Thus,

emission lines are important in the investigation of the composition of a source.

The Doppler shift of the location of a known spectral line (such as a particular hy-

drogen line) can also be used to determine the relative velocity of a source. Thus,

determining the precise location of emission lines is a critical task. In Chapter 3, we

focus on a single narrow emission line that can be modeled with a Gaussian dis-

tribution or a delta function. Spectral data are typically contaminated by several

non-trivial physical processes including non-homogeneous stochastic censoring,

blurring of photon energies, and background contamination. Accounting for these

processes leads us to construct a highly structured multilevel spectral model that is
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formulated in terms of several layers of missing data. We devise several partially

marginalized Gibbs samplers to fit the spectral model with narrow emission lines.

We also test our models, methods, and computational strategies to simulated data

under four different scenarios and apply them to the X-ray spectrum of the high

redshift quasar, PG1634+706.

1.2 Joint Multiple Imputations

It is quite common to measure economic and demographic data on several geo-

graphical partitions of a fixed region, e.g., unemployment rates may be measured

on different levels of political partitions to see the variation across the region. We

focus on the case where the geographical partitions are not aligned, so that inter-

polating the data from one level of resolution to another is not obvious. Moreover,

a response variable of interest can be multivariate and all the components of the

response variable may not be observed on the same partitions. In Chapter 4, we de-

velop three joint imputation models for non-nested data of this sort and illustrate

the implementation of the imputation procedure for these models. In particular,

we introduce the bivariate Gaussian model, bivariate lognormal model, and Pois-

son regression model for the non-nested data. To create joint imputations from

these models, we consider three imputation methods. In the first method, we for-

mulate a set of conditional distributions and iteratively impute one component of

a multivariate response variable given the other components. The second method

formulates the joint imputation procedure in terms of marginal and conditional

distributions. Because of the misalignment of the partitions, however, it is not even

feasible to write the correct marginal distribution and thus it is replaced with an

incoherent marginal distribution. Lastly, the third method completely imputes one

component of the multivariate response variable from the incoherent marginal dis-

tribution, and sequentially imputes the other components using each imputation
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of the first component as an another covariate. We demonstrate our imputation

methods with both simulated data and real German unemployment data.

1.3 BEHR: Bayesian Estimation of Hardness Ratios

Hardness ratios are summary statistics commonly used to characterize the spec-

tra of faint X-ray sources whose low counts data prevent sophisticated spectral

fitting. The classical approach to computing the hardness ratios uses a simple sta-

tistical technique based on the method of moments. The error bars associated with

the classical method are computed using the delta method. Thus, the classical

method relies on the Gaussian assumptions, so that it fails to provide realistic or

reliable estimates for the hardness ratios of faint X-ray sources and to account for

the Poissonian nature of low counts. In Chapter 5, we propose a new approach

to modeling hardness ratios in Poisson limits and present statistically coherent

Bayesian methods for computing the hardness ratios and their associated errors.

Using the sophisticated Bayesian approaches, we calculate hardness ratios after ex-

plicitly modeling the detected photons as independent Poisson random variables.

With a survey of X-ray sources, the hardness ratios can be used to investigate the

spectral relationship and to cluster the X-ray sources based on the spectral char-

acteristics. In this case, we relax the assumptions made for a single source and

devise a hierarchical mixture model. Our simulation studies demonstrate the clear

advantages of the Bayesian methods over the classical method and illustrate how

to infer the spectral shape of an X-ray source based on the hardness ratios. Our

clustering model is also applied to real Galaxy sources to answer a scientific ques-

tion of interest.
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Chapter 2

Using Incompatibility
to Build Fast Gibbs Samplers

2.1 Introduction

The development of Markov chain Monte Carlo (MCMC) methods over the past

twenty years has revolutionized modern applied statistics, and has particularly

influenced and popularized Bayesian methods. More complex models that explic-

itly aim to incorporate application-specific stochastic features of a data generation

mechanism are becoming ever more prevalent as a direct result of these sophisti-

cated computational tools. Implementing MCMC samplers, however, is a nuanced

business that often is as much a matter of intuition and art as it is a matter of sci-

ence. Predicting the convergence characteristics of a sampler without making the

large investment that is required to implement the sampler is often an impossible

task. Indeed, accessing the convergence of a sampler after it has been implemented

requires subtle diagnostics, and it is not difficult to be fooled into prematurely con-

cluding that a sampler has fully explored a distribution.

Fortunately, much work has been devoted to developing practical strategies that



serve to improve the convergence characteristics of MCMC samplers. In the con-

text of Gibbs sampling, the topic of this chapter, it is well known that blocking

or grouping steps (Liu et al., 1994), nesting steps (van Dyk, 2000b), collapsing or

marginalizing parameters (Liu et al., 1994; Meng and van Dyk, 1999), incorporat-

ing auxiliary variables (Besag and Green, 1993), certain parameter transformations

(Gelfand et al., 1995; Yu, 2005), and parameter expansion (Liu and Wu, 1999) can

all be used to improve the convergence of a sampler. Many of these strategies took

their cue from or are analogous to similar techniques that are known to speed the

convergence of EM-type algorithms (e.g., van Dyk and Meng, 2001; Gelman et al.,

2006). The EM algorithm (Dempster et al., 1977) can be used to compute the pos-

terior mode of the parameters of a model by embedding the sampling distribution

under the model into a joint distribution of the model parameters and a set of “la-

tent variables” or “missing data” and performing iterative calculations based on

the resulting conditional distributions of the parameters given the missing data

and of the missing data given the parameters.

Marginalization methods offer an example of the relationship between efficient

EM-type algorithms and methods for improving the convergence of the Gibbs

sampler. Marginalization methods integrate the joint posterior distribution of the

unknown quantities, including unknown parameters, latent variables, and miss-

ing data, over some of these unknown quantities to construct a marginal posterior

distribution under which a new sampler is built. Liu et al. (1994) demonstrated

the advantage of a special case of this strategy that they called collapsing. In the

context of EM algorithms, on the other hand, it is well known that the rate of con-

vergence is improved by reducing the missing data in the model formulation, i.e.,

by integrating the joint distribution over a portion of the missing data and deriv-

ing a new faster EM algorithm on the marginal distribution (Meng and van Dyk,

1997; van Dyk, 2000a). Of course, such strategies are generally only useful when

the marginal distribution allows for the construction of simple closed form Gibbs
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samplers or EM algorithms.

Variants of the EM algorithm have been developed to take advantage of the basic

idea behind marginalization even when a closed from EM algorithm is not avail-

able on the marginal distribution. The ECME algorithm (Liu and Rubin, 1994), for

example, allows one group of parameters to be updated using conditional distri-

butions from the joint distribution and a second group to be updated using con-

ditional distributions of the marginal distribution of the model parameters. The

second group of parameters is updated by completely marginalizing out the latent

variables and missing data and using a conditional distribution of the resulting

marginal distribution. A generalization of the ECME algorithm, known as the

AECM algorithm (Meng and van Dyk, 1997), allows each of several groups of the

parameters to be updated using conditional distributions of different margins of

the joint posterior distribution. Relative to the marginalization strategy described

in the previous paragraph, both the ECME and AECM algorithms can be described

as partially marginalized methods in that they do not fully marginalize out any com-

ponent of the missing data but rather marginalize out different components in dif-

ferent parts of the algorithm. This is the basic strategy that we aim to apply to

the Gibbs sampler in this chapter. Because both the ECME and AECM algorithms

have proved successful in a variety of applications, we expect from the onset that

the resulting samplers will also exhibit improved convergence properties.

The Gibbs sampler begins with a joint posterior distribution of the unknown quan-

tities and updates groups of these quantities by sampling them from their condi-

tional distributions under the joint posterior distribution. The partially marginal-

ized Gibbs (PMG) sampler replaces some of these conditional distributions with

conditional distributions of some marginal distributions of the joint posterior distri-

bution. This strategy is useful because it can result in samplers with significantly

better convergence characteristics and it is interesting because it may require up-

dating the parameters by sampling from a set of incompatible conditional distribu-
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tions. That is, there may be no joint distribution that corresponds to this set of

conditional distributions.

Our technique can also be viewed as a generalization of blocking in that the re-

sulting conditional distributions can sometimes be combined in such a way as to

arrive at a Gibbs sampler that is blocked version of the original sampler. In such

cases, we can recover a set of compatible conditional distributions and an ordinary

Gibbs sampler by combining the steps in this way. This is not always possible,

however, and some partially marginalized Gibbs samplers can only be composed

of draws from incompatible conditional distributions. In this regard, PMG sam-

plers constitute a generalization of the Gibbs sampler, in that Gibbs samplers are

generally expected to be constructed using the conditional distributions of some

joint distribution. Like blocked samplers, however, PMG samplers dominate their

parent Gibbs samplers in terms of their convergence and maintain the target pos-

terior distribution as their stationary distribution.

In order to transform a Gibbs sampler into a PMG sampler, we use three basic tools.

The first tool is marginalization which entails moving a group of unknowns from

being conditioned upon to being sampled in one or more steps of a Gibbs sampler;

the marginalized group can differ among the steps. Second, we may need to per-

mute the steps of the sampler in order to allow us to use the third tool, which is

to trim sampled components from the various steps that can be removed from the

sampler without altering the Markov transition kernel of the sampler. Marginaliza-

tion and permutation both trivially maintain the stationary distribution of a Gibbs

sampler and both can effect the convergence properties of the chain; marginaliza-

tion can dramatically improve convergence, while the effect of a permutation of

the steps is typically small (see however, Yu, 2005). Trimming, on the other hand,

is explicitly designed to maintain the transition kernel of the Markov chain. Its pri-

mary advantage is to reduce the complexity and the computational burden of the

individual steps. It is trimming that introduces incompatibility into the sampler.
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We demonstrate the utility of our strategy from both mathematical and empirical

points of view. We illustrate the computational advantage using a general mixed

effects model with proper prior distributions, a Merton’s jump diffusion model in

finance, and a piecewise-constant multivariate time series model used to jointly

segment a number of time bins in astrophysics. These are all useful models that

the authors came across in their applied work and that involve computational chal-

lenges that can be solved using PMG samplers.

The remainder of the chapter is divided into five sections. This chapter begins in

Section 2.2 by describing a set of prototype two and four-step Gibbs samplers that

we use to motivate and to illustrate our basic strategies and techniques. These il-

lustrations are formalized in Section 2.3, where we describe in detail the three tools

we use to construct PMG samplers: marginalization, permutation, and trimming.

Section 2.4 presents mathematical arguments as to the advantage of PMG samplers

in terms of their lag one autocorrelation and rate of convergence. Empirical results

using several examples appear in Section 2.5. Concluding remarks are given in

Section 2.6.

2.2 Motivating Examples

To illustrate PMG samplers in a transparent manner, we consider the simple ran-

dom effects model given by

yij = ξi + εij for i = 1, . . . , k and j = 1, . . . , n, (2.1)

where ξi
iid∼ N(µ, τ 2) and εij

iid∼ N(0, σ2) with yij observation j in group i, n the

number of units in each group, ξi the mean of group i, µ the mean of the group

means, τ 2 the between group variance, σ2 the within group variance, and τ 2 and

σ2 presumed known. Under a Bayesian perspective, we are interested in the joint

posterior distribution p(ξ, µ|Y ) computed under the flat prior distribution p(µ) ∝
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Figure 2.1: Comparison of Three Samplers for the Simple Random Effects Model.
The first two columns show the mixing and autocorrelations of the subchain for
µ and the last column the correlation structure between µ and ξ1. The three rows
represent the ordinary Gibbs sampler, the Gibbs sampler resulting from the inap-
propriate substitution of a reduced conditional distribution, and the PMG sampler,
respectively.

10



1, where ξ = (ξ1, ξ2, . . . , ξk) and Y = {yij, i = 1, . . . , k, j = 1, . . . , n}. To fit this

random effects model, we can use a prototype two-step Gibbs sampler that iterates

between

STEP 1 : Draw ξ(t) from p(ξ|µ(t−1), Y ), (Sampler 2.2.1)

where ξi|µ(t−1), Y
ind∼ N

(
nτ 2Ȳi· + σ2µ(t−1)

nτ 2 + σ2
,

τ 2σ2

nτ 2 + σ2

)
for i = 1, . . . , k, and

STEP 2 : Draw µ(t) from p(µ|ξ(t), Y ) = N

(∑
i ξ

(t)
i

k
,
τ 2

k

)
,

with Ȳi· the mean of the observations in group i. (We emphasize that this is a toy

example introduced for illustrative purposes. There is no need for Gibbs sampling

when both the between and within group variances are known.) In the case of a

two-step Gibbs sampler, the geometric rate of convergence is the same as the lag-

one autocorrelation; in Sampler 2.2.1, the lag-one autocorrelation is the shrinkage

parameter, σ2/(nτ 2 + σ2). Thus, the convergence rate of Sampler 2.2.1 depends on

the relative magnitude of nτ 2 and σ2. If σ2 is much greater than nτ 2, the lag-one

autocorrelation of Sampler 2.2.1 will be near one and the convergence slow. The

first row of Figure 2.1 presents the output of Sampler 2.2.1 and illustrates the poor

mixing and high autocorrelations of the subchain for µ and the strong posterior

correlation of µ and ξ1.

To improve the convergence of a Markov chain constructed with a Gibbs sampler,

we may replace a conditional distribution of the original Gibbs sampler with a con-

ditional distribution of a marginal distribution of the target distribution; throughout

this chapter, such a conditional distribution that conditions upon fewer unknown

components is referred to as a reduced conditional distribution. That is, reduced con-

ditional distributions are conditional distributions of a marginal distribution of the

target joint distribution. In the random effects model, we consider the marginal

distribution p(µ|Y ) =
∫
p(ξ, µ|Y )dξ of the target distribution p(ξ, µ|Y ). We replace

11



STEP 2 of Sampler 2.2.1 with the trivial “conditional” distribution of this marginal

distribution. This substitution yields a sampler that iterates between

STEP 1 : Draw ξ(t) from p(ξ|µ(t−1), Y ), and (Sampler 2.2.2)

STEP 2 : Draw µ(t) from p(µ|Y ) = N

(∑
i

∑
j yij

nk
,
nτ 2 + σ2

nk

)
.

STEP 2 of Sampler 2.2.2 simulates µ directly from its marginal posterior distribu-

tion. The advantage of this strategy is clear in this toy example: We immediately

obtain independent draws of µ from the target posterior distribution. However,

the two conditional distributions used in Sampler 2.2.2, p(ξ|µ, Y ) and p(µ|Y ), are

incompatible and imply inconsistent dependence structure. Even in this simple case,

the incompatible conditional distributions improves the convergence characteris-

tics of the sampler, but at the expense of the correlation structure of the target

distribution. Indeed, because µ(t) is sampled independently of ξ(t), the Markov

chain has the stationary distribution p(ξ|Y )p(µ|Y ) rather than p(ξ, µ|Y ). This is

illustrated in the second row of Figure 2.1, where we confirm that the subchain

for µ converges immediately to its target marginal distribution, but the correlation

structure between µ and ξ1 (and all of ξ) is lost.

There is an obvious solution. Sampler 2.2.2 first draws ξ from its conditional pos-

terior distribution p(ξ|µ, Y ) and then draws µ from its marginal posterior distribu-

tion p(µ|Y ), rather than vice versa. If we simply exchange the order of the steps,

we regain the correlation structure of the target distribution. The resulting Gibbs

sampler iterates between

STEP 1 : Draw µ(t) from p(µ|Y ) and (Sampler 2.2.3)

STEP 2 : Draw ξ(t) from p(ξ|µ(t), Y ).

Sampler 2.2.3 is constructed using a pair of incompatible conditional distributions

and exhibits quicker convergence than Sampler 2.2.1, while maintaining the corre-
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lation structure of the target distribution. Of course in this case, the PMG sampler

(Sampler 2.2.3) is simply a blocked version of Sampler 2.2.1: STEPS 1 and 2 collapse

into a single independent draw from the target distribution. As we shall illustrate,

however, PMG samplers can be more general than blocked Gibbs samplers when

there are more than two steps. The bottom row of Figure 2.1 illustrates the fast

convergence of the subchain for µ and the correct correlation structure of µ and ξ1.

Now we consider a more complex prototype four-step Gibbs sampler with tar-

get distribution p(W,X, Y, Z). As the number of components in a Gibbs sampler

increase, there are more ways to construct PMG samplers; here we focus on an ex-

ample where partial marginalization does not correspond to blocking. (Generally

this situation is even more complicated in that the sampled component may be

vectors, and we may marginalize out certain subvectors.) We begin with the Gibbs

sampler that iterates among

STEP 1 : Draw W from p(W |X, Y, Z), (Sampler 2.2.4)

STEP 2 : Draw X from p(X|W,Y, Z),

STEP 3 : Draw Y from p(Y |W,X,Z), and

STEP 4 : Draw Z from p(Z|W,X, Y ).

Suppose it is possible to directly sample from p(Y |X,Z) and p(Z|X, Y ), which are

both conditional distributions of
∫
p(W,X, Y, Z)dW . By replacing STEPS 3 and 4

with draws from these two distributions, we are partially marginalizing W out

of Sampler 2.2.4. Substituting the conditional distributions of a marginal distri-

bution of the target distribution into a Gibbs sampler, however, may result in a

transition kernel with unknown stationary distribution. As we discuss above, this

is illustrated by the loss of correlation structure in a sample generated with Sam-

pler 2.2.2; see the last column of Figure 2.1. Nevertheless, we hope to capitalize
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on the potential computational gain that partial marginalization offers. Thus, our

goal is to formalize a procedure that allows us to introduce partially marginalized

steps while ensuring the target stationary distribution is maintained. We illustrate

our strategy in this example and formalize it in Section 2.3.

Moving components in a step of a Gibbs sampler from being conditioned upon to

being sampled can improve the convergence characteristics of the sampler. This

does not alter the stationary distribution of the chain or destroy the compatibility

of the conditional distributions. For example, based upon the available reduced

conditional distributions, we can sample W jointly with Y in STEP 3 and with Z in

STEP 4. The resulting Gibbs sampler iterates among

STEP 1 : Draw W ? from p(W |X, Y, Z), (Sampler 2.2.5)

STEP 2 : Draw X from p(X|W,Y, Z),

STEP 3 : Draw (W ?, Y ) from p(W,Y |X,Z), and

STEP 4 : Draw (W,Z) from p(W,Z|X, Y ).

Here and elsewhere we use a superscript ‘?’ to designate an intermediate quan-

tity that is sampled but is not the output of an iteration. Sampler 2.2.5 is a trivial

generalization of what is typically considered to be a Gibbs sampler, in that W is

sampled more than once during an iteration. For clarity, we sometimes use the

term simple Gibbs sampler to refer to a sampler constructed using compatible con-

ditional distributions in which each component is sampled exactly once in each

iteration. We use the term Gibbs sampler to refer to a sampler with the same con-

struction, except that some components may be updated more than once in each

iteration. Occasionally we emphasize this distinction with the term Gibbs sampler

(not simple). Thus, Sampler 2.2.4 is a simple Gibbs sampler while Sampler 2.2.5 is

a Gibbs sampler (not simple). Sampler 2.2.5 may be inefficient in that it draws W
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three times in each iteration. Removing any two draws from the iteration, how-

ever, necessarily affects the transition kernel because the first draw is conditioned

upon in the next step and the third draw is part of the output of the sampler. As

Figure 2.1 illustrates, such changes to the transition kernel can destroy the correla-

tion structure of the stationary distribution or otherwise affect the convergence of

the chain.

In general, we only consider removing draws of intermediate quantities from a

sampler because removing draws of any part of the output quantities and replac-

ing output quantities with a corresponding intermediate quantities necessarily al-

ters the transition kernel and may affect the stationary distribution. Moreover, we

only remove draws of intermediate quantities if removing them from the iteration

does not affect the transition kernel. Permuting the steps of a Gibbs sampler does

not alter its stationary distribution, but sometimes enables us to meet these crite-

ria for removing redundant draws. In the case of Sampler 2.2.5, such permutation

yields a Gibbs sampler that iterates among

STEP 1 : Draw (W ?, Y ) from p(W,Y |X,Z), (Sampler 2.2.6)

STEP 2 : Draw (W ?, Z) from p(W,Z|X, Y ),

STEP 3 : Draw W from p(W |X, Y, Z), and

STEP 4 : Draw X from p(X|W,Y, Z),

where the first two draws of W correspond to intermediate quantities that are not

conditioned upon. This permutation alters the transition kernel, while maintaining

the stationary distribution, and allows us to remove the two redundant draws of

W , without changing the transition kernel. Removing the intermediate quantities

W ? from Sampler 2.2.6 yields the PMG sampler that iterates among

STEP 1 : Draw Y from p(Y |X,Z), (Sampler 2.2.7)
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STEP 2 : Draw Z from p(Z|X, Y ),

STEP 3 : Draw W from p(W |X, Y, Z), and

STEP 4 : Draw X from p(X|W,Y, Z).

We can block STEPS 2 and 3 in Sampler 2.2.7 into a joint draw from p(W,Z|X, Y ),

which yields

STEP 1 : Draw Y from p(Y |X,Z), (Sampler 2.2.8)

STEP 2 : Draw W from p(W,Z|X, Y ), and

STEP 3 : Draw X from p(X|W,Y, Z).

The three conditional distributions in Sampler 2.2.8 are incompatible. Thus, this

PMG sampler does not simply correspond to a blocked version of Sampler 2.2.4.

This illustrates that partial marginalization is a more general technique than block-

ing.

The resulting PMG sampler (e.g., Sampler 2.2.8) is not a Gibbs sampler in the or-

dinary sense. For example, permuting the draws in Sampler 2.2.8 may result in

a transition kernel with unknown stationary distribution, whereas permuting the

steps of a Gibbs sampler never affects its stationary distribution. Since the re-

moval of intermediate quantities introduces incompatibility into the sampler, re-

moval must be done with great care.

2.3 Basic Tools

Here we present three basic tools that we use to construct PMG samplers. Unless

marginalized quantities are removed from the iteration with care, the resulting

chain may not converge properly. Thus, the tools are designed to insure that the
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resulting PMG samplers converge quickly to the target distribution. We discuss

the three tools, marginalization, permutation, and trimming, in the order that they

are typically applied. Figure 2.2 presents a flow diagram that describes how the

basic tools are applied to a simple Gibbs sampler in order to construct a PMG

sampler which preserves a target stationary distribution. Each component of the

flow diagram in Figure 2.2 is closely examined in the following subsections.

2.3.1 Marginalization

Suppose we aim to construct a PMG sampler with stationary distribution

p(X) where X is a vector quantity that we partition into J subvectors, X =

(X1, X2, . . . , XJ). Consider the sequence of index sets of the components of X ,

J = {J1,J2, . . . ,JP}, where Jp ⊂ {1, 2, . . . , J} for p = 1, 2, . . . , P such that

∪Pp=1Jp = {1, 2, . . . , J}. We denote the complement of Jp in {1, 2, . . . , J} by J c
p .

Let XJp
denote the collection of components of X corresponding to the index set

Jp, i.e., XJp
= {Xj : j ∈ Jp} for p = 1, 2, . . . , P . STEP p of a P -step Gibbs sampler

can be written as

STEP p : Draw X (t)
Jp

from p(XJp
|X (t−1)

J c
p

), for p = 1, 2, . . . , P ,

where X (t−1)
J c

p
= {(X (t)

j , X
(t−1)
k ) : j ∈ (∪p−1

i=1Ji) ∩ J c
p and k ∈ ∩pi=1J c

i }, i.e., STEP p

is conditional on the most recent draws of X not being sampled in the step. No-

tice that this is a Gibbs sampler using compatible conditional distributions, where

some components of X may be updated in multiple steps; thus, this may not be a

simple Gibbs sampler.

A simple Gibbs sampler updates each (vector) component of X only once dur-

ing each iteration by sampling it from its complete conditional distribution. In

our notation, this corresponds to the case where J is a partition of {1, 2, . . . , J}.

At the other extreme, suppose there exists an index k such that k ∈ Jp for each
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p, then Xk is drawn in each step and is never conditioned upon; we say Xk has

been (completely) marginalized out of the Gibbs sampler. In this case we can

reformulate the Gibbs sampler completely in terms of the marginal distribution
∫
π(X1, X2, . . . , XJ)dXk, without altering the transition kernel for the other com-

ponents of X .

The first step in constructing a PMG sampler is to marginalize some components

of X out of some steps of the sampler. To do this we replace Jq with J̃q for some

q ∈ {1, 2, . . . , P} where Jq is a proper subset of J̃q. That is, in STEP q, we move

some components of X from being conditioned upon to being sampled. As we

shall see, the marginalization can improve the convergence properties of the Gibbs

sampler; see Section 2.4 for the theory on the improved rate of convergence. Then

STEP q is conditional on fewer components of X and is given by

STEP q : Draw X (t)
eJq

from p(X eJq
|X (t−1)

eJ c
q

),

where X (t−1)
eJ c
q

= {(X (t)
j , X

(t−1)
k ) : j ∈ (∪q−1

i=1Ji)∩J̃ c
q and k ∈ (∩q−1

i=1J c
i )∩J̃ c

q }. Partially

marginalizing out some components of X alters the transition kernel but not the

stationary distribution for X or the compatibility of the conditional distributions.

The improved rate of convergence for the resulting sampler is mainly attributed to

this partial marginalization.

2.3.2 Permutation

In the case of a P -step Gibbs sampler, the steps can be reordered into P ! possible

permutations. Permuting the compatible conditional distributions of a Gibbs sam-

pler may change its transition kernel and interchange intermediate quantities with

output quantities, but maintains the stationary distribution of the chain. Our goal

in permuting the steps of a Gibbs sampler is to arrange the steps in such a way, so

that as many of marginalized components as possible are intermediate quantities
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that are not conditioned upon in subsequent steps.

The permutation of the steps may affect the convergence of a sampler, but its influ-

ence is typically small as compared to that of marginalization (van Dyk and Meng,

1997). In this chapter, we tend to ignore the effect of permutation on convergence,

but in some situations the permutation may critically affect convergence (Yu, 2005).

Here we are merely interested in permutations because they can allow the removal

of some intermediate quantities from the chain.

2.3.3 Trimming

By trimming we mean discarding a subset of the components that were to be sam-

pled in one or more steps of a Gibbs sampler. In the P -step Gibbs sampler, for

example, trimming the marginalized components of X in STEP q yields

STEP q : Draw X (t)
Jq

from p(XJq
|X (t−1)

eJ c
q

).

The reduced conditional distribution sampled in this step is not typically compat-

ible with the other conditional distributions sampled in the sampler. In particular,

because Jq ∪ J̃ c
q is not equal to J (Jq is a proper subset of J̃q), this conditional

distribution is not defined as the same space as the conditional distributions of the

original sampler. Thus, it is trimming that introduces incompatibility into the con-

ditional distributions of a PMG sampler. This means the resulting PMG sampler

may no longer be a Gibbs sampler, per se, since Gibbs samplers are generally ex-

pected to be constructed with compatible conditional distributions. Unlike a Gibbs

sampler, permuting the steps of a PMG sampler may result in a new Markov tran-

sition kernel with an unknown stationary distribution. Nonetheless, trimming is

advantageous because each iteration is generally less computationally demand-

ing. Indeed, as the piecewise-constant multivariate time series model illustrates in

Section 2.5.3, trimming may render an intractable sampling step tractable.
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Intermediate quantities are not part of the output of an iteration, but may be condi-

tioned upon in subsequent draws. Thus, we can only trim intermediate quantities

that are not conditioned upon if we hope to maintain the transition kernel. On the

other hand, trimming intermediate quantities that do impact the transition kernel

can effect the correlation structure of the stationary distribution. Thus, care must

be taken with the trimming of intermediate quantities in order to maintain the

stationary distribution.

2.4 PMG Theory

In order to discuss the effect of partial marginalization on the convergence of a

Gibbs sampler, we must introduce some technical concepts concerning Markov

chains. (We follow the notation of Liu (2001, Section 6.7).) Let L2(π) denote the set

of all functions h(X) such that
∫
h2(X)π(X)dX < ∞. This set is a Hilbert space

with inner product 〈h, g〉 = Eπ{h(X)g(X)}, so that ‖h‖2 = Varπ(h). For a general

Markov chain MX = {X (0), X(1), . . . } with transition kernel K(X (1) = X|X (0) =

X ′), we define the forward operator F on L2(π) for MX by

Fh(X ′) =

∫
h(X)K(X|X ′)dX = E{h(X (1))|X(0) = X ′}. (2.2)

Let L2
0(π) =

{
h : Eπ{h(X)} = 0,Varπ{h(X)} = 1

}
. This is also a Hilbert space with

the same inner product and is invariant under F. We define F0 to be the forward

operator on L2
0(π) induced by F. If we define the norm of this forward operator by

‖F0‖ = suph ‖F0h(X)‖ with the supremum taken over h ∈ L2
0(π), it can be shown

that

‖F0‖ = sup
h∈L2

0(π)

(
Varπ

[
E{h(X (1))|X(0)}

])1/2

(2.3)

= sup
h∈L2

0(π)

{
Eπ

([
E{h(X (1))|X(0)}

]2)}1/2

(2.4)

= ρ(X (1), X(0)), (2.5)
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where ρ(ϑ, ϕ) is the maximum correlation of ϑ and ϕ,

ρ(ϑ, ϕ) = sup Corr{h(ϑ), g(ϕ)} (2.6)

= sup
h: Var{h(ϑ)}=1

(
Varπ

[
E{h(ϑ)|ϕ}

])1/2
, (2.7)

where the first sup is over all non-constant scalar functions h and g with finite

variance; see e.g., Liu et al. (1994). Here the maximum autocorrelation ρ(X (1), X(0))

is computed under the stationary distribution of MX , and will also be denoted by

ρ(MX).

The spectral radius of F0, r(F0), typically governs the convergence of MX (Liu,

2001), and is related to the norm by

lim
n→∞

‖Fn
0‖1/n = r(F0) (2.8)

and by the inequality

r(F0) ≤ ‖F0‖. (2.9)

Along with the relationship between the maximum autocorrelation of MX and

‖F0‖, (2.8) and (2.9) justify the use of ‖F0‖ in the analysis of the convergence be-

havior of MX .

Consider the P -step Gibbs sampler described in Section 2.3. We define a p-step-

lagged Gibbs sampler for p = 0, 1, . . . , P − 1, as the Gibbs sampler with iteration

that begins with STEP p+1, cycles through the steps in the same order as the original

Gibbs sampler, and ends with STEP p. The forward operators of the P p-step-lagged

Gibbs samplers have the same spectral radius, which we denote by r. They may,

however, have different norms, hence different maximum autocorrelations. We

denote the maximum autocorrelation ρ(MX) of the p-step-lagged chain by ρp for

p = 0, 1, . . . , P − 1. By (2.9), we have

r ≤ min
p∈{0,1,...,P−1}

ρp. (2.10)
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We will show that by marginalizing a component of X in STEP p+1 (the first step of

the p-step-lagged Gibbs sampler) we reduce ρp, thereby reducing the bound given

in (2.10) on the spectral radius.

Because STEP p+1 is the first step of the p-step-lagged Gibbs sampler, we evaluate

the effect of marginalizing a component of X in STEP p+1 on ρp. This is because the

theorem below evaluates the effect of marginalization in the first step of a Gibbs

sampler. To illustrate the computational advantages of the partial marginaliza-

tion, we consider the generic P -step Gibbs sampler introduced in Section 2.3 from

which we marginalize some components of X in STEP 1. Thus, we wish to com-

pare two sequences of index sets and their resulting transition kernels; namely

(XJ1
,XJ2

, . . . ,XJP
) and its kernel K(X|X ′) and (X eJ1

,X eJ2
, . . . ,X eJP

) and its kernel

K̃(X|X ′), where Jp = J̃p for p = 2, . . . , P , but XJ1
= {x1} and X eJ1

= {x1, x2} with

X = (x1, x2, x3). Here (x1, x2, x3) is an alternate partition of X = (X1, X2, . . . , XJ)

introduced to simplify notation in the theorem. That is, J1 ⊂ J̃1 ⊂ {1, 2, . . . , J},

where both subsets are proper subsets, x1 = {Xj : j ∈ J1}, x2 = {Xj : j ∈ J̃1 \ J1},

and x3 = {Xj : j ∈ J̃ c
1 }. In words, the two sequence of index sets represent iden-

tical samplers, except in STEP 1, where more components of X are drawn from the

Gibbs sampler with kernel K̃(X|X ′). In this case, we have the following result.

Theorem 1 Sampling more components of X in the first step of a Gibbs sampler improves

the resulting maximal autocorrelation, ρ(MX).

Proof: Let h be an arbitrary function ofX with mean zero and finite variance under

stationarity, i.e., h ∈ L2
0(π) with π the stationary distribution of X , then

Ẽ{h(X)|x′3} =

∫
h(X)K−1(X|x1, x2, x

′
3)p(x1, x2|x′3)dΞ−1dx1dx2, (2.11)

where Ẽ represents expectation with respect to K̃(X|X ′), K−1(X|X ′) is the tran-

sition kernel implied by STEP 2 through STEP P of either sampler, and Ξ−1 =

(XJ2
, . . . ,XJP

) is the set of components updated in STEP 2 through STEP P , which
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may include multiple copies of certain components of X . Now, the right-hand side

of (2.11) can be written as

Ẽ{h(X)|x′3} =

∫ {∫
h(X)K−1(X|x1, x

′
2, x

′
3)p(x1|x′2, x′3)dΞ−1dx1

}
p(x′2|x′3)dx′2

= Eπ[E{h(X) | x′2, x′3} | x′3], (2.12)

where the inner expectation is with respect to K(X|X ′). Thus,

Eπ

([
Ẽ{h(X) | x′3}

]2)
= Eπ

{(
Eπ[E{h(X) | x′2, x′3} | x′3]

)2}

≤ Eπ

{
Eπ

(
[E{h(X) | x′2, x′3}]2 | x′3

)}

= Eπ

([
E{h(X) | x′2, x′3}

]2)
. (2.13)

But since Varπ[h(X)] is the same for both kernels, the maximal autocorrelation in-

duced by K̃(X|X ′) is bounded above by that of K(X|X ′).

That is, the computational advantages can be achieved by successively marginal-

izing over the components of X in any single step of a Gibbs sampler. Thus, re-

cursively using Theorem 1 provides the theoretical basis for the improved conver-

gence characteristics of PMG samplers.

2.5 Applications

2.5.1 Mixed Effects Models With Proper Prior Distributions

Consider the general mixed effects model given by

Yi = Xiβ + Zibi + εi with bi
iid∼ Nq(0, σ

2D), εi
ind∼ Nni

(0, σ2Ri), and bi ⊥ εi (2.14)

where Yi are ni × 1 vectors for group i = 1, . . . , k, Xi and Zi are known covariates

of dimension ni× p and ni× q, respectively, β is a p× 1 vector of fixed effects, bi are

q × 1 vectors of random effects, D is a q × q positive definite matrix, Ri are known

ni × ni positive definite matrices, and εi are ni × 1 vectors of residuals. We aim to
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Figure 2.3: Illustration of Deriving a PMG Sampler for the Mixed Effects Model
with Proper Prior Distributions. For clarity, conditioning on Yobs for each sampling
distribution is suppressed throughout.

generate samples from the posterior distribution p(b, β, σ2, T |Yobs) computed under

the proper conjugate prior distributions,

β|σ2 ∼ Np(µβ, σ
2Σβ), σ

2 ∼ νσ2
0

χ2
ν

, and T ∼ Inv−Wishart(η, T0), (2.15)

where b = (b1, b2, . . . , bk) is a q × k matrix of random effects, Yobs = {Yi, i =

1, . . . , k}, Inv−Wishart stands for an inverse Wishart distribution, and W ∼
Inv−Wishart(ν, S) if p(W ) ∝ |W |−(ν+k+1)/2 exp(−1

2
{SW−1}) for k × k positive defi-

nite matrices S and W . To fit this mixed effects model, we can construct a simple

Gibbs sampler. As exemplified in Section 2.2, however, the simple Gibbs sampler

constructed for the mixed effects model can exhibit slow convergence. To facilitate

computation in the context of an EM-type algorithm, van Dyk (2000a) suggests a

reparameterization of the between group variance T in terms of the within group

variance σ2, i.e., T = σ2D. The utility of the parameterization (β, σ2, D) was also

noted by Schafer (1998) (see also Lindstrom and Bates, 1988). This reparameteriza-

tion allows us to use a reduced conditional distribution when sampling σ2. Using
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this parameterization, the posterior distribution of interest is written as

p(b, β, σ2, D|Yobs) ∝ (σ2)−((ν+n+p)/2+1)|σ2D|−(η+k+q+1)/2

exp

(
− 1

2σ2

[
νσ2

0 + (β − µβ)
>Σ−1

β (β − µβ)

+
∑k

i=1
(Yi −Xiβ − Zibi)

>R−1
i (Yi −Xiβ − Zibi)

+tr

{
D−1

(
T0 +

∑k

i=1
bib

>
i

)}])
. (2.16)

Figure 2.3 illustrates the evolution from a simple Gibbs sampler to a PMG sampler

by applying a sequence of the basic tools introduced in Section 2.3. In Figure 2.3(a),

we begin with the four complete conditional distributions used in the simple Gibbs

sampler. In particular, given (β, σ2, D, Yobs), {bi, i = 1, 2, . . . , k} follow independent

multivariate Gaussian distributions,

bi|(β, σ2, D, Yobs) ∼ Nq

(
b̂i(β,D), σ2

[
D −DZ>

i Ui(D)ZiD
])
, (2.17)

where b̂i(β,D) = DZ>
i Ui(D)(Yi − Xiβ) and Ui(D) = (Ri + ZiDZ

>
i )−1; given

(b, σ2, D, Yobs), β is also a multivariate Gaussian variate,

β|(b, σ2, D, Yobs) ∼ Np

(
β̂(b), σ2

[
Σ−1
β +

∑k

i=1
X>
i R

−1
i Xi

]−1
)
, (2.18)

where β̂(b) =
(
Σ−1
β +

∑k
i=1X

>
i R

−1
i Xi

)−1
(Σ−1

β µβ +
∑k

i=1X
>
i R

−1
i (Yi − Zibi)); given

(b, β,D, Yobs), σ2 follows an inverse χ2 distribution,

σ2|(b, β,D, Yobs) ∼
(
νσ2

0 + (β − µβ)
>Σ−1

β (β − µβ)

+
∑k

i=1
(Yi −Xiβ − Zibi)

>R−1
i (Yi −Xiβ − Zibi)

tr

{
D−1

(
T0 +

∑k

i=1
bib

>
i

)})/
χ2
ν+n+p+q(η+k+q+1), (2.19)

where n =
∑k

i=1 ni; and, given (b, β, σ2, Yobs), D follows an inverse Wishart distri-

bution,

D|(b, β, σ2, Yobs) ∼ Inv−Wishart

(
η + k,

[
T0 +

∑k

i=1
bib

>
i

]/
σ2

)
. (2.20)
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In order to improve convergence, we can marginalize components out of some of

these conditional distributions and construct a PMG sampler. For example, Fig-

ure 2.3(b) marginalizes b out of STEPS 2 and 3, and β out of STEP 3. Due to our

choice of parametrization, the reduced conditional distributions are still in closed

forms. Namely, the distribution of β given (σ2, D, Yobs) is a multivariate Gaussian

distribution,

β|(σ2, D, Yobs) ∼ Np

(
β̃(D), σ2

[
Σ−1
β +

∑k

i=1
X>
i Ui(D)Xi

]−1
)
, (2.21)

where β̃(D) =
(
Σ−1
β +

∑k
i=1X

>
i Ui(D)Xi

)−1
(Σ−1

β µβ +
∑k

i=1X
>
i Ui(D)Yi), while the

distribution of σ2 given (D, Yobs) is inverse χ2,

σ2|(D, Yobs) ∼
(
νσ2

0 + (β̃(D) − µβ)
>Σ−1

β (β̃(D) − µβ)

+
∑k

i=1

[
Yi −Xiβ̃(D)

]>
Ui(D)

[
Yi −Xiβ̃(D)

]

+ tr
{
D−1T0

})/
χ2
ν+n+q(η+q+1). (2.22)

Permuting the steps in Figure 2.3(b) allows us to connect all of the marginalized

quantities into the intermediate quantities that do not affect the transition kernel,

see Figure 2.3(c). After the permutation, the marginalized quantities become re-

dundant in the sampler. Trimming such marginalized quantities results in the

PMG sampler in Figure 2.3(d). We can block the first three steps of Figure 2.3(d)

into p(b, β, σ2|D, Yobs), thereby yielding the two-step Gibbs sampler in Figure 2.3(e).

Thus, the PMG sampler corresponds to a blocked version of the original Gibbs

sampler in Figure 2.3(a). We emphasize that if the PMG sampler in Figure 2.3(d) is

implemented with another permutation of the steps, the resulting transition kernel

may be different from that of the two-step Gibbs sampler in Figure 2.3(e).

We compare the convergence characteristics of the simple Gibbs sampler and PMG

sampler via simulation study. We assume k = 100 groups and each group is of the

same size ni = 2. As for the model parameters, we use β = (1 2)>, σ2 = 1, and
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T = σ2D =

(
25 45
45 100

)
. That is, we have p = 2, and the q = 2 components of the

random effects are highly correlated. We decide the values of (µβ,Σβ, ν, σ
2
0, η, T0)

such that the proper prior distributions are diffuse. To examine the convergence of

the samplers, we run multiple chains of 10000 iterations each with different start-

ing values, and compute the estimate of the potential scale reduction (Gelman and

Rubin, 1992), denoted by
√
R̂, for all parameters of interest. If

√
R̂ is near 1 (e.g.,

below 1.2) for the parameters, we collect the second halves of the chains together

and use those Monte Carlo draws for our inference; see Gelman and Rubin (1992)

for a theoretical justification and discussion.

In Figures 2.4 and 2.5, we compare the convergence characteristics of selected

model parameters whose conditional distributions are conditioning on less in the

PMG sampler. The first two columns of Figures 2.4 and 2.5 show the convergence

behaviors of the selected model parameters by using a single chain constructed

by the Gibbs sampler and PMG sampler, respectively. By visually examining the

mixing and autocorrelations of the parameters, we can compare the convergence

of the chains. As we can confirm, the subchains for the parameters are mixed faster

and have smaller autocorrelations with the PMG sampler than the Gibbs sampler:

In order to make the distinction clear, the first column of Figure 2.4 and 2.5 is

drawn with the last 1000 draws of a single chain, and the second column with the

last 5000 draws. In particular, the computational gains of the partially marginal-

ized methods are substantial for the subchains for β0 and β1, and the effect on σ is

also evident although it is relatively small. The last column of Figures 2.4 and 2.5

presents the resulting marginal posterior distributions based on the second halves

of the multiple chains. The vertical solid lines represents the true values used to

simulate the test data. We note that the true values of the parameters are plausi-

ble in the posterior distributions, which demonstrates our fitting of the model is

correct.
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Figure 2.6: Illustration of Deriving a PMG Sampler for the Merton’s Jump Diffu-
sion Model with Proper Prior Distributions.

2.5.2 Merton’s Jump Diffusion Model

Consider the Merton’s jump diffusion model (Merton, 1976), which aims to model

jumps in a stock price due to rare economic events or sudden news. The model is

given by

dSt
St−

= γdt + σdWt + (eJt − 1)dNt, (2.23)

where St represents the stock price at time t, γ is the instantaneous expected return

of the stock, σ is the instantaneous standard deviation of the stock’s return, Wt is a

Wiener process, the log-jump size Jt is a Gaussian random variable with mean µJ

and variance σ2
J , and Nt is a Poisson process with arrival rate λ. Without the jump

process, (2.23) is known as a geometric Brownian motion process and the succes-

sive log ratios of {St, t = 1, 2, . . . , T} are independent Gaussian random variables

with mean γ and variance σ2. When a jump occurs at time t, however, the process

is no longer continuous; St− explicitly represents the discontinuity between jumps.

In addition, we consider daily based stock prices, so that at most a single jump is
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assumed to occur over each time interval, i.e.,

p(dNt = 1) = p(Nt+h −Nt = 1) = λh+ o(h), (2.24)

p(dNt = 0) = p(Nt+h −Nt = 0) = 1 − λh+ o(h), and (2.25)

p(dNt > 1) = p(Nt+h −Nt > 1) = o(h). (2.26)

The eJt in (2.23) is a jump multiplier for St, so that the proportional net change for

St is eJt − 1 when a jump occurs at time t.

By applying Itô’s Lemma for the stochastic differential equation of the jump diffu-

sion model in (2.23), we obtain the jump diffusion process for the log-return given

by

d logSt = µdt + σdWt + JtdNt, (2.27)

where the drift is reparameterized as µ = γ − σ2/2. Integrating (2.27) over a daily

time increment ∆t = 1 yields

Yt = µ+ σεt + JtZt for t = 1, 2, . . . , T, (2.28)

where Yt = log(St/St−1) is the difference in log return between time t and t − 1,

εt
iid∼ N(0, σ2), Jt

iid∼ N(µJ , σ
2
J), Jt ⊥ εt, and Zt

iid∼ Bernoulli(λ). Statistically, (2.28) can

be viewed as the mixture of two Gaussian random variables with random effects

components, i.e.,

Yt ∼ λN(µ+ µJ , σ
2 + σ2

J) + (1 − λ)N(µ, σ2). (2.29)

We parameterize the variance of the random effects in terms of the residual vari-

ance σ2 to facilitate computation (e.g., van Dyk, 2000a; Schafer, 1998). Such param-

eterization, i.e., σ2
J = σ2ξ, is key to marginalize the fixed and random effects out of

the conditional distribution for σ2 under proper conjugate prior distributions, and

allows us to devise a PMG sampler; ξ quantifies the scale factor of the between

group variance relative to the within group variance. Under the proper conjugate
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prior distributions,

µ|σ2 ∼ N(a0, σ
2b0), σ

2 ∼ ντ 2
0

χ2
ν

,

µJ |σ2
J ∼ N(aJ , σ

2
JbJ), σ

2
J ∼ ητ 2

J

χ2
η

, and

λ ∼ Beta(α, β), (2.30)

we aim to generate a sample from the posterior distribution p(Z, J, µ, µJ, σ2, ξ, λ|Y )

that is given by

p(Z, J, µ, µJ, σ
2, ξ, λ|Y ) ∝

T∏

t=1

p(Yt|Zt, Jt, µ, σ2)p(Jt|µJ , σ2, ξ)p(Zt|λ)p(µ, µJ, σ
2, ξ, λ)

∝ (σ2)−
(
(2T+ν+η+4)/2+1

)
ξ−
(
(T+η+1)/2+1

)

λ
PT

t=1 Zt+α−1(1 − λ)
PT

t=1(1−Zt)+β−1

exp

(
− 1

2σ2

[∑T

t=1
(Yt − µ− JtZt)

2 +
(µ− a0)

2

b0
+ ντ 2

0

]

− 1

2σ2ξ

[∑T

t=1
(Jt − µJ)

2 +
(µJ − aJ)

2

2bJ
+ ητ 2

J

])
. (2.31)

For notational convenience, we define ψ = (ψ1, ψ2) where ψ1 = (µ, µJ) and

ψ2 = σ2, and ζ = (ξ, λ), so that the posterior distribution of interest is rewritten

as p(Z, J, ψ, ζ|Y ).

Figure 2.6 illustrates five samplers designed to generate simulation from the target

posterior distribution. We begin with a simple Gibbs sampler constructed with

four complete conditional distributions that are listed in Figure 2.6(a) in the order

in which they are sampled in each iteration. Each of these complete conditional

distributions is a standard distribution. Given (J, ψ, ζ, Y ), Z are T independent

Bernoulli variables,

Z|(J, ψ, ζ, Y ) ∼
T∏

t=1

Bernoulli

(
λφ(Yt;µ+ Jt, σ

2)

λφ(Yt;µ+ Jt, σ2) + (1 − λ)φ(Yt;µ, σ2)

)
, (2.32)

where φ( · ;µ, σ2) denotes a Gaussian density function centered at µ and with vari-

ance σ2. Given (Z, ψ, ζ, Y ), J is a multivariate Gaussian random variable with T
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independent components, where

Jt|(Z, ψ, ζ, Y ) ∼ N

(
Zt(Yt − µ) + µJ/ξ

Zt + 1/ξ
,

σ2

Zt + 1/ξ

)
, (2.33)

for t = 1, 2, . . . , T . The conditional distribution of ψ given (Z, J, ζ, Y ) is decom-

posed into

p(ψ|Z, J, ζ, Y ) = p(σ2|Z, J, ζ, Y )p(µ, µJ|σ2, Z, J, ζ, Y ), (2.34)

where σ2 given (Z, J, ζ, Y ) follows an inverse χ2 distribution,

σ2|(Z, J, ζ, Y ) ∼
(∑

t
(Yt − µ̂− JtZt)

2 +
(µ̂− a0)

2

b0
+ ντ 2

0 +
1

ξ

∑
t
(Jt − µ̂J)

2

+
(µ̂J − aJ)

2

ξbJ
+
ητ 2

J

ξ

])/
χ2

2T+ν+η+2, (2.35)

each component of (µ, µJ) given (σ2, Z, J, ζ, Y ) follows an independent Gaussian

distribution,

µ|(σ2, Z, J, ζ, Y ) ∼ N

(
µ̂,

σ2

T + 1/b0

)
and (2.36)

µJ |(σ2, Z, J, ζ, Y ) ∼ N

(
µ̂J ,

σ2ξ

T + 1/bJ

)
, (2.37)

and µ̂ and µ̂J are given by

µ̂ =

∑
t(Yt − JtZt) + a0/b0

T + 1/b0
and (2.38)

µ̂J =

∑
t Jt + aJ/bJ
T + 1/bJ

. (2.39)

Finally, given (Z, J, ψ, Y ), ξ follows an inverse χ2 distribution,

ξ|(Z, J, ψ, Y ) ∼

[∑
t(Jt − µJ)

2 + (µJ − aJ)
2/bJ + ητ 2

J

]/
σ2

χ2
T+η+1

, (2.40)

and λ follows a beta distribution,

λ|(Z, J, ψ, Y ) ∼ Beta
(∑

t
Zt + α,

∑
t
(1 − Zt) + β

)
. (2.41)

33



By applying the tools described in Section 2.3, we can transform the Gibbs sampler

in Figure 2.6(a) to a PMG sampler that is expected to exhibit better convergence.

In Figure 2.6(b), we marginalize some components out of STEPS 3 and 4 of the

Gibbs sampler given in Figure 2.6(a). Specifically, J is marginalized out of STEP 3

and ψ1 = (µ, µJ) out of STEP 4. Our strategy in this marginalization is to be able to

sample from standard conditional distributions even when we are conditioning on

fewer components. For example, the distribution of ψ given (Z, ζ, Y ), marginalized

over J , is decomposed into

p(ψ|Z, ζ, Y ) =

∫
p(ψ|Z, J, ζ, Y )dJ

= p(σ2|Z, ζ, Y )p(µ, µJ|σ2, Z, ζ, Y ), (2.42)

where σ2 given (Z, ζ, Y ) follows an inverse χ2 distribution,

σ2|(Z, ζ, Y ) ∼
∑

t

[
(Yt−eµ−eµJZt)2

ξZt+1

]
+ (eµ−a0)2

b0
+ ντ 2

0 + 1
ξ

[
(eµJ−aJ )2

bJ
+ ητ 2

J

]

χ2
T+ν+η+1

, (2.43)

and the joint distribution of µ and µJ given (σ2, Z, ζ, Y ) is still bivariate Gaussian,

i.e.,

µ|(σ2, µJ , Z, ζ, Y ) ∼ N

(
µ̃,

σ2

∑
t

[
1

Ztξ+1

]
+ 1/b0

)
and (2.44)

µJ |(σ2, Z, ζ, Y ) ∼ N


µ̃J ,

σ2

∑
t

[
Zt

Ztξ+1

]
−
(P

t

[
Zt

Ztξ+1

])2

P
t

[
1

Ztξ+1

]
+1/b0

+ 1
ξbJ


 , (2.45)

and µ̃ and µ̃J are given by

µ̃ =

∑
t

[
Yt−ZtµJ

Ztξ+1

]
+ a0/b0

∑
t

[
1

Ztξ+1

]
+ 1/b0

and (2.46)

µ̃J =

∑
t

[
ZtYt

Ztξ+1

]
−

P
t

[
Zt

Ztξ+1

](P
t

[
Yt

Ztξ+1

]
+a0/b0

)
P

t

[
1

Ztξ+1

]
+1/b0

+ aJ

ξbJ

∑
t

[
Zt

Ztξ+1

]
−
(P

t

[
Zt

Ztξ+1

])2
P

t

[
1

Ztξ+1

]
+1/b0

+ 1
ξbJ

. (2.47)
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The distribution of ξ given (Z, J, ψ2, Y ), marginalized over ψ1, is inverse χ2,

ξ|(Z, J, ψ2, Y ) ∼

[∑
t(Jt − µ̂J)

2 + (bµJ−aJ )2

bJ
+ ητ 2

J

]/
σ2

χ2
T+η

, (2.48)

where µ̂J is given in (2.39). We emphasize that the joint distribution after marginal-

ization need not be a standard distribution since we hope to trim some components

for each step.

In Figure 2.6(c), we permute the second and forth steps of the sampler in Fig-

ure 2.6(b), which makes the marginalized components redundant in the sampler.

Thus, we are able to trim ψ1 from STEP 2 and J from STEP 3 because these inter-

mediate quantities are resampled in the following steps. This removal yields the

PMG sampler in Figure 2.6(d). We can block the last two steps of the PMG sampler,

as illustrated in Figure 2.6(e). However, the resulting set of conditional distribu-

tions remains incompatible, hence the PMG sampler is not simply a blocked Gibbs

sampler.

To illustrate the computational gains we achieve, we conduct a simulation study

for the jump diffusion model. For test data, we first simulate T = 1000 jump in-

dicator variables Z based on λ = 0.01 that implies a jump is rare. When there is

no jump, the data are simulated from a normal distribution with mean µ = 2 and

variance σ2 = 1. When a jump occurs, another normal random variable with mean

µJ = 0 and variance σ2
J = σ2ξ = 100 is generated and added to the data. Using

either the Gibbs sampler or PMG sampler, we run multiple chains of 10000 itera-

tions each with different starting values to fit the Merton’s jump diffusion model.

The convergence of the chains is examined by computing the estimate of the po-

tential scale reduction for all model parameters (Gelman and Rubin, 1992). The

first two columns of Figures 2.7 and 2.8 compare the convergence characteristics

exhibited by the Gibbs sampler and PMG sampler. We base our comparison in the

first column with the last 1000 draws of a single chain, and the autocorrelations

are plotted in the second column with the last 5000 draws of a single chain. From
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the first two columns of Figures 2.7 and 2.8, we note the improved convergence

characteristics exhibited by the PMG sampler. In particular, the effect of the partial

marginalization on µJ is substantial, and the convergence characteristics for σ is

noticeably improved. The last column of Figures 2.7 and 2.8 presents the marginal

posterior distributions of the selected model parameters using the second halves

of the multiple chains for each sampler. The vertical solid lines represent the true

values of the parameters used to simulate test data for this simulation study. We

confirm that the true values are covered by the posterior distributions.

2.5.3 Multivariate Time Series Model for Joint Segmentation

The joint segmentation model for time series data from different signals in as-

trophysics (Dobigeon et al., 2005) provides another example of a PMG sampler.

Consider time-series data that are composed of photon counts from multiple sig-

nals observed in a number of equally spaced time bins. We assume that the

data for each signal are generated from constant Poisson intensities within time

blocks constructed by sequentially combining the time bins. Thus, the likelihood

for this model depends on a number of “unknown” time blocks. This difficulty

makes the Gibbs sampler constructed for this model computationally infeasible.

However, the PMG sampler can circumvent the computational difficulty by par-

tially marginalizing over the Poisson intensities depending on the unknown time

blocks. Thus, the partial marginalization essentially makes intractable sampling

steps rather tractable with the expectation of quicker convergence. The advantage

of this joint segmentation model over a single segmentation model is that we can

impose our prior knowledge about the correlation structure for the joint probabil-

ity of changing time blocks for different signals.

We begin by modeling the arrival of photons from different signals as an indepen-
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Figure 2.9: Block Indicator Matrix for Multivariate Time Series Data. The block
indicator vector of signal i with J = 10 time bins and Ki = 3 time blocks is illus-
trated in the top. In the case of multiple signals, a N × J block indicator matrix is
considered, as shown in the bottom. When the time bins are blocked by the solid
lines, for example, we have z12 = 0, z13 = 1, z14 = 0, z22 = 0, z23 = 0, z24 = 1,
zN2 = 1, zN3 = 0, and zN4 = 0. Note that the indicator variables for the first and
the last time bins are all fixed at 0 and 1, respectively, to match the row sum with
the number of time blocks of the corresponding row; thus, only the middle J − 2
indicators are free for each signal.
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dent inhomogeneous Poisson process, i.e.,

Yij
ind∼ Poisson(λik), for i = 1, 2, . . . , N, j = 1, 2, . . . , J, k = 1, 2, . . . , Ki, (2.49)

where Yij denotes the photon count from signal i that falls into time bin j and

λik represents the expected photon count from signal i in time block k. In words,

photons from N signals are recorded in J equally spaced time bins which are seg-

mented into Ki time blocks of signal i. Note that the Poisson intensity λik depends

on the unknown time blocks. We consider index sets of the time bins that are

combined into time block k of signal i, i.e., {Bik, i = 1, 2, . . . , N, k = 1, 2, . . . , Ki},

where Bik ⊂ {1, 2, . . . , J} is the collection of bin indexes in block k for signal i

and {Bik, k = 1, 2, . . . , Ki} for signal i are disjoint and sequential; nik denotes the

cardinality of Bik.

Fitting the Poisson intensity would be greatly simplified if the time blocks were

known. This leads us to consider fitting the model in the missing data framework.

That is, we consider a N × J indicator matrix for the change points of blocks,

Z = (z1, z2, . . . , zJ) where zj = (z1j , z2j , . . . , zNj)
> for j = 1, 2, . . . , J , andZ is treated

as missing data. If zij = 1, there is a change point to a new block at bin j for signal i,

and 0 otherwise. We set the indicator variables of the first and the last bins as zi1 =

0 and ziJ = 1 for i = 1, 2, . . . , N to ensure that each row sum corresponds to the

number of blocks for signal i, i.e.,
∑J

j=1 zij = Ki. Figure 2.9 graphically illustrates

how the indicator variables Z determine the time blocks. As a simple illustration,

the block indicator vector of signal i with J = 10 time bins and Ki = 3 time blocks

is shown in the top of Figure 2.9. When we have N signals, the block indicator

vector becomes a N × J indicator matrix shown in the bottom of Figure 2.9.

Because zij is an indicator variable, each column vector zj has 2N possible config-

urations of 0 and 1, which is denoted by c` for ` = 1, 2, . . . , 2N . For example, in the

case of N = 2, we have c1 = (0 0)>, c2 = (1 0)>, c3 = (0 1)>, and c4 = (1 1)>. The

probability corresponding to the configuration c` is denoted by p` = P (zj = c`),
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and P is a set of the probabilities, i.e., P = {p`, ` = 1, 2, . . . , 2N} with
∑

` p` = 1.

Then, given P , each column vector of Z follows an independent multinomial dis-

tribution,

zj|P ind∼ Multinomial(1; {p`, ` = 1, 2, . . . , 2N}), (2.50)

for j = 1, 2, . . . , J . We denote by S`(Z) the number of the column vectors of Z such

that zj = c` for j = 1, 2, . . . , J , i.e., S`(Z) =
∑J

j=1 1{zj=c`} where 1{A} is equal to 1 if

A is true and 0 otherwise. The Poisson intensity λik is represented by a hierarchical

structure, i.e.,

λik|γ iid∼ Gamma(ν, γ), for i = 1, 2, . . . , N, k = 1, 2, . . . , Ki, (2.51)

where ν is fixed at 1 and γ is an adjustable hyperparameter. Using the conjugate

Dirichlet prior distribution on P and the flat prior distribution on log γ,

p(P) ∝
2N∏

`=1

pα`−1
` and p(γ) ∝ 1

γ
, (2.52)

the posterior distribution of interest is given by

p(Z,P, γ, λ|Y ) ∝ p(Y |Z, λ)p(Z|P)p(λ|γ)p(P)p(γ)

∝
[

N∏

i=1

Ki∏

k=1

∏

j∈Bik

λ
Yij

ik e
−λik

][
2N∏

`=1

p
S`(Z)+α`−1
`

][
N∏

i=1

Ki∏

k=1

γe−γλik

]
1

γ

∝ γ

NP
i=1

Ki−1

[
N∏

i=1

Ki∏

k=1

λ
P

j∈Bik
Yij

ik e−(nik+γ)λik

][
2N∏

`=1

p
S`(Z)+α`−1
`

]
.(2.53)

However, because P can be completely marginalized out of the posterior distribu-

tion in (2.53), we can construct a simple Gibbs sampler to generate samples from

the marginal distribution of the posterior distribution,

p(Z, γ, λ|Y ) =

∫
p(Z,P, γ, λ|Y )dP

∝ γ

NP
i=1

Ki−1

[
N∏

i=1

Ki∏

k=1

λ
P

j∈Bik
Yij

ik e−(nik+γ)λik

][ ∏2N

`=1 Γ(S`(Z) + α`)

Γ
(∑2N

`=1(S`(Z) + α`)
)
]
.(2.54)

41



(a)

Marginalize

Trim

(b)

Permute

(c)

(d)

Block

(e)

PSfrag replacements

...
...

...
...

...

p(z2|z−2, γ, λ, Y )

p(z3|z−3, γ, λ, Y )

p(zJ−1|z−(J−1), γ, λ, Y )

p(γ|Z, λ, Y )

p(λ|Z, γ, Y )

p(z2, λ
?|z−2, γ, Y )

p(z3, λ
?|z−3, γ, Y )

p(zJ−1, λ
?|z−(J−1), γ, Y )

p(γ|Z, λ, Y )

p(λ|Z, γ, Y )

p(z2, λ
?|z−2, γ, Y )

p(z3, λ
?|z−3, γ, Y )

p(zJ−1, λ
?|z−(J−1), γ, Y )

p(λ|Z, γ, Y )

p(γ|Z, λ, Y )

p(z2|z−2, γ, Y )

p(z3|z−3, γ, Y )

p(zJ−1|z−(J−1), γ, Y )

p(λ|Z, γ, Y )

p(γ|Z, λ, Y )

p(z2|z−2, γ, Y )

p(z3|z−3, γ, Y )

p(zJ−2|z−(J−2), γ, Y )

p(zJ−1, λ|z−(J−1), γ, Y )

p(γ|Z, λ, Y )

Figure 2.10: Illustration of Deriving a PMG Sampler in the Joint Segmentation
Model for Multivariate Time Series Data.

Figure 2.10 illustrates the transformation of a simple Gibbs sampler into a PMG

sampler for the joint segmentation time-series model, based on the marginalized

target distribution in (2.54). Figure 2.10(a) shows the simple Gibbs sampler con-

structed using complete conditional distributions of the target posterior distribu-

tion in (2.54). Because the number of time blocks for signal i depends on the block

indicator variables Z, the components of Z are not independent. However, each

component of Z given (z−j, γ, λ, Y ) follows a multinomial distribution,

zj|(z−j, γ, λ, Y ) ∼ Multinomial(1; {π`, ` = 1, 2, . . . , 2N}), (2.55)

where z−j = (z1, . . . , zj−1, zj+1, . . . , zJ) and π` is proportional to p(Zj(`), λ, γ|Y )

in (2.54) with Zj(`) = {z1, . . . , zj−1, c`, zj+1, . . . , zJ}. Each of the other components

also follows a standard distribution. That is, given (Z, λ, Y ), γ follows a gamma
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distribution,

γ|(Z, λ, Y ) ∼ Gamma
(∑N

i=1
Ki,
∑N

i=1

∑Ki

k=1
λik

)
, (2.56)

and given (Z, γ, Y ), λ follows an independent gamma distribution,

λik|(Z, γ, Y ) ∼ Gamma
(∑

j∈Bik

Yij + 1, nik + γ
)
. (2.57)

Unfortunately, the multinomial probabilities π` in (2.55) are not trivial to compute

because changing c` in Zj(`) results in changing the number of blocks and thus λik

for the different number of blocks from the current Ki cannot be computed. There-

fore, we emphasize that the Gibbs sampler in Figure 2.10(a) is not even feasible to

implement. This difficulty, however, can be avoided by marginalizing over λ from

the posterior distribution in (2.54). Namely, the conditional distribution of zj given

(z−j, γ, Y ) is written as

zj|(z−j, γ, Y ) ∼ Multinomial(1; {π̃`, ` = 1, 2, . . . , 2N}), (2.58)

where the multinomial probabilities are given by

π̃` ∝ p(Z = Zj(`)|γ, Y )

∝ 1

γ

[
N∏

i=1

Ki∏

k=1

Γ(
∑

j∈Bik
Yij + 1)

(nik + γ)
P

j∈Bik
Yij+1

][ ∏2N

`=1 Γ(S`(Z) + α`)

Γ
(∑2N

`=1(S`(Z) + α`)
)
]
. (2.59)

Thus, π̃` now depends only on γ that is free of the unknown time blocks. Such

marginalization yields the Gibbs sampler in Figure 2.10(b). Here, all the marginal-

ized quantities correspond to intermediate quantities, but not all are redundant.

Because p(γ|Z, λ, Y ) is conditional on the intermediate quantity λ?, completely

removing the intermediate quantities from the sampler would alter the transi-

tion kernel. To make the marginalized quantities redundant, p(γ|Z, λ, Y ) and

p(λ|Z, γ, Y ) are interchanged in Figure 2.10(c). After the permutation, trimming

the marginalized quantities yields the PMG sampler in Figure 2.10(d), which is not

only feasible but also expected to exhibit better convergence characteristics than
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Figure 2.11: Mixing, Autocorrelation, and Marginal Posterior Distribution of γ and
λ11 Simulated by the PMG Sampler in the Multivariate Time Series Model.

the simple Gibbs sampler in Figure 2.10(a). We can block STEPS (J−2) and (J−1)

into p(zJ−1, λ|z−(J−1), γ, Y ), but the resulting set of conditional distributions in Fig-

ure 2.10(e) remains incompatible. Dobigeon et al. (2005) use the PMG sampler

shown in Figure 2.10(e), and it is worthwhile noting that the sampler they con-

struct is not a Gibbs sampler because changing the order of the steps may result in

a transition kernel with unknown stationary distribution.

We conduct a simulation study for the piecewise-constant multivariate time-series

model. In this simulation study, we assume a single signal (i.e.,N = 1) and J = 100

time bins. We first construct K1 = 10 time blocks by randomly sampling K1−1 = 9

change points in the middle J − 2 = 98 time bins. For each of time blocks, we sim-

ulate λ1k with γ = 0.1, and test data are generated from the model in (2.49). To fit

this model, it is not possible to run the simple Gibbs sampler because of the com-

putational difficulty, so that Figure 2.11 presents the output only from the PMG

sampler. The convergence of the PMG sampler is examined by computing the
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estimate of the potential scale reduction for the model parameters based on the

multiple chains of 2000 iterations each with different starting values. The first two

columns of Figure 2.11 illustrates the quick convergence of the model parameters,

γ and λ11. In the last column of Figure 2.11, the resulting marginal posterior dis-

tributions of these parameters cover the true values of the parameters based on

which test data are simulated.

2.6 Discussion and Future Work

In this chapter, we present efficient Gibbs sampling techniques developed by gen-

eralizing the composition of conditional distributions in Monte Carlo samplers.

Gibbs samplers are generally expected to be composed of compatible conditional

distributions and, if any, simply avoid a set of incompatible conditional distribu-

tions. However, PMG samplers rather capitalize on such incompatible conditional

distributions to improve the convergence characteristics of their Gibbs counter-

parts. The generalization of the composition comes at a price: the conditional

distributions that consist of a PMG sampler need be performed in a certain or-

der and the corresponding transition kernel has otherwise an unknown station-

ary distribution. For the purpose, we introduce three basic prescriptive tools, i.e.,

marginalization, permutation, and trimming, and by sequentially applying these

tools, a Gibbs sampler is transformed into a PMG sampler. The resulting PMG

sampler may be composed of a set of incompatible conditional distributions, al-

though it may correspond to a blocked version of the original Gibbs sampler. The

potential computational advantages exhibited by the PMG samplers are presented

in Theorem 1 and illustrated by a couple of highly structured complex models.

In terms of marginalization, PMG samplers also generalize efficient Gibbs sam-

plers such as PX-DA schemes (Liu and Wu, 1999) and marginal data augmenta-

tion schemes (Meng and van Dyk, 1999), at least when these methods are used
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with proper working prior distributions. Consequently, PMG samplers are more

flexible to handle reduced conditional distributions for better convergence char-

acteristics and can avoid computational difficulties that may be caused by fully

marginalizing over some components.

Future work includes exploration into irregular but efficient MCMC samplers

that can tackle the long-standing complaint of sometimes slow convergence for

Gibbs samplers. By incorporating well-known frequentist tools and theorems into

Bayesian methodology, we will be able to devise other efficient MCMC samplers.
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Chapter 3

Fitting Narrow Spectral Lines
in High Energy Astrophysics

3.1 Introduction

3.1.1 Scientific Background

X-ray observations show complex structures in both the spatial and spectral do-

mains of astrophysical sources. However, quasars’ nuclei remain spatially un-

resolved even with the highest-resolution X-ray telescopes. Most of the quasar

energy is released within the unresolved core, and only spectral and timing infor-

mation is available to study the nature of the X-ray emission.

Quasars are very luminous and compact. They emit most of their X-ray luminosity

from their unresolved cores (< 1 pc). This emission is thought to originate from an

accretion onto a supermassive black hole (Rees, 1978). However, the details of the

accretion process or fuel supply are still uncertain, as well as the geometry of the

accretion flow. It is also not clear which process is directly responsible for quasar



X-ray emission. Several components of the emission model have been identified,

but the importance of their contributions to the X-ray emission may vary from

source to source. The X-rays are usually associated with the non-thermal processes

related to Comptonization of low-energy photons onto relativistic electrons. The

Comptonization can take place in the accretion flow itself, a corona, or an outflow

or innermost parts of a jet (see for example Markoff et al., 2005; Sobolewska et al.,

2004; Sikora et al., 1997).

Generally speaking, emission lines are an important part of the X-ray spectrum

in that they can provide information as to the state of plasma; however, quasars’

X-ray spectra are usually featureless as expected based on the Comptonization pro-

cess. The only emission feature identified so far is the fluorescent Fe-K-alpha emis-

sion line. This line is thought to come directly from illuminated cold accretion flow

as a fluorescent process (Fabian, 2005). The location of the line indicates the ion-

ization state of iron in the emitting plasma, while the width of the line tells us the

velocity of the plasma (Fabian, 2005).

Absorption features associated with the outflowing matter have also been ob-

served in recent X-ray observations (Gallagher et al., 2002). The location of ab-

sorption lines and the width of the lines provide information as to the velocity of

the absorber and its distance from the quasar.

One of the goals of the X-ray data analysis is to understand the emission compo-

nents present in the spectrum, and to obtain information about the emission and

absorption features, as well as their locations and relation to the primary quasar

emission. The detection of weak lines in noisy spectra is the main statistical prob-

lem in such analyses.
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3.1.2 High Resolution High Energy Spectral Analysis

Testing for and identifying the location of the Fe-K-alpha line are statistically chal-

lenging tasks; see Protassov et al. (2002) for the method of posterior predictive

p-value testing. High resolution data, such as those available with the Chandra

X-ray Observatory carry much information as to the quasar’s spectrum. Taking ad-

vantage of the high resolution spectral capacity of such instruments, however, re-

quires careful statistical analysis. For example, the resolution of such instruments

corresponds to a much finer discretization of the energy spectrum than was avail-

able with previous instruments. As a result, we expect lower counts in each bin of

the X-ray spectrum. Such low-count data make the Gaussian assumptions that are

inherent in traditional minimum χ2 fitting inappropriate. A better strategy, which

we employ, explicitly models photon arrivals as an inhomogeneous Poisson pro-

cess (van Dyk et al., 2001). In addition, data are subject to a number of processes

that significantly degrade the source counts, e.g., the absorption, non-constant ef-

fective area, blurring of photons’ energy, background contamination, and photon

pile-up. Thus, we employ statistical models that directly account for these aspects

of data collection. In particular, we design a highly structured multilevel spectral

model with components for both the data collection processes and the complex

spectral structures of the sources themselves. In this highly structured spectral

model, a Bayesian perspective renders straightforward methods that can handle

the complexity of Chandra data (van Dyk et al., 2001; van Dyk and Kang, 2004; van

Dyk et al., 2006). As we shall illustrate, these methods allow us to use low-count

high-resolution data, to search for the location of a narrow spectral line, to inves-

tigate its location uncertainty, and to construct statistical tests that measure the

evidence in the data for including the spectral line in the source model.
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3.1.3 A Statistical Model for the Spectrum

The energy spectrum of photons emitted from an astronomical source can be sep-

arated into two basic parts: a set of continuum terms and a set of emission lines.

We begin with a standard spectral model that accounts for a single continuum

term along with several spectral lines. Throughout this chapter, we use θ as a

general representation of model parameters in the spectral model. The compo-

nents of θ = (θC , θL, θA, θB) represent the collection of parameters for the Contin-

uum, (emission) Lines, Absorption features, and Background contamination, re-

spectively. (Notice that the roman letters in the superscripts serve as a mnemonic

for these four processes.) Because the X-ray emission is measured by counting

the arriving photons, we model the expected Poisson counts in energy bin j ∈ J ,

where J is the set of energy bins, as

Λj(θ) = ∆jf
(
θC , Ej

)
+

K∑

k=1

λkπj
(
µk, νk

)
(3.1)

where ∆j and Ej are the width and mean energy of bin j, f(θC , Ej) is the expected

counts per unit energy due to the continuum term at energy Ej, θC is the set of free

parameters in the continuum model, K is the number of emission lines, λk is the

expected counts due to the emission line k, and πj(µk, νk) is the proportion of an

emission line centered at energy µk and with width νk that falls into bin j. There are

a number of smooth parametric forms to describe the continuum in some bounded

energy range; in this chapter we parameterize the continuum term f as a power

law, i.e., f(θC , Ej) = αCE−βC

j where αC and βC represent the normalization and the

photon index, respectively. The emission lines can be modeled via the proportions

πj(µk, νk) using Gaussian, Lorentzian, or delta function line profiles; the counts due

to the emission line are distributed among the bins according to these proportions.

While the Gaussian or Lorentzian function parameterizes an emission line in terms

of center and width, the center is the only free parameter with a delta function; the

width of the delta function line is necessarily zero.
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While the model in (3.1) is of primary scientific interest, a more complex statis-

tical model is needed to address the data collection processes mentioned in Sec-

tion 3.1.2. We use the term statistical model to refer to the model that combines the

source or astrophysical model with a model for the stochastic processes involved in

data collection and recording. Thus, in addition to the source model, the statistical

model describes such processes as instrument response and background contam-

ination. Specifically, to account for the data collection processes, (3.1) is modified

via

Ξl(θ) =
∑

j∈J

MljΛj(θ)dju(θ
A, Ej) + θBl (3.2)

where Ξl(θ) is the expected observed Poisson counts in detector channel l ∈ L,

L is the set of detector channels, Mlj is the probability that a photon that arrives

with energy corresponding to bin j is recorded in detector channel l (i.e., M is the

so-called redistribution matrix or RMF), dj is the effective area (i.e., ARF) of bin

j, u(θA, Ej) is the probability that a photon with energy Ej is not absorbed, θA is

the collection of parameters for absorption features, and θBl is a Poisson intensity

of the background counts in channel l. While the scatter probability Mlj and the

effective area dj are presumed known from calibration, the absorption probability

is parameterized using a smooth function; see van Dyk and Hans (2002) for de-

tails. For example, an important exponentiated Gaussian form of the absorption

probability is expressed by setting (Freeman et al., 1999)

u
(
θA, Ej

)
= exp

{
−θAλ exp

[
−

(Ej − θAµ )2

2θAσ

]}
, (3.3)

where the set of free parameters θA = (θAλ , θ
A
µ , θ

A
σ ) represent the intensity, the center,

and the spread of the absorption line. To quantify background contamination, a

second data set is collected that is assumed to consist only of background counts;

the background photon arrivals are also modeled as an inhomogeneous Poisson

process.
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The remainder of the chapter is organized into five sections. We begin in Section 3.2

with a toy example to illustrate the difficulties arising from the spectral model

with a narrow emission line and a strategy for fitting the line. In Section 3.3, we

devise a couple of efficient Gibbs samplers to fit the highly structured multilevel

spectral model with either a delta function or narrow Gaussian emission line. In

Section 3.4, a simulation study is performed to investigate the utility and limitation

of the spectral models. Section 3.5 outlines how we fit a narrow emission line in

the high redshift quasar PG1634+706, and test for the inclusion of the line in the

spectral model. Concluding remarks appear in Section 3.6.

3.2 Toy Example

3.2.1 Missing Data Formulation

In order to illustrate the relevant details of fitting a line location, we designed a

simplified example where we consider an ideal instrument that produces counts

that are a mixture of continuum and emission line photons, but these counts are not

subject to the data distortion processes described in Section 3.1.3. In addition, we

postulate that the continuum is completely specified and one Gaussian emission

line with a known width, ν0, exists, so that the location of the emission line is

the only free parameter to fit in the model. Accounting for the various forms of

data distortion causes no conceptual difficulty, but obscures the ideas involved

with fitting an emission line. As discussed in Section 3.3.1, the counts from the

ideal instrument are one of the levels of missing data in our formulation of the

model that does account for data distortion; we call these counts the ideal counts.

We denote the ideal counts by Y
ideal
j = Y

C
j + Y

L
j , where Y

ideal
j , Y

C
j , and Y

L
j are

the total ideal counts, the counts due to the continuum, and the counts due to the

emission line in bin j, respectively. Then we model the Poisson intensity of the
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ideal counts in bin j as

Λj(µ) = ∆jf(Ej) + λπj(µ, ν0), for j = 1, . . . , J. (3.4)

Given the ideal counts in this stylized example, it is easy to construct a simple

Gibbs sampler to fit the line location µ; missing data are the ideal counts split

into continuum and emission line counts, i.e.,
{
(YC

j ,Y
L
j ), j = 1, . . . , J

}
. Once the

missing data are known, the line location can be fitted by using the photons due to

the emission line.

This is an example of a simple finite mixture model where each observation is

from one of two populations with a certain probability; more general finite mixture

models have broad application in the social, biological, engineering, and physical

sciences (Everitt and Hand, 1981; Aitkin and Rubin, 1985; Henna, 1985; Tittering-

ton et al., 1985; Maine et al., 1991; Lindsay, 1995; Pilla and Lindsay, 1996). It is well

known that this finite mixture model can be embedded into a missing data model

to simplify computation.

3.2.2 Simple Gibbs Sampling

In the toy example, the target joint posterior distribution of interest is given by

p(YL, µ |Yideal) ∝
{

J∏

j=1

p
(
Y

ideal
j |YL

j , µ
)
p
(
Y
L
j |µ

)
}

· p(µ)

∝
J∏

j=1

{
λπj(µ, ν0)

}
Y

L
j e−λπj(µ,ν0), (3.5)

under the flat prior distribution, p(µ) ∝ 1. To generate samples from the joint

distribution, we can construct a prototype two-step Gibbs sampler. Given the ideal

counts, the missing counts due to the emission line in bin j follow a Binomial

distribution. Thus, given the current draw of the line location, µ(t), STEP 1 imputes

the missing counts by
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STEP 1 : Draw (YL)(t+1) from p(YL |µ(t),Yideal),

where Y
L
j |µ(t),Yideal

j
ind∼ Binomial

(
Y

ideal
j ,

λπj(µ
(t), ν0)

∆jf(Ej) + λπj(µ(t), ν0)

)

for j = 1, 2, . . . , J .

In the next step, we draw the line location parameter given (YL,Yideal). To derive

STEP 2, we model the energy of the photon i due to the emission line that falls into

bin j as a Gaussian random variable,

Zij
iid∼ N(µ, ν2

0) for i = 1, . . . ,YL
j and j = 1, . . . , J. (3.6)

The photons due to the emission line in bin j are associated with the average of the

energies of the photons, i.e.,

Z̄j ≡ 1

YL
j

Y
L
j∑

i=1

Zij
ind∼ N

(
µ,

ν2
0

YL
j

)
for j = 1, . . . , J. (3.7)

Because of instrumental constraints, the energy of each photon that arrives at the

detector is truncated to the interval corresponding to the bin, so that only the range

of each photon energy is known. Because the binning is fine, however, Z̄j can

be approximated by the mean energy of the bin j, Ej . This simplification avoids

explicitly including Z in our data augmentation scheme and focuses attention on

the effects of using a narrow emission line model with binned data. In our actual

data analysis Z is included in the data augmentation scheme, and exact algorithms

are implemented; see van Dyk et al. (2001) and Section 3.3. The approximation

connects (3.7) to the likelihood function p(YL
j |µ), based on which STEP 2 draws the

next iterate of the emission line location:

STEP 2 : Draw µ(t+1) from p(µ | (YL)(t+1),Yideal)

= N

(∑J
j=1Ej(Y

L
j )(t+1)

∑J
j=1(Y

L
j )(t+1)

,
ν2

0∑J
j=1(Y

L
j )(t+1)

)
,

where the mean of the Gaussian distribution is the weighted average of the mean

energies using the counts due to the line as weights.
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3.2.3 Difficulty with Identifying Narrow Emission Lines

Although the Gibbs sampler described in Section 3.2.2 is simple, it breaks down

even in this toy mixture problem if we replace the Gaussian emission line with

a delta function line. Because the delta function line model fixes the width ν0 at

zero, the probability of the line that falls into bin j, πj(µ, ν0), is 1 for the energy bin

that contains the current iterate of the line location and 0 otherwise. Suppose the

starting value of the line location µ(0) is in bin k. Then, STEP 1 of the simple Gibbs

sampler attributes all the line counts to bin k because πk(µ, ν0) = 1. Thus, STEP 2

updates the next iterate of the line location using only the (YL
k )(1), so that the line

location is necessarily in bin k as well:

µ(1) =
Ek(Y

L
k )(1)

(YL
k )(1)

= Ek, (3.8)

i.e., µ(1) is in the same bin k as µ(0). Thus, every single state for the line location

becomes an absorbing state, hence the line location parameter sticks at its starting

value throughout the iteration. These absorbing states violate the irreducibility

condition, so that the chain does not converge to a stationary distribution. The

situation is not noticeably alleviated with a narrow Gaussian line model because

STEP 2 does not result in a large change in the emission line location.

The difficulty can be avoided by devising algorithms that do not attribute photons

to the emission line during the iteration. That is, we sample µwithout conditioning

on the missing counts due to the emission line. We thus evaluate the observed data

posterior distribution p(µ |Yideal) at each possible value of the line location, and

draw µ from the multinomial distribution given by

µ(t) ∼ Multinomial
(
1 ;
{
p(µ |Yideal)

∣∣
µ=Em

, m = 1, 2, . . . , J
})
, (3.9)

where the multinomial probability in bin m is computed as

p(µ |Yideal)|µ=Em
=

∏J
j=1 Λj(Em)Y

ideal
j e−Λj(Em)

∑J
m=1

∏J
j=1 Λj(Em)Y

ideal
j e−Λj(Em)

. (3.10)
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Table 3.1: Data Augmentation in a Spectral Model.

Level Variable Notation
1. The ideal data Ÿ

s
j

2. The mixed ideal data Ÿ
ideal
j

3. The mixed ideal data after absorption1
Ẏ

+
j

4. The mixed and blurred ideal data after absorption Y
+
l

5. The mixed and blurred ideal data after absorption and Y
obs
l

background contamination, i.e., the observed data
For all variables, bin j ∈ J , channel l ∈ L, and s ∈ S.

Note that the toy example is illustrative and, in the actual data analysis, we con-

struct several layers of missing data and introduce more model parameters.

3.3 A Full Spectral Analysis

3.3.1 Data Augmentation

In Chandra data, the photons are subject to the data distortion processes as dis-

cussed in Section 3.1.3. The method of data augmentation can simplify this con-

volved structure by using a hierarchical formulation. Table 3.1 describes the hi-

erarchy of augmented data in the spectral model, which is essential to explain

some stochastic features of the data collection mechanism. The data augmentation

strategies described in this section follow van Dyk et al. (2001). In Table 3.1, the

set S represents the collection of the continuum and emission line sources while a

“+” in the superscript indicates the mixed photons of all components in S. To ex-

plicitly account for a series of the data contamination processes, we treat the ideal

data from Level 1 to Level 4 in Table 3.1 as missing data. The mixed ideal data

in Level 2 represents source counts under the ideal instrument considered in Sec-

tion 3.2.1 (i.e., no response matrix, constant effective area, no absorption, and no
1In the statistical model, the effective area of the instrument is handled in exactly the same way

as absorption. Thus, in this table absorption includes the effective area of the instrument.
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background contamination). In real data, observed photons are degraded by these

effects and thus need to be appropriately deconvolved into the ideal ones.

Going down one by one from Level 2 in Table 3.1 explains that the photon counts

are contaminated by absorption and effective area, blurring, and background

counts, respectively. For example, the effect of the absorption and effective area

is accounted for modeling the data in Level 3 given the data in Level 2, which is

formulated as

p(Ẏ+
j | Ÿideal

j , θ) = Binomial
(
Ÿ

ideal
j , dju(θ

A, Ej)
)
, j ∈ J . (3.11)

The photon energies of the data in Level 3 are blurred by a series of multinomial

distributions implied by the columns of the redistribution matrix M . Thus, the

distribution of energy channel counts in Level 4 is the sum of the multinomial

distributions over the bins, i.e.,

p(Y+ | Ẏ+, θ) =
∑

j∈J

Multinomial
(
Ẏ

+
j , Mj

)
, (3.12)

where Y
+ = {Y+

l , l ∈ L}, Ẏ+ = {Ẏ+
j , j ∈ J }, and Mj is the jth column of M , j ∈

J . We model the background counts as another independent Poisson variables,

hence the observed data in Level 5 are modeled as

p(Yobs
l |Y+

l , θ) = Y
+
l + Poisson(θBl ), l ∈ L. (3.13)

That is, given the model parameters the missing data can be sequentially mod-

eled by using standard probability distributions, and given the missing data fit-

ting the parameters is straightforward. Thus, when an emission line is modeled

with a broad Gaussian distribution with fixed width, the standard EM, or expecta-

tion/maximization, algorithm (Dempster et al., 1977) and DA, or data augmenta-

tion, scheme (Tanner and Wong, 1987) can be constructed to fit the spectral model;

refer to van Dyk et al. (2001) and van Dyk and Kang (2004) for details. If the Gaus-

sian line profile is replaced with a delta function or a narrow Gaussian distribution
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Figure 3.1: Illustration of Deriving PMG I for the Multilevel Spectral Model with
Delta Function Emission Lines.

with unknown width, however, we need more sophisticated missing data algo-

rithms due to the difficulty discussed in Section 3.2; refer to van Dyk and Park

(2004) and Park (2004) for efficient EM-type algorithms.

3.3.2 Constructing Efficient Gibbs Samplers

Efficient Gibbs Samplers for the Delta Function Line Profile

The use of a narrow emission line gives rise to computational challenges that de-

teriorate the convergence rate of the standard missing data algorithms. With the

delta function line model, we thus devise two variants of a PMG sampler, intro-

duced in Chapter 2. Figures 3.1 and 3.2 illustrate the derivation of PMG I and

PMG II, respectively.

In Figure 3.1(a), we begin by constructing the simple Gibbs sampler using the com-

plete conditional distributions of target posterior distribution, p(Ymis|ψ, µ, Yobs),

where Ymis = {(Ÿs
j , Ÿ

ideal
j , Ẏ+

j ,Y
+
l ), j ∈ J , l ∈ L}, Yobs = {Yobs

l , l ∈ L}, and we

denote by µ the line location parameter and by ψ the rest of the model parameters.
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As illustrated in Section 3.2, however, the simple Gibbs sampler breaks down be-

cause the location of the delta function line does not move from its starting value.

To improve the rate of convergence, we capitalize on a conditional distribution

that marginalizes over the entire missing data Ymis in STEP 3 of Figure 3.1(b). These

marginalized missing data are part of the output quantities, hence they cannot be

removed from the sampler. In Figure 3.1(c), the sampling steps in Figure 3.1(b)

are permuted to make the marginalized quantities redundant in the sampler. Be-

cause the marginalized quantities do not correspond to the output quantities and

are not conditioned upon in the subsequent steps, we remove Ymis from STEP 1 in

Figure 3.1(c). This removal results in PMG I in Figure 3.1(d). Specifically, STEP 1

draws µ from the multinomial distribution,

µ(t+1) ∼ Multinomial
(
1 ;
{
p(µ |ψ(t+1), Yobs)

∣∣
µ=Ej

, j ∈ J
})
, (3.14)

by evaluating the observed posterior distribution with the flat prior distribution,

p(µ |ψ(t+1), Yobs) ∝
∏

l∈L

Ξl(θ)
Y

obs
l e−Ξl(θ), (3.15)

at the possible line locations. Then we note that STEPS 1 and 2 in Figure 3.1(d) can

be combined into p(Ymis, µ|ψ, Yobs), yielding the prototype two-step Gibbs sampler

in Figure 3.1(e); in this case, the PMG sampler is a blocked version of the original

Gibbs sampler in Figure 3.1(a).

In PMG I, marginalizing over the entire missing data involve additional evalua-

tion of the observed posterior distribution evolving the large dimensional blurring

matrix M . Thus, each iteration of PMG I is computationally expensive to compute

and this difficulty persists even when sparse matrix techniques are implemented;

PMG II is devised to avoid the costly procedure. As before, we begin with the sim-

ple Gibbs sampler in Figure 3.2(a). Then we marginalize over only part of missing

data, Ymis2 = {(Ÿs
j , Ÿ

ideal
j ), j ∈ J }, to avoid the procedure accounting for the blur-

ring in the evaluation of multinomial probabilities. This partial marginalization

results in the sampler in Figure 3.2(b). The marginalized quantities Ymis2, however,
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Figure 3.2: Illustration of Deriving PMG II for the Multilevel Spectral Model with
Delta Function Emission Lines.

cannot be removed because doing so changes a transition kernel with the target

posterior distribution. Permuting the steps in Figure 3.2(c) makes the marginalized

quantities redundant in the sampler, hence they can be removed from STEP 1 with-

out altering the transition kernel. Figure 3.2(d) shows the resulting PMG sampler,

PMG II, which is constructed using a set of incompatible conditional distributions.

In this case, the sampling steps in Figure 3.2(d) cannot be combined. In particular,

STEP 1 of PMG II draws µ from the multinomial distribution,

µ(t+1) ∼ Multinomial
(
1 ;
{
p(µ |Y (t+1)

mis1 , ψ(t+1), Yobs)
∣∣
µ=Ej

, j ∈ J
})
, (3.16)

where Ymis1 = {(Ẏ+
j ,Y

+
l ), j ∈ J , l ∈ L} and the multinomial probabilities are

computed by evaluating the marginalized posterior distribution with the flat prior

distribution,

p(µ |Y (t+1)
mis1 , ψ(t+1), Yobs) =

∫
p(Ymis2, µ |Y (t+1)

mis1 , ψ(t+1), Yobs)dYmis2

∝
∏

j∈J

{
Λj(θ)dju(θ

A, Ej)
}Ẏ

+
j

e−Λj(θ)dju(θA,Ej) (3.17)

at the possible line locations.
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PMG I partially marginalizes over the entire missing data, while PMG II partially

marginalizes over only part of the missing data. Thus, we expect PMG I to exhibit

better convergence characteristics than PMG II when the chains of both samplers

are run for the same number of iterations. In this spectral model, however, we

must compare the computation time rather than the simple number of iterations,

because each iteration of PMG I is much more costly than that of PMG II that

avoids evolving the high dimensional redistribution matrix. Although both sam-

plers performs similarly for the same amount of computation time, we employ

PMG I to fit the spectral model with a delta function line throughout this chapter.

Efficient Gibbs Samplers for the Gaussian Line Profile

When high-resolution instruments such as the Chandra X-ray Observatory are used

to collect photons, a narrow Gaussian distribution may be more appropriate to

model emission lines because the binning of the energy spectrum is fine. However,

when the location and width of an emission line are simultaneously fitted, the

simple Gibbs sampler breaks down as the line gets narrower: That is, the current

iterate of the line location parameter tends to get stuck at the previous iterate. This

leads us to consider fitting the Gaussian line location and/or width without the

missing data. In the case of the Gaussian emission line, we again present only

two variants of a PMG sampler, PMG III and PMG IV, although many different

samplers can be constructed with partial marginalization.

Figures 3.3 and 3.4 illustrate how to derive PMG III and PMG IV, respectively.

To begin with, the simple Gibbs sampler, shown in Figures 3.3(a) and 3.4(a),

is constructed from the target distribution p(Ymis|ψ, µ, ν, Yobs), where Ymis =

{(Ÿs
j , Ÿ

ideal
j , Ẏ+

j ,Y
+
l ), j ∈ J , l ∈ L}, Yobs = {Yobs

l , l ∈ L}, and we denote by µ the

line location parameter, by ν the line width, and by ψ the rest of the model param-

eters. To improve convergence characteristics, Figure 3.3(b) partially marginalizes
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Figure 3.3: Illustration of Deriving PMG III for the Multilevel Spectral Model with
Gaussian Emission Lines.
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Figure 3.4: Illustration of Deriving PMG IV for the Multilevel Spectral Model with
Gaussian Emission Lines.

62



the entire missing data out of only the sampling step for the line width, while the

missing data are marginalized out of both steps for the line location and width

in Figure 3.4(b). Permuting the steps in the resulting samplers ensures that the

marginalized quantities correspond to the intermediate quantities that are not con-

ditioned upon, as shown in both Figures 3.3(c) and 3.4(c). Removing these interme-

diate quantities from the samplers yields PMG III in Figure 3.3(d) and PMG IV in

Figure 3.4(d). Notice that STEPS 1 and 2 in Figure 3.3(d) are combined into one sam-

pling step, so that the four-step Gibbs sampler in Figure 3.3(a) is transformed into

the three-step Gibbs sampler in Figure 3.3(e). However, after combining STEPS 2

and 3 in Figure 3.4(d), the three-step PMG sampler in Figure 3.4(e) is still com-

posed of incompatible conditional distributions and thus does not correspond to a

blocked version of the original Gibbs sampler in Figure 3.4(a).

In both PMG samplers, the entire missing data are partially marginalized out, but

PMG IV marginalizes Ymis out of more steps than PMG III. Thus we expect PMG IV

to outperform PMG III in terms of convergence, although each iteration of PMG IV

is more costly because of additionally evaluating the observed posterior distribu-

tion to draw the line location without the missing data. Throughout this chapter,

we employ PMG IV to fit the spectral model with a narrow Gaussian emission line.

3.4 Simulation Study

Our simulation study is conducted to assess the validity of the highly structured

multilevel spectral model discussed in Section 3.1.3 and to illustrate computation

methods to fit the model. We consider the following four CASES that we believe

are representative of the cases that are of general interest:

CASE 1 : There is no emission line in the spectrum.

CASE 2 : There is a narrow and weak emission line at 2.85 keV with width 0.04 keV
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Table 3.2: Posterior Modes of the Line Locations Fitted with the EM-type Algo-
rithm.

Line profile Simulated True line Posterior Domain of
model data set location (keV) mode (keV) convergence (keV)

· 3.945 0.6 – 1.9 and 2.1 – 2.2
Delta CASE 1 · 4.435 0.5, 2.0, and 2.3 – 6.0

function CASE 2 2.85 2.845 0.5 – 6.0
line CASE 3 3.40 3.385 0.5 – 6.0

CASE 4 3.40 3.315 0.5 – 6.0
CASE 1 · 4.045 0.5 – 6.0

Gaussian CASE 2 2.85 2.625 0.5 – 6.0
line CASE 3 3.40 3.405 0.5 – 6.0

CASE 4 3.40 3.335 0.5 – 6.0

in the spectrum.

CASE 3 : There is a broad and strong emission line at 3.40 keV with width

0.207 keV in the spectrum.

CASE 4 : There is a narrow and strong emission line at 3.40 keV with width

0.04 keV in the spectrum.

For each of these CASES, we simulate a test data set with 1500 counts similar to

the observed number of counts in the Chandra X-ray spectrum of PG1634+706

analyzed in Section 3.5, mimicking the real data situation. In the simulation,

we assume no background contamination and use a power law continuum with

αC = 3.728e− 5 and βC = 1.8. Our simulation is done with Sherpa (Freeman et al.,

2001) software in CIAO2, assuming the Chandra responses (ARF and RMF files).

The test data are used to fit the spectral model, then we compare the true values of

the line location with its estimates and evaluate the evidence for including the line

in the X-ray spectrum; refer to Section 3.5 for more details of our spectral analysis.

This is the frequentist evaluation of a Bayesian program in that we test software by
2The software is publicly available on http://cxc.harvard.edu/ciao/.
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applying it to data simulated with the fixed values of model parameters. To statis-

tically assess the correctness of the Bayesian model-fitting software, we rather sim-

ulate the true values of model parameters from their proper prior distributions, fit

a model for test data generated with each sample of the parameters, and examine

estimated posterior quantiles to detect errors in the software; refer to Cook et al.

(2006) for more details of this Bayesian simulation study.

We begin by running the Rotation(9) EM-type algorithm (van Dyk and Park, 2004)

using different starting values to ensure that all of the important posterior modes

are identified. Specifically, we use 56 starting values equally spaced between

0.5 keV and 6.0 keV, and run the algorithm twice for each starting value using

the spectral models with both delta function and Gaussian lines. The results of

the 56 runs for each of the four test data sets and both models are presented in

Table 3.2. In particular, multiple modes are identified for the test data generated

under CASE 1 when the delta function line is used in the spectral model. This

results from the fact that there is no emission line in the spectrum and the varia-

tion around the continuum causes a multimodal posterior distribution of the delta

function line location. Because we know the true line locations for CASES 2, 3,

and 4, we can compare them with their estimates identified using the delta func-

tion and Gaussian lines. In Table 3.2, we notice that the line locations identified

with the EM-type algorithm are near the true line locations in CASES 2, 3, and 4.

The difference between the true values and the estimates can be calibrated using

error bars on the estimates, the topic that we now turn to.

The use of Monte Carlo samplers allows us to investigate the surface for the poste-

rior distribution of the line location. Figure 3.5 presents the resulting posterior dis-

tributions of the delta function and Gaussian line locations in the different CASES;

the vertical solid lines represent the true line locations. When there is no emission

line in the spectrum (i.e., CASE 1), the posterior distribution of the delta function

line location tends to be multimodal and the Gaussian line location has a very dif-
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Figure 3.5: Posterior Distributions of the Line Location Using the Four Different
CASES Fitted for the Spectral Models with the Delta Function and Gaussian Lines.
The vertical solid lines represent true values of the line location for which test data
are simulated. In CASE 1, there is no emission line in the spectrum. In CASES 2, 3,
and 4, there is a significant posterior mode near the true value of the line location.
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Table 3.3: 95% HPD Regions or 95% Posterior Intervals for the Line Location.

Line profile Simulated True line 95% HPD Posterior
model data set location (keV) region probability

· (0.50, 1.45) 34.36%
· (2.02, 2.84) 11.55%

CASE 1 · (3.79, 4.20) 14.61%
· (4.33, 4.67) 15.65%

Delta · (5.28, 5.64) 9.15%
function (0.50, 0.83) 31.27%

line CASE 2 2.85 (2.70, 2.97) 50.06%
(0.52, 0.62) 72.29%

CASE 3 3.40 (3.28, 3.47) 23.06%
CASE 4 3.40 (3.36, 3.41) 98.25%
CASE 1 · (1.45, 4.80) 93.55%

Gaussian CASE 2 2.85 (1.44, 3.96) 92.18%
line CASE 3 3.40 (3.13, 3.67) 95.01%

CASE 4 3.40 (3.28, 3.52) 95.32%

fuse posterior distribution, as shown in the first row of Figure 3.5. This implies

that the identified line location(s) shown in Table 3.2 may not be well specified.

When an emission line is narrow and weak (i.e., CASE 2), the spectral model with

the delta function line seems better suited for fitting the test data than with the

Gaussian line, as illustrated in the second row of Figure 3.5. The posterior mode of

the delta function line location precisely estimates the true line location, but that

of the Gaussian line location is much less precise. In the case of a broad and strong

line (i.e., CASE 3), the spectral model with the Gaussian line seems better suited

and in this case the posterior distribution of the delta function line location has

a local mode near the true line location. With a narrow and strong line, spectral

models with both lines agree with each other and produce the similar posterior

distribution of the line location, as shown in the last row of Figure 3.5.

Based on the posterior distributions of the line location in Figure 3.5, we compute

the highest posterior density (HPD) region to evaluate the uncertainty of the fitted
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line location(s); when a posterior distribution is multimodal, the HPD region may

consist of a number of disjoint intervals. Table 3.3 presents the 95% HPD region

for the line location; the combined posterior probability in the last column may

not add up to 95% because we list only the intervals whose posterior probabilities

are greater than 5%. The true line locations are presented in the third column of

Figure 3.5 and, in all CASES, are contained in the 95% HPD region.

Posterior predictive methods (Rubin, 1981, 1984; Gelman and Meng, 1996; Gelman

et al., 1996) can be employed to check the spectral model specification. The meth-

ods aim to check the self-consistency of the model, i.e., the ability of the fitted

model to predict the data to which the model is fit. To quantify the evidence for

the inclusion of the line in the spectrum, we consider the spectral model discussed

in Section 3.1.3 with three different line models:

MODEL 0 : There is no emission line in the spectrum.

MODEL 1 : There is a delta function emission line in the spectrum.

MODEL 2 : There is a Gaussian emission line in the spectrum.

The posterior predictive distribution is used to generate simulated data
{
y

(`)
rep, ` =

1, 2, . . . , 1000
}

under MODEL 0. We compare the simulated data to the observed

data via the likelihood ratio test statistic,

Tm(y(`)
rep) = log

{
supθ∈Θm

L(θ|y(`)
rep)

supθ∈Θ0
L(θ|y(`)

rep)

}
, m = 1, 2, and ` = 1, 2, . . . , 1000, (3.18)

where Θ0, Θ1, and Θ2 represent the parameter spaces under MODELS 0, 1, and 2,

respectively. In particular, we generate 1000 samples from the posterior predictive

distribution under MODEL 0, compute the test statistics for the posterior predictive

samples, and compare the histogram of the resulting 1000 test statistics, Tm(y
(`)
rep),

to the observed test statistic, Tm(Yobs), under MODEL m for m = 1, 2. As illustrated

in Figure 3.6, this comparison yields a posterior predictive p-value (or ppp-value)
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Figure 3.6: Posterior Predictive Checks of the Data Simulated Using the Four Dif-
ferent CASES. The left panels test for the evidence of the delta function emission
line, and the right panels test for the Gaussian emission line. The vertical solid
lines represent the observed test statistics which are compared with the test statis-
tics from 1000 data sets simulated from the posterior predictive distribution under
MODEL 0.
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that is the proportion of the simulated test statistics that are as extreme as or more

extreme than the observed test statistic (Rubin, 1984; Meng, 1994). Smaller ppp-

values give more evidence for the alternative model, i.e., MODEL 1 or MODEL 2,

thereby supporting the inclusion of the line in the spectrum in our case. As we

can expect, there is not strong evidence of a line in CASE 1 because the first row

of Figure 3.6 shows large ppp-values for CASE 1. In CASE 2, we have a narrow

but weak emission line, which yields fairly strong evidence for the inclusion of

the delta function line but not for the Gaussian line, as shown in the second row

of Figure 3.6. For the spectral model with either line, the strong lines in CASES 2

and 3 give strong evidence for including a spectral line in the model, as illustrated

in Figure 3.6.

The Fe-K-alpha emission line previously identified in the quasar’s X-ray spectrum

is narrow and weak, as in CASE 2. In this case, the simulation study illustrates

that the line location fitted for the spectral model with the Gaussian line may not

be precise and the model does not provide strong evidence of the narrow and

weak line location in the spectrum. In the same case, however, the spectral model

with the delta function line gives fairly strong evidence for the inclusion of the

narrow and weak line in the spectrum. Based on this simulation study, we also

notice that the spectral model with the delta function line more precisely identifies

the true line locations, regardless of the width or strength. As such, we prefer

fitting the delta function emission line for the real data of the high redshift quasar

PG1634+706 analyzed in Section 3.5.
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Table 3.4: Description of the Chandra Observations for PG1634+706

Observed data set Exposure time (sec.) Total counts
obs-id 47 5389.08 1651
obs-id 62 4854.57 1472
obs-id 69 4859.42 1457
obs-id 70 4859.68 1419
obs-id 71 4405.57 1356

obs-id 1269 10834.03 2216

3.5 Analysis of the Quasar PG1634+706

3.5.1 The High Redshift Quasar PG1634+706

PG1634+706 is a redshift (z = 1.334) radio quiet and optically bright quasar (Stei-

del and Sargent, 1991). The source was observed with Chandra ACIS-S detector

(Weisskopf et al., 2002) as a calibration target six times on March 23 and 24, 2000.

Each observation lasted between 4.4 and 11 ksec. We used CIAO software to pro-

cess the archival data and extracted the spectra assuming circular source regions

of 1.8 arcsec radius. We used CALDB 2.24 calibration data. Table 3.4 lists each

observation with its exposure time and the total counts in its spectrum.

The exact energy of the emission depends on the ionization state of the iron. The

fluorescent Fe-K-alpha emission line has been observed in the quasar rest frame of

near 6.4 keV, which corresponds to 2.74 keV in the observed frame of PG1634+706.

We look for the line in the Chandra spectrum of PG1634+706 and test for its evi-

dence in Section 3.5.2.
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Table 3.5: Posterior Modes of the Line Locations Identified with the EM-type Al-
gorithm. The line locations near 2.74 keV where the Fe-K-alpha emission line was
identified are indicated in bold face.

Line profile Observed Posterior Domain of
model data set mode (keV) convergence (keV)

obs-id 47 2.885 0.5 – 6.0
obs-id 62 2.845 0.5 – 6.0

Delta obs-id 69 1.805 0.5 – 6.0
function obs-id 70 2.835 0.5 – 6.0

line 2.715 0.5 – 3.7, 3.9 – 4.6, and 4.9 – 5.8
obs-id 71 5.605 3.8, 4.7 – 4.8, and 5.9 –6.0

obs-id 1269 2.905 0.5 – 6.0
obs-id 47 2.765 0.5 – 6.0
obs-id 62 2.595 0.5 – 6.0

Gaussian obs-id 69 2.195 0.5 – 6.0
line obs-id 70 2.705 0.5 – 6.0

obs-id 71 2.605 0.5 – 6.0
obs-id 1269 2.575 0.5 – 6.0

3.5.2 Fitting a Spectral Model

We begin by searching for the posterior modes of the delta function and Gaussian

emission lines for each of the six data sets. (For both lines, we use the Rotation(9)

EM-type algorithm with 56 starting values equally spaced between 0.5 keV and

6.0 keV.) The results of the 56 runs for each data set appear in Table 3.5. Taking

into account the quasar redshift a priori, as discussed in Section 3.5.1, we expect

the most probable line to be located near 2.74 keV in the observed frame. The

posterior modes listed in bold face in Table 3.5 are near 2.74 keV.

We use Monte Carlo methods to fully study the marginal posterior distributions of

the delta function and Gaussian line locations. (In particular, we run several chains

of PMG I and PMG IV, to examine convergence using multiple chains.) The solid

lines in Figures 3.7 and 3.8 represent the resulting posterior distribution of the line

location for each observation of PG1634+706; due to the fine binning of the Chan-
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Figure 3.7: Posterior Distributions of the Delta Function Line Location µ for Differ-
ent Observations of PG1634+706. The solid lines represent the marginal posterior
distribution of the delta function line location, and the dashed lines represent the
profile posterior distribution that is maximized over the nuisance parameters. For
each data set, the marginal and profile posterior distributions agree as to the likely
location of the emission line.
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Figure 3.8: Posterior Distributions of the Gaussian Line Location µ for Different
Observations of PG1634+706. The solid lines represent the marginal posterior dis-
tribution of the Gaussian line location, and the dashed lines represent the profile
posterior distribution that is maximized over the nuisance parameters. For each
data set, the marginal and profile posterior distributions agree as to the likely lo-
cation of the emission line.
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Table 3.6: 95% HPD Regions for the Delta Function Line Location Obtained with
PMG I. The posterior modes of the line location near 2.74 keV where the Fe-K-alpha
emission line was identified are indicated in bold face.

Observed Posterior 95% HPD Posterior Odds
data set mode (keV) region probability ratio

obs-id 47 2.885 (2.67, 3.07) 83.74% ·
0.545 (0.50, 1.99) 35.21% 1.74
2.305 (2.06, 2.43) 9.28% 0.33

obs-id 62 2.845 (2.45, 2.99) 23.78% ·
3.985 (3.36, 4.10) 15.65% 0.59
0.625 (0.50, 1.21) 23.64% 2.01
1.805 (1.57, 1.97) 39.51% 4.25

obs-id 69 2.535 (2.20, 2.82) 13.33% ·
3.835 (3.73, 3.98) 7.10% 0.50
0.605 (0.50, 0.99) 13.14% 0.15

obs-id 70 2.845 (2.51, 3.19) 50.82% ·
5.995 (5.73, 6.00) 14.36% 0.16
0.665 (0.50, 1.19) 15.41% 0.25
2.135 (2.02, 2.47) 7.23% 0.11

obs-id 71 2.715 (2.50, 3.07) 41.78% ·
5.595 (5.36, 5.72) 21.99% 0.39
0.505 (0.50, 1.21) 18.25% 0.12

obs-id 1269 2.905 (2.75, 3.12) 65.11% ·

dra observations, a marginal posterior distribution is presented by connecting the

midpoint of each histogram bar. The corresponding profile posterior distribution

is represented by dashed lines in each panel of Figures 3.7 and 3.8. Although the

marginal and profile posterior distributions differ in treating nuisance parameters,

the figures illustrate that both representations capture similar peaks.

The distribution shown in Figure 3.7 confirms that the delta function line loca-

tion has a highly multimodal posterior distribution. When the posterior distribu-

tion is multimodal, basic summary statistics such as the mean, median, standard

deviation, and percentiles can be difficult to interpret. In this case, the posterior

distribution is better summarized by a list of the several posterior modes and the
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Table 3.7: Summary Statistics for Selected Model Parameters Obtained with PMG I.

Observed Posterior Posterior Posterior
data set Parameter mean std. dev. 2.5% median 97.5%

λ 34.717 17.668 3.346 34.033 68.927
αC 3.4e-4 2.7e-5 3.0e-4 3.4e-4 4.0e-4

obs-id 47
βC 1.754 0.093 1.577 1.752 1.942
ω 0.332 0.166 0.032 0.323 0.671
λ 19.764 23.372 0.610 13.590 92.996
αC 3.6e-4 2.9e-5 3.0e-4 3.6e-4 4.2e-4

obs-id 62
βC 1.769 0.097 1.579 1.769 1.960
ω 0.200 0.239 0.006 0.136 0.967
λ 27.354 29.737 1.018 20.809 122.08
αC 3.5e-4 3.0e-5 2.9e-4 3.4e-4 4.1e-4

obs-id 69
βC 1.741 0.098 1.552 1.741 1.935
ω 0.129 0.130 0.005 0.097 0.554
λ 24.627 22.578 1.242 20.342 88.06
αC 3.2e-4 2.6e-5 2.7e-4 3.2e-4 3.7e-4

obs-id 70
βC 1.686 0.097 1.498 1.686 1.879
ω 0.259 0.225 0.013 0.215 0.846
λ 23.303 19.139 0.993 20.187 65.481
αC 4.0e-4 3.4e-5 3.3e-4 3.9e-4 4.7e-4

obs-id 71
βC 1.826 0.103 1.629 1.825 2.029
ω 0.244 0.204 0.010 0.213 0.670
λ 87.373 214.336 2.358 32.569 782.539
αC 2.7e-4 1.9e-5 2.4e-4 2.7e-4 3.1e-4

obs-id 1269
βC 1.985 0.084 1.821 1.985 2.150
ω 0.920 2.130 0.016 0.279 7.736
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corresponding HPD region. The posterior modes and the 95% HPD region of the

line location are computed for each observation and are presented in Table 3.6. In

the case of a multimodal distribution, each HPD region is typically composed of

a number of intervals; only the intervals that have posterior probabilities greater

than 5% are presented in Table 3.6. For example, the four intervals of obs-id 62

presented in Table 3.6 have a combined posterior probability of 83.92% and the

other twenty one intervals not shown in the table have a posterior probability of

about 11.08%, for a total of 95%. The posterior modes for the line location that are

near 2.74 keV are indicated in bold face in Table 3.6. The posterior modes of the

line location obtained by the Monte Carlo algorithm (i.e., PMG I) are somewhat

different from those obtained by the mode finder (i.e., the Rotation(9) EM-type al-

gorithm) due to the Monte Carlo errors of draws. The last column of Table 3.6

provides odds ratios, which compare each of the possible line locations with the

line location nearest 2.74 keV,

odds ratio =
pL/(1 − pL)

p?/(1 − p?)
, (3.19)

where pL is the posterior probability of a particular line location and p? is the pos-

terior probability of the line location nearest 2.74 keV. Thus, a smaller odds ratio

indicates that the particular line location is less probable than the location nearest

2.74 keV.

Table 3.7 presents basic summary statistics of the total expected counts due to the

line and the power law continuum parameters for each observation of PG1634+706

when a delta function is used to model an emission line; the units of the power law

normalization, αC , are photons/(cm2 · sec · keV), the photon index, βC , is unitless,

and the units of the expected counts due to the emission line, λ, are counts. Ta-

ble 3.7 also presents the equivalent width, ω, which is a measure of line strength

and is defined as

ω =
λ

f(θC , Ej?) · AREAj? · TIME
(3.20)
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where λ is the expected line counts, f(θC , Ej) is the continuum intensity at the

energy Ej , AREAj is the effective area at the energy bin j in cm2 units, TIME is the

exposure time in sec units, and j? is the index of the energy bin that contains the

fitted line location; thus, ω is in keV units.

Because the posterior distributions for these parameters tend to be unimodal and

symmetric, the basic summary statistics such as the mean, standard deviation, me-

dian, and various percentiles (e.g., 2.5%, 50%, and 97.5%) are meaningful. How-

ever, the posterior distribution of λ is sometimes highly right-skewed. This can

be seen in Table 3.7 with obs-id 1269 where the posterior mean of λ is only 0.41

standard deviations away from zero and is much larger than the posterior median.

The median and percentiles of the posterior distribution better represent such a

skewed distribution than do the mean and standard deviation, which are more

affected by extreme values.

Unlike the posterior distribution of the location of a delta function emission line,

the posterior distribution of the Gaussian emission line location tends to be uni-

modal; see Figure 3.8. In this case, basic summary statistics become more relevant.

Table 3.8 shows such summary statistics of the parameters (location, width, and

total expected counts due to the line) of the Gaussian line profile and the power

law continuum parameters for each observation of PG1634+706. In particular,

the Gaussian line location and the power law continuum parameters exhibit uni-

modal, symmetric posterior distributions, which is confirmed by the agreement

between the mean and the median. The Gaussian line width and the total expected

line counts, however, tend to have right-skewed posterior distributions partly be-

cause these parameters are necessarily non-negative. In this case, we again prefer

using the median and other percentiles to summarize the posterior distribution.

The six observations of PG1634+706 were independently observed with Chandra.

Thus, under the flat prior distribution on µ, the posterior distribution of the line
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Table 3.8: Summary Statistics for Selected Model Parameters Obtained with
PMG IV.

Observed Posterior Posterior Posterior
data set Parameter mean std. dev. 2.5% median 97.5%

µ 2.730 0.251 2.275 2.745 3.115
ν2 0.198 0.111 0.078 0.168 0.504
λ 90.956 38.237 20.541 88.925 171.868

obs-id 47
αC 3.7e-4 2.0e-5 3.4e-4 3.7e-4 4.3e-4
βC 1.911 0.087 1.759 1.905 2.097
ω 0.525 0.247 0.082 0.505 1.049
µ 2.665 0.807 0.935 2.695 4.035
ν2 0.279 0.162 0.096 0.230 0.740
λ 37.137 29.51 1.429 31.063 112.121

obs-id 62
αC 3.8e-4 3.0e-5 3.4e-4 3.8e-4 4.5e-4
βC 1.874 0.100 1.708 1.865 2.096
ω 0.340 0.269 0.011 0.287 0.988
µ 2.475 0.639 1.205 2.385 3.885
ν2 0.278 0.167 0.090 0.230 0.757
λ 56.079 40.394 1.985 49.302 150.499

obs-id 69
αC 3.7e-4 3.0e-5 3.3e-4 3.7e-4 4.3e-4
βC 1.861 0.095 1.701 1.852 2.071
ω 0.510 0.418 0.011 0.425 1.534
µ 2.577 0.498 1.365 2.625 3.375
ν2 0.213 0.126 0.078 0.176 0.563
λ 61.647 34.868 3.986 59.811 136.489

obs-id 70
αC 3.5e-4 2.0e-5 3.2e-4 3.5e-4 4.0e-4
βC 1.844 0.083 1.700 1.837 2.023
ω 0.565 0.353 0.030 0.527 1.346
µ 2.513 0.628 0.945 2.545 3.865
ν2 0.245 0.146 0.090 0.203 0.672
λ 46.621 31.241 2.601 42.089 117.568

obs-id 71
αC 4.1e-4 4.0e-5 3.5e-4 4.1e-4 4.9e-4
βC 1.909 0.108 1.708 1.907 2.131
ω 0.482 0.321 0.037 0.432 1.230
µ 2.436 0.585 1.055 2.465 3.675
ν2 0.253 0.141 0.090 0.221 0.640
λ 62.337 43.516 3.248 54.766 162.727

obs-id 1269
αC 2.8e-4 2.0e-5 2.4e-4 2.8e-4 3.2e-4
βC 2.036 0.088 1.872 2.034 2.216
ω 0.354 0.268 0.017 0.301 0.993
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Figure 3.9: Posterior Distributions of the Line Location Given All of the Obser-
vations of PG1634+706. The panels in the left column are plotted over the entire
energy range and those in the right column over the focused range near 2.74 keV.

location given all six observations is given by

p(µ|y) ∝
∫
· · ·
∫ 6∏

i=1

L(µ, ψi|yi)dψ1 · · ·dψ6

=

6∏

i=1

p(µ|yi), (3.21)

where y = {yi, i = 1, . . . , 6} denotes the six observations, µ denotes the line location

parameter, ψ = {ψi, i = 1, . . . , 6} denotes the set of model parameters other than

µ for each of the six observations, and L(µ, ψi|y) represents a likelihood function

of (µ, ψi) given y. (Here we allow ψi to vary among the six observations; i.e., we

do not exclude the possibility that the six observations have somewhat different

power law normalizations and photon indexes.) The values of the posterior dis-

tribution given one of the individual data set is sometimes indistinguishable from
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Table 3.9: Summary Statistics for the Line Locations Given All Six Observations of
PG1634+706. The posterior point estimates of the line location near 2.74 keV where
the Fe-K-alpha emission line was identified are indicated in bold face.

Line profile Posterior Posterior Posterior 95% HPD Posterior Odds
model mean std. dev. mode region probability ratio
Delta

function · · 0.505 (0.50, 0.51) 2.2% 1.2e-3

line · · 2.865 (2.83, 2.92) 94.8% ·
Gaussian

line 2.650 0.111 · · · ·

zero because of numerical inaccuracies. Thus we add 1/20000 to the posterior

probability of each energy bin and renormalize each of the posterior distributions.

This allows the product given in (3.21) to be computed for each energy bin and

is somewhat conservative as it increases the posterior uncertainty corresponding

to each of the individual data sets. Figure 3.9 presents the posterior distributions

of the delta function and Gaussian line locations given all six observations com-

puted in this way; the panels of the left column examine the whole range of the

line location while the panels of the right column focus on the range near 2.74 keV.

Table 3.9 presents the posterior mode and HPD region for the delta function line

location and the posterior mean and standard deviation for the Gaussian line loca-

tion, based on the posterior distributions shown in Figure 3.9; the point estimates

near 2.74 keV are reported in bold face. The odds ratios in Table 3.9 give us strong

evidence of the delta function line location near 2.74 keV. The posterior mean and

standard deviation of the line location under a delta function line profile are af-

fected by the local mode near 0.5 keV, so that the posterior mode and HPD region

can better represent the posterior distribution than the posterior mean and stan-

dard deviation. The posterior distribution of the Gaussian line location shown in

Figure 3.9 closely follows a bell-shaped curve. Thus, we use the posterior mean

and standard deviation as summary statistics. The most probable line is located
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at 2.865+0.055
−0.035 keV for the delta function line profile; the posterior mean of the line

location is 2.650 ± 0.222 keV for the Gaussian line profile. (Error bars correspond

to 95% intervals.)

3.5.3 Model Checking and Evidence for the Emission Line

To check the self-consistency of the spectral model and evaluate the evidence for

an emission line in the spectrum, van Dyk and Kang (2004) suggested the residual

plots and posterior predictive methods for the spectral model used in this section;

however, they use a Gaussian line with fixed width in the spectral model. Here the

methods are applied to the spectral model with a delta function line.

With the Chandra observations of PG1634+706, we consider the same spectral

model discussed in Section 3.1.3 except that we compare three models for the emis-

sion line:

MODEL 0 : There is no emission line in the spectrum.

MODEL 1 : There is a delta function emission line with fixed location but unknown

intensity in the spectrum.

MODEL 2 : There is a delta function emission line with unknown location and in-

tensity in the spectrum.

Taking the prior information for the Fe-K-alpha emission line location (near

2.74 keV) into consideration, MODEL 1 fixes the delta function line location near

2.74 keV. On the other hand, MODEL 2 uses no prior information for the line loca-

tion. We begin with graphical model diagnostics to investigate whether the fitted

models are consistent with the observed data. With the Chandra data set, obs-id 47,

Figure 3.10(a) and (b) compare the observed data with the fitted models under

MODELS 0 and 1 in the first and second column, respectively. In MODEL 1, we fix
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Figure 3.10: Model Diagnostic Plots with Obs-id 47. Panels (a) and (b) show the
data with predictive errors based on a Gaussian approximation; panels (c) and (d)
show the residuals with errors based on a Gaussian approximation; and panels (e)
and (f) show the residuals with errors based on the posterior predictive distribu-
tion. The two columns of the figure correspond to MODELS 0 and 1 respectively.
The excess counts near 2.865 keV are apparent for the panels (a) and (b), thereby
indicating evidence for the inclusion of the emission line in the model; the location
of the emission line is represented by a vertical line in the panel (b).
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the line at 2.865 keV which is fitted near 2.74 keV for the spectral model with a delta

function emission line. The expected counts per channel under the model, Ξl(θ̂),

given in (3.2) are represented by a solid line and the predictive errors by a dotted

line; θ̂ is the posterior mode of θ. The errors are computed as ±2

√
Ξl(θ̂), which is

two standard deviations under the sampling model conditioning on θ̂. This cor-

responds to a 95% error bar under the Gaussian approximation. These errors do

not account for the posterior uncertainty of θ. Figure 3.10(c) and (d) are mean sub-

tracted versions of the panels (a) and (b), i.e., these panels are residual plots. To

better account for the Poisson nature of the data and the posterior variability in

θ, we can compute residual errors based on the posterior predictive distribution.

These plots appear in Figure 3.10(e) and (f); the jagged nature of the posterior pre-

dictive residual errors is due to our Monte Carlo evaluation of this distribution.

The advantage of the posterior predictive errors is evident for the low counts in

the high energy tail of the spectra as shown in the residual plots of Figure 3.10.

Comparing the two columns in Figure 3.10 near 2.865 keV also provides evidence

for the inclusion of the emission line.

We now use ppp-values to compare the three models and quantify the evidence in

the data for the delta function emission line as discussed in Section 3.4; see Pro-

tassov et al. (2002) for details. In the posterior predictive check, MODEL 1 fixes the

line location at 2.74 keV using the prior information as to the Fe-K-alpha emission

line. In order to combine the evidence for the line from all six observations with

different exposure area and exposure time, we base our comparisons on the test

statistic that is the sum of the loglikelihood ratio statistics for comparing MODEL m

and MODEL 0, i.e.,

Tm(y(`)
rep) =

6∑

i=1

log

{
supθ∈Θm

L
(
θ|y(`)

rep i

)

supθ∈Θ0
L
(
θ|y(`)

rep i

)
}
, m = 1, 2, and ` = 1, . . . , 1000, (3.22)

where Θ0, Θ1, and Θ2 represent the parameter spaces under MODELS 0, 1, and 2,

respectively, and y
(`)
rep =

{
y

(`)
rep i, i = 1, . . . , 6

}
denotes the collection of six data sets

simulated under MODEL 0. Specifically, we generate 1000 samples from the poste-
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Figure 3.11: Posterior Predictive Checks Given All Six Observations of
PG1634+706. In each of the two histograms, the observed test statistic (the vertical
line) is compared with the test statistics from 1000 posterior predictive simulated
data sets. The ppp-value is the proportion of the test statistics computed using the
data simulated under MODEL 0 that are as extreme as or more extreme than the ob-
served test statistic. Small ppp-values indicate stronger evidence of the emission
line.

rior predictive distribution of Tm(y
(`)
rep) for m = 1, 2 under MODEL 0. Histograms of

T1(y
(`)
rep) and T2(y

(`)
rep) appear in Figure 3.11; comparing these distributions with the

observed values of the test statistics yields the ppp-values shown in Figure 3.11.

Because there is strong evidence for the presence of the delta function spectral line

given all six observations, MODELS 1 and 2 are preferable to MODEL 0. The com-

parison between MODELS 0 and 1 shows stronger evidence for the line location

because we are using extra information about the plausible line location a priori.

3.6 Concluding Remarks

Identifying emission lines is an important problem to understand the physical

environment and structures of astronomical sources. This chapter presents fully

model-based Bayesian methods to detect the emission lines in X-ray spectra via
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highly structured multilevel spectral models with the delta function and Gaussian

lines. The models are fitted with efficient EM-type algorithms and Gibbs sam-

plers designed to improve the convergence characteristics of their standard coun-

terparts. The usefulness and comparison of the spectral models with two different

line profiles are demonstrated in our simulation study. In particular, the advan-

tage of the spectral model with the delta function line is that it can precisely iden-

tify narrow and weak lines and provide strong evidence for the inclusion of such

lines in the spectrum, as compared to the spectral model with the Gaussian line.

Thus, our simulation study illustrates that a delta function line can serve as a good

starting line profile to identify the line location even in the case where the physical

constraint of a spectral line is opposed to the delta function line.

Our model-based Bayesian methods are applied to the six different Chandra obser-

vations of PG1634+706 to identify a narrow emission line in the X-ray spectrum.

The most probable line with a 95% error bar is identified at 2.865+0.055
−0.035 keV and

2.650±0.222 keV in the observed frame with the delta function and Gaussian emis-

sion lines, respectively. These observed lines are redshifted into 6.69+0.128
−0.082 keV and

6.19 ± 0.518 keV in the quasar rest frame, respectively, and seem to indicate two

opposite states of the ionization of the iron in the emission plasma.

In this chapter, we identify a single emission line and evaluate evidence of the line

in the spectrum. If interested in more than one line (e.g., two lines), we can opti-

mize or simulate another line location after putting the first line in its most proba-

ble location or simultaneously search for several line locations; BLoCXS (Bayesian

fitting of Low Count X-ray Spectra) that is free statistical software and will soon

be available on the CIAO contributed software page has both features for fitting

multiple lines. For example, in one of the Chandra observations, the line location

near 0.5 keV is also identified, as shown in Table 3.6. However, the energy 0.5 keV

in the observed frame of PG1634+706 is transferred into 1.17 keV in the quasar

rest frame where no line can be detected in quasars. Thus, the observed line near
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0.5 keV is presumably due to the instrumental effects. In this case, we can run the

algorithms to identify the second line after fixing the first line at near 0.5 keV or to

search for both lines with spatial restrictions for the first line near 0.5 keV.
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Chapter 4

Joint Imputation Models
for Non-Nested Data

4.1 Introduction

A fixed geographical region is often divided into several different levels of political

partitions. In the Unites States, for example, the country is sequentially divided

into states, into counties, and partially into cities. In this case, one of the partitions

contains or is completely nested within the others. In this chapter, however, we

are particularly interested in data observed in Germany which also has different

levels of geographical partitions that may not be aligned.

Unemployment data are measured on different non-nested geographic partitions

of Germany, i.e., states, counties, agencies, and communities. The set of commu-

nities is the highest resolution partition, and the sets of counties and agencies are

lower resolution partitions each of which consists of several communities. The two

lower resolution partitions are not trivially defined, so that they are not generally

nested one within the other.



Observed dataImputed data

County 2

County 1

Agency K

Agency 2

Agency 1

County J

Community 1

Community 2

Community 3

Community n

PSfrag replacements

ZJC
1

ZJC
2

ZJC
3

ZJC
4

ZJC
5

ZJC
n−2

ZJC
n−1

ZJC
n

ZQP
1

ZQP
2

ZQP
3

ZQP
4

ZQP
5

ZQP
n−2

ZQP
n−1

ZQP
n

Y JC
1

Y JC
2

Y JC
J

Y QP
1

Y QP
2

Y QP
K

Figure 4.1: Data Structure We Would Like to Impute and We Observe.

Our initial data are composed of the bivariate response variable, Job Creation (JC)

and Qualification Program (QP), and a number of covariates; ZJC
i and ZQP

i each de-

notes the number of German people who participate in the job creation and qual-

ification programs in community i, respectively. Each component of the bivariate

response variable is observed at either the county or agency level. There is also

a set of covariates X that are fully observed at the community level. Because we

assume “additivity” of the data, a variable observed at the community level can be

aggregated to recover the corresponding variable at both the county and agency

levels. Thus, the covariates are available at all of the levels of the partition. A diffi-

culty arises when one component of the bivariate response variable is observed on

a certain partition (e.g., the counties), and the other component is observed on a

different partition (e.g., the agencies), which neither contains nor is nested within

the first partition. Figure 4.1 illustrates the plausible misalignment of the observed

89



data, where {Y JC
j , j = 1, 2, . . . , J} denote the Job Creation data observed in J coun-

ties and {Y QP
k , k = 1, 2, . . . , K} denote the Qualification Program data observed in K

agencies. With this misalignment, we aim to devise models to jointly impute the

bivariate response variable at the highest resolution partition (i.e., the communi-

ties), shown in the left panel of Figure 4.1. Once we impute the bivariate response

variable, the county-level or agency-level data that are missing can be recovered by

aggregating the imputed community-level variable to the corresponding partition

under additivity.

The remainder of this chapter is organized into five sections. In Section 4.2, we

present three joint imputation models for data measured on misaligned partitions.

Section 4.3 describes efficient computational algorithms used to fit the joint impu-

tation models. A simulation study is conducted to examine the utility and limi-

tation of the modeling and computational strategies in Section 4.4. In Section 4.5,

we apply our strategies to the real German unemployment data measured on non-

nested partitions. Concluding remarks appear in Section 4.6.

4.2 Joint Imputation Models for Non-Nested Data

4.2.1 Bivariate Gaussian Model

Given the partial sums of a bivariate response variable observed at the different

non-nested levels of partition, we aim to create joint imputations of the bivariate

response variable at the highest resolution partition, properly accounting for its

correlation structure. Modeling the correlation structure would be simplified if we

had the community-level data. Thus, a bivariate response variable at the highest

level of resolution can be modeled with a bivariate Gaussian distribution, so that
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our target model is given by
(

W JC
i

WQP
i

)
ind∼ N2

((
X>
i β1

X>
i β2

)
,

(
σ2

1 σ12

σ12 σ2
2

))
for i = 1, 2, . . . , n, (4.1)

where W JC
i and WQP

i denote the bivariate response variable of JC and QP in com-

munity i, respectively, Xi is a p × 1 vector of known covariates in community i,

β1 and β2 are p × 1 vectors of coefficients for JC and QP, respectively, σ2
1 and σ2

2

are residual variances for W JC and WQP, respectively, σ12 represents a covariance

between W JC and WQP, and n is the number of communities in a particular state

or in all of the German states. We consider the Gaussian model despite the fact

that our data (JC and QP) are non-negative integers because the model allows us

to easily account for the correlation structure with bivariate (or multivariate) re-

sponses. The bivariate Gaussian model in (4.1) also serves as a guideline to fit the

other more appropriate target models that we consider.

As illustrated in Figure 4.1, the set of communities is partitioned into J disjoint

counties and into K disjoint agencies. Let Jj be the set of indices of the com-

munities that are nested within county j, for j = 1, 2, . . . , J . Then, we have

Jj ⊂ {1, 2, . . . , n} such that ∪Jj=1Jj = {1, 2, . . . , n} and Jj ∩ Jk = ∅ for j 6= k.

Likewise, we define by Kk the set of indices of the communities that are nested

within agency k, for k = 1, 2, . . . , K. Because of the additivity of the variables, the

response variable JC in county j, Y JC
j , consists of the sum of the nj values ofW JC

i in

county j, i.e., Y JC
j =

∑
i∈Jj

W JC
i for j = 1, 2, . . . , J . Under the target model in (4.1),

the marginal distribution of Y JC
j is thus given by

Y JC
j =

∑

i∈Jj

W JC
i

ind∼ N

((∑

i∈Jj

Xi

)>
β1, σ

2
1nj

)
for j = 1, 2, . . . , J, (4.2)

where nj =
∑

i∈Jj
1. Similarly, the response variable QP in agency k is the

sum of the community-level response variable QP, i.e., Y QP
k =

∑
i∈Kk

WQP
i for

k = 1, 2, . . . , K. Thus, the target model in (4.1) also implies

Y QP
k =

∑

i∈Kk

WQP
i

ind∼ N

((∑

i∈Kk

Xi

)>
β2, σ

2
2mk

)
for k = 1, 2, . . . , K, (4.3)
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where mk =
∑

i∈Kk
1. Fitting of the two marginal distributions of the target model

is straightforward, given the observed data. Fitting the correlation structure, how-

ever, is more challenging.

4.2.2 Bivariate Lognormal Model

To address the non-negativity of the real data while capitalizing on the flexibility

of the Gaussian distribution for modeling the correlation structure, we consider

the bivariate lognormal model given by
(
W JC

i

WQP
i

)
≡
(

logZJC
i

logZQP
i

)
ind∼ N2

((
(logXi)

>γ1

(logXi)
>γ2

)
,

(
τ 2
1 τ12
τ12 τ 2

2

))
for i = 1, . . . , n, (4.4)

where W JC
i and WQP

i are defined as log-transformed ZJC
i and ZQP

i , respectively,

logXi is a p × 1 vector of known covariates in community i, γ1 and γ2 are p × 1

vectors of coefficients for JC and QP, respectively, τ 2
1 and τ 2

2 are residual variances

for W JC and WQP, respectively, and τ12 represents a covariance between W JC and

WQP. Under the target model in (4.4), the observed data that are the partial sums of

the community-level data do not follow a standard probability distribution. That

is, we observe Y JC
j =

∑
i∈Jj

ZJC
i =

∑
i∈Jj

eW
JC
i rather than Y ?

j ≡ ∑
i∈Jj

logZJC
i =

∑
i∈Jj

W JC
i , and Y ?

j cannot be computed from the observed Y JC
j because log Y JC

j 6=
Y ?
j for nj > 1. Thus, although the lognormal model appears to better account for

the underlying nature of the real data, it is computationally much harder to fit than

the bivariate Gaussian model in (4.1).

4.2.3 Poisson Regression Model

As an alternative model, we may model the number of people in the job creation

or qualification program in community i as an inhomogeneous Poisson process.
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We consider the target models given by

ZJC
i ∼ Poisson

(
λJC
i

)
, where log λJC

i = X>
i δ1 (4.5)

ZQP
i |ZJC

i ∼ Poisson
(
λQP
i

)
, where log λQP

i =
(
Xi Z

JC
i

)>
δ2 (4.6)

or

ZJC
i |ZQP

i ∼ Poisson
(
λJC
i

)
, where log λJC

i =
(
Xi Z

QP
i

)>
δ1 (4.7)

ZQP
i ∼ Poisson

(
λQP
i

)
, where logλQP

i = X>
i δ2. (4.8)

Given the observed data, however, fitting the first target model in (4.5) and (4.6)

or the second target model in (4.7) and (4.8) is not straightforward because, for

example,

Y JC
j =

∑

i∈Jj

ZJC
i ∼ Poisson

(∑

i∈Jj

λJC
i

)
. (4.9)

but
∑

i∈Jj
λJC
i =

∑
i∈Jj

eX
>
i δ1 does not correspond to the mean of a standard log lin-

ear model, i.e., exp
(
(
∑

i∈Jj
Xi)

>δ1
)
6= ∑i∈Jj

eX
>
i δ1 . Thus, the observed data cannot

be directly modeled as a Poisson loglinear model. We thus devise computationally

intensive methods to fit the target models in Section 4.3. With the Poisson regres-

sion model in (4.5) and (4.6) or in (4.7) and (4.8), however, we lose the power of

analytically modeling the correlation structure of the bivariate response variable,

and the model fitting depends on the order in which we set up the conditional

distributions of the joint models.

4.3 Computation

4.3.1 Overview of Computational Methods

Based on the joint imputation models described in Section 4.2, we aim to cre-

ate joint imputations of a bivariate response variable from its joint posterior pre-

dictive distribution, e.g., p(ZJC, ZQP|Y JC, Y QP). Because the posterior predic-

tive distribution is implicitly integrated over the model parameters θ, the joint
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imputation procedure can be accomplished by iteratively drawing the missing

community-level variable from p(ZJC, ZQP|θ, Y JC, Y QP) and the parameters from

p(θ|ZJC, ZQP, Y JC, Y QP). Because the bivariate response variable is measured on

misaligned partitions, however, it is not even feasible to analytically write the joint

imputation procedure p(ZJC, ZQP|θ, Y JC, Y QP), which leads us to consider three

methods to create joint imputations.

To circumvent the difficulty, the first method formulates the joint imputation pro-

cedure in terms of two complete conditional distributions, p(ZJC|ZQP, θ, Y JC, Y QP)

and p(ZQP|ZJC, θ, Y JC, Y QP), because the conditional distribution of one compo-

nent of the bivariate response variable given the other component is rather avail-

able. We note that these two conditional distributions are compatible for Gaussian

models. In the case of non-Gaussian models, however, these two conditional distri-

butions are not necessarily compatible because they are not generally constructed

from a consistent model. In this case, the corresponding Markov chain may not

have a (known) stationary distribution. That is, one could use the two conditional

distributions for the Poisson regression model, but we emphasize that they may

be incompatible because they are not derived from a common joint distribution.

In the second method, the joint imputation procedure is also embedded into

the MCMC sampler, but we consider formulating the joint imputation proce-

dure in terms of marginal and conditional distributions, e.g., p(ZJC|θ, Y JC, Y QP)

and p(ZQP|ZJC, θ, Y JC, Y QP). Unfortunately, however, the marginal distribution

p(ZJC|θ, Y JC, Y QP) is not expressed in a closed form because of the misalign-

ment of partitions. We thus suggest using an incoherent marginal distribution

p(ZJC|θ, Y JC) as if it were p(ZJC|θ, Y JC, Y QP). That is, we do not use a coher-

ent model in this method, but each imputation should be better behaved because

we use the marginal and conditional distributions instead of the two conditional

distributions. Our simulation study in Section 4.4 shows that this approximation

works reasonably well.
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Lastly, after we completely impute one component of a bivariate response variable

from a marginal distribution, the other component is sequentially imputed using

the imputed variable as an another covariate. Because of the same difficulty of

the misaligned partitions, the incoherent marginal distribution is substituted for

the correct marginal distribution. Although it is also based on the incoherent im-

putation procedure, this strategy not only produces better behaved imputations,

but reduces model complexity by focusing on one component at a time. Because

the imputation procedure for each component is separated, we can easily use a

sampling importance resampling (SIR) method (Rubin, 1987) that corrects the in-

consistent imputation procedure toward the consistent one. In addition to SIR, we

also use a MCMC sampler when imputing one component at a time. We note that

the MCMC strategy requires M + 1 different chains to create M joint imputations:

We run a single chain to create the M imputations of the first component, and

then M chains for the second component using each of the M imputations as an

additional covariate in each chain.

In this chapter, we employ the second imputation method for the bivariate Gaus-

sian model to create joint imputations and devise an incompatible MCMC sampler

introduced in Chapter 2. For the bivariate lognormal and Poisson regression mod-

els, the third imputation method is used after formulating a joint distribution in

terms of marginal and conditional distributions. In particular, we use both the

SIR and MCMC methods to create joint imputations from the bivariate lognormal

model, while the Poisson regression model is fitted by the MCMC method.

4.3.2 Creating Joint Multiple Imputations

Fitting the Bivariate Gaussian Model

The bivariate Gaussian model could be easily fitted if the community-level vari-

ables were known. This leads us to consider the method of data augmentation
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where we treat the community-level variables as missing data. Using the multi-

variate Jeffrey’s flat prior distribution,

p(θ) ∝
∣∣∣∣
σ2

1 σ12

σ12 σ2
2

∣∣∣∣
−3/2

, (4.10)

the target posterior distribution of interest is given by

p(W JC,WQP, θ|Y JC, Y QP) ∝
∣∣∣∣
σ2

1 σ12

σ12 σ2
2

∣∣∣∣
−n+3

2

× exp

(
− 1

2

n∑

i=1

(
W JC

i −X>
i β1

WQP
i −X>

i β2

)>(
σ2

1 σ12

σ12 σ2
2

)−1(W JC
i −X>

i β1

WQP
i −X>

i β2

))
, (4.11)

where θ denotes the model parameters, i.e., θ = (β1, β2, σ
2
1, σ

2
2, σ12). Using the com-

plete conditional distributions of the target distribution in (4.11), we can easily

construct the MCMC sampler that iterates among

STEP 1 : Draw β1 from p(β1|β2, σ
2
1, σ

2
2 , σ12,W

JC,WQP, Y JC, Y QP), (Sampler 4.3.1)

STEP 2 : Draw β2 from p(β2|β1, σ
2
1, σ

2
2 , σ21,W

JC,WQP, Y JC, Y QP),

STEP 3 : Draw (W JC,WQP) from p(W JC,WQP|θ, Y JC, Y QP), and

STEP 4 : Draw
(
σ2

1 σ12

σ12 σ2
2

)
from p

((
σ2

1 σ12

σ12 σ2
2

)∣∣∣β1, β2,W
JC,WQP, Y JC, Y QP

)
.

As introduced in Chapter 2, however, we can improve the convergence character-

istics of the MCMC sampler by partially marginalizing over (W JC,WQP). Specif-

ically, we first marginalize (W JC,WQP) out of STEPS 1 and 2, then trim the draws

because they do not affect the transition kernel of the Markov chain constructed

by the MCMC sampler. This results in the partially marginalized MCMC sampler

that iterates among

STEP 1 : Draw β1 from p(β1|β2, σ
2
1, σ

2
2 , σ12, Y

JC, Y QP), (Sampler 4.3.2)

STEP 2 : Draw β2 from p(β2|β1, σ
2
1, σ

2
2 , σ21, Y

JC, Y QP),
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STEP 3 : Draw (W JC,WQP) from p(W JC,WQP|θ, Y JC, Y QP), and

STEP 4 : Draw
(
σ2

1 σ12

σ12 σ2
2

)
from p

((
σ2

1 σ12

σ12 σ2
2

)∣∣∣β1, β2,W
JC,WQP, Y JC, Y QP

)
.

Note that Sampler 4.3.2 is constructed using a set of incompatible conditional dis-

tributions, maintaining the same transition kernel as Sampler 4.3.1; see Chapter 2

for more details.

To obtain the conditional distributions marginalized over (W JC,WQP) in STEPS 1

and 2 of Sampler 4.3.2, we consider the reparameterization of (σ2
1, σ

2
2, σ12). To do

so, we introduce a (J + K) × (2n) indicator matrix M where the first J rows and

the first n columns indicate which communities are contained in each county, and

the next K rows and the second n columns indicate which communities are in each

agency; the other components of M are set to zero. Then, observed data are given

by multiplying the vector of community-level variables by the indicator matrix M,

i.e.,

(
Y JC

Y QP

)
= M·

(
W JC

WQP

)
≡ M ·




W JC
1
...

W JC
n

WQP
1
...

WQP
n




, (4.12)

where Y JC is a J × 1 vector containing the observed partial sums of W JC, Y QP is a

K × 1 vector containing the observed partial sums of WQP, and W JC and WQP are

n × 1 vectors of the community-level variables JC and QP, respectively. Using the
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notation in (4.12), we can rewrite the target model in (4.1) as

(
Y JC

Y QP

)
∼ NJ+K







(
∑

i∈J1
Xi)

>β1

...
(
∑

i∈JJ
Xi)

>β1

(
∑

i∈K1
Xi)

>β2

...
(
∑

i∈KK
Xi)

>β2




,M·




σ2
1 0 0 σ12 0 0

0
. . . 0 0

. . . 0
0 0 σ2

1 0 0 σ12

σ12 0 0 σ2
2 0 0

0
. . . 0 0

. . . 0
0 0 σ12 0 0 σ2

2




·M>




≡ NJ+K

((
(XJC)>β1

(XQP)>β2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
, (4.13)

where XJC is a p × J matrix containing the partial sums of the covariates in the

counties, XQP is a p × K matrix containing the partial sums of the covariates in

the agencies, Σ11 is a J × J diagonal matrix of the variances of Y JC, Σ22 is a K ×K

diagonal matrix of the variances of Y QP, and Σ12 = Σ>
21 is a J×K covariance matrix

of Y JC and Y QP. Based on the prior distribution in (4.10) and the model in (4.13),

the conditional distribution in STEP 1 of Sampler 4.3.2 is given by

p(β1|β2, σ
2
1, σ

2
2, σ12, Y

JC, Y QP)

∝ p(β1, β2, σ
2
1, ψ

2
2, ψ12|Y JC, Y QP) · (σ2

1)
−2

∝ exp

(
− 1

2σ2
1

(
W JC − (XJC)>β1

WQP − (XQP)>β2

)>

Υ

(
W JC − (XJC)>β1

WQP − (XQP)>β2

))
, (4.14)

where (σ2
1)

−2 is the Jacobian of the transformation (σ2
2, σ12) 7→ (ψ2

2, ψ12) and Υ ≡(
Υ11 Υ12

Υ21 Υ22

)
= σ2

1

(
Σ11 Σ12

Σ21 Σ22

)−1

is a function of ψ2
2 and ψ12. The transformation al-

lows us to draw β1 from the reduced conditional distribution that has a standard

form. Based on the posterior distribution in (4.14), STEP 1 of Sampler 4.3.2 is im-

plemented by

β1|(β2, σ
2
1, σ

2
2, σ12, Y

JC, Y QP) ∼ Np

(
β̂1, σ

2
1

[
XJCΥ11(X

JC)>
]−1
)
, (4.15)

where β̂1 =
[
XJCΥ11(X

JC)>
]−1(

XJCΥ11Y
JC + XJCΥ12

[
Y QP − (XQP)>β2

])
. Due

to the symmetry, STEP 2 of Sampler 4.3.2 is implemented in the same manner as

STEP 1, except using p(β2|β1, σ
2
1, σ

2
2, σ21, Y

JC, Y QP) ∝ p(β2|β1, ψ
2
1, σ

2
2, ψ21, Y

JC, Y QP)

where ψ2
1 = σ2

1/σ
2
2 and ψ21 = σ12/σ

2
2 .
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Next, STEP 3 imputes the community-level variables given the observed

sums and parameters. Because of the difficulty with the non-nested

data, we first formulate the joint imputation procedure in terms of

p(W JC|θ, Y JC) and p(WQP|W JC, θ, Y JC, Y QP) rather than p(W JC|θ, Y JC, Y QP)

and p(WQP|W JC, θ, Y JC, Y QP), as discussed in Section 4.3.1. Then, given the

observed sum, the community-level variables within each county or agency

follow a multivariate truncated normal distribution. To implement this step,

we use a Gibbs sampling technique by drawing each community-level variable

from its complete conditional distribution of the joint distribution. For example,

to draw the community-level variables from p({W JC
i , i ∈ Jj}|θ, Y JC

j ), we notice

that if we arbitrarily drop one component W JC
` , the remaining components and

Y JC
j jointly follow a multivariate normal distribution. Thus it is easy to compute

p({W JC
i , i ∈ Jj, i 6= `}|θ, Y JC

j ) that is a multivariate truncated normal distribution.

We draw each component of {W JC
i , i ∈ Jj, i 6= `} from the corresponding complete

conditional distribution of p({W JC
i , i ∈ Jj, i 6= `}|θ, Y JC

j ), and finally we set

W JC
` = Y JC

j −∑i∈Jj ,i6=`
W JC

i . We repeat this Gibbs sampling procedure for some

iterations to obtain better imputations for {W JC
i , i ∈ Jj, i 6= `}, so that the nested

Gibbs sampling steps are embedded into the MCMC sampler.

With the community-level variables imputed in STEP 3, the covariance ma-

trix of the target model in (4.1) can be easily updated. Specifically, given

(β1, β2,W
JC,WQP, Y JC, Y QP), STEP 4 draws

(
σ2

1 σ12

σ12 σ2
2

)
from an Inverse Wishart dis-

tribution,
(
σ2

1 σ12

σ12 σ2
2

)∣∣∣(β1, β2,W
JC,WQP, Y JC, Y QP)

∼ Inv−Wishart

(
n,

n∑

i=1

(
W JC

i −X>
i β1

WQP
i −X>

i β2

)(
W JC

i −X>
i β1

WQP
i −X>

i β2

)>
)
. (4.16)
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Fitting the Bivariate lognormal Model via MCMC

Based on the bivariate lognormal model given in (4.4), we begin our joint imputa-

tion procedure by formulating the joint distribution p(W JC,WQP|ϑ, Y JC, Y QP) in

terms of incoherent marginal and conditional distributions, i.e., p(W JC|ϑ1, Y
JC)

and p(WQP|W JC, ϑ, Y JC, Y QP), where ϑ = (ϑ1, ϑ2), ϑ1 = (γ1, τ
2
1 ), and ϑ2 =

(γ2, τ
2
2 , τ12). Note that we use the incoherent marginal distribution as if it were

p(W JC|ϑ, Y JC, Y QP), because the correct marginal distribution is unknown from

the non-nested data. To create joint imputations, we completely impute W JC from

p(W JC|ϑ1, Y
JC), then each imputation of W JC is used as an additional covariate to

sequentially impute WQP from p(WQP|W JC, ϑ, Y JC, Y QP).

To illustrate the componentwise imputation, we first describe the marginal impu-

tation procedure forW JC. We notice that only nj−1 components of {W JC
i , i ∈ Jj} =

(W JC
1,j ,W

JC
2,j , . . . ,W

JC
nj ,j

) are free given the observed sum Y JC
j in county j, which en-

ables us to find the joint distribution p
(
W JC

1,j ,W
JC
2,j , . . . ,W

JC
nj−1,j , Y

JC
j |ϑ1

)
using the

transformation W JC
nj ,j

= log
(
Y JC
j −∑nj−1

l=1 eW
JC
l,j

)
. Then, using the flat prior distribu-

tion on (γ1, log τ1), i.e., p(ϑ1) ∝ (τ 2
1 )−1, the target posterior distribution of interest is

given by

p
(
{W JC

l,j , l = 1, . . . , nj − 1, j = 1, . . . , J}, ϑ1

∣∣Y JC
)

∝ exp

(
− 1

2τ 2
1

∑J

j=1

{∑nj−1

l=1

[
W JC

l,j − (logXl,j)
>γ1

]2

+

[
log
(
Y JC
j −

∑nj−1

l=1
eW

JC
l,j

)
− (logXnj ,j)

>γ1

]2})

× (τ 2
1 )−(n/2+1)

∏J

j=1

(
Y JC
j −

∑nj−1

l=1
eW

JC
l,j

)−1

. (4.17)

Using the complete conditional distributions of the target distribution in (4.17), we

can construct the MCMC sampler for county j, which iterates between

STEP 1 : Draw W JC
l,j from p(W JC

l,j |W JC
−l,j, ϑ1, Y

JC) (Sampler 4.3.3)
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for l = 1, 2, . . . , nj − 1,

STEP 2 : Draw ϑ1 from p(ϑ1|W JC
1,j ,W

JC
2,j , . . . ,W

JC
nj−1,j , Y

JC),

where W JC
−l,j = (W JC

1,j , . . . ,W
JC
l−1,j,W

JC
l+1,j, . . . ,W

JC
nj−1,j). Because the conditional dis-

tribution in STEP 1 of Sampler 4.3.3 is not a standard distribution, i.e.,

p(W JC
l,j |W JC

−l,j, ϑ1, Y
JC) ∝ exp

(
− 1

2τ 2
1

{[
W JC

l,j − (logXl,j)
>γ1

]2

+

[
log
(
Y JC
j −

∑nj−1

l=1
eW

JC
l,j

)
− (logXnj ,j)

>γ1

]2})

×
(
Y JC
j −

∑nj−1

l=1
eW

JC
l,j

)−1

, (4.18)

we use a Metropolis-Hastings algorithm (Metropolis and Ulam, 1949; Hastings,

1970) with the truncated Gaussian distribution,

Jt(W
JC
l,j |W JC

−l,j, ϑ1, Y
JC) ∝ N

(
(logXl,j)

>γ1, τ
2
1

)
· 1{

W JC
l,j

< Y JC
j −

P
e
WJC

−l,j

}, (4.19)

as the jumping rule at iteration t, where 1{A} is 1 if A is true and 0 otherwise. We

accept the draw (W JC
l,j )∗ from Jt(W

JC
l,j |W JC

−l,j, ϑ1, Y
JC) with probability

p
(
(W JC

l,j )∗
∣∣W JC

−l,j, ϑ1, Y
JC
)/
Jt
(
(W JC

l,j )∗
∣∣W JC

−l,j, ϑ1, Y
JC
)

p
(
(W JC

l,j )(t−1)
∣∣W JC

−l,j, ϑ1, Y JC
)/
Jt
(
(W JC

l,j )(t−1)
∣∣W JC

−l,j, ϑ1, Y JC
) . (4.20)

After STEP 1 of Sampler 4.3.3, the last component of {W JC
i , i ∈ Jj} in county j

is recovered via W JC
nj ,j

= log
(
Y JC
j − ∑nj−1

l=1 eW
JC
l,j

)
. With the draws of {W JC

l,j , l =

1, . . . , nj − 1, j = 1, . . . , J} from STEP 1, the conditional distribution in STEP 2 of

Sampler 4.3.3 is rewritten as

p(ϑ1|{W JC
l,j , l = 1, . . . , nj − 1, j = 1, . . . , J}, Y JC)

= p(ϑ1|W JC)

∝ (τ 2
1 )−(n/2+1) exp

(
− 1

2τ 2
1

∑n

i=1

[
W JC

i − (logXi)
>γ1

]2)
. (4.21)

That is, we can easily draw ϑ1 = (γ1, τ
2
1 ) using standard probability distributions

derived from (4.21). After monitoring the convergence of the chain, we create mul-

tiple imputations for W JC, which are used as additional covariates in the condi-

tional imputations for WQP.
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The imputation procedure for WQP is the same as above, except that we have

an additional covariate, W JC. For computational convenience, we use the trans-

formation ϑ̃ 7→ ϑ where ϑ̃ = (ϑ1, ϑ̃2) = (γ1, τ
2
1 , γ2|1, τ

2
2|1, α2|1), γ2|1 = γ2 − α2|1γ1,

τ 2
2|1 = τ 2

2 − α2
2|1τ

2
1 , and α2|1 = τ12/τ

2
1 . Because the imputations of WQP are of our

main interest, we can rewrite the imputation procedure p(WQP|W JC, ϑ, Y JC, Y QP)

as p(WQP|W JC, ϑ̃2, Y
JC, Y QP). Using the flat prior distribution on (α2|1, γ2|1, log τ2|1),

i.e., p(ϑ̃2) ∝ (τ 2
2|1)

−1, the second target posterior distribution is given by

p
(
{WQP

l,k , l = 1, . . . , mk − 1, k = 1, . . . , K}, ϑ̃2

∣∣W JC, Y JC, Y QP
)

∝ exp

(
− 1

2τ 2
2|1

∑K

k=1

{∑mk−1

l=1

[
WQP

l,k − (logXl,k)
>γ2|1 −W JC

l,k α2|1

]2

+

[
log
(
Y QP
k −

∑mk−1

l=1
eW

QP

l,k

)
− (logXmk,k)

>γ2|1 −W JC
mk ,k

α2|1

]2})

× (τ 2
2|1)

−(n/2+1)
∏K

k=1

(
Y QP
k −

∑mk−1

l=1
eW

QP

l,k

)−1

. (4.22)

Using the complete conditional distributions of the target distribution in (4.22), we

construct another MCMC sampler for agency k, which iterates between

STEP 1 : Draw WQP
l,k from p(WQP

l,k |WQP
−l,k,W

JC, ϑ̃2, Y
JC, Y QP) (Sampler 4.3.4)

for l = 1, 2, . . . , mk − 1,

STEP 2 : Draw ϑ̃2 from p(ϑ̃2|WQP
1,k ,W

QP
2,k , . . . ,W

QP
mk−1,k,W

JC, Y JC, Y QP),

where WQP
−l,k = (WQP

1,k , . . . ,W
QP
l−1,k,W

QP
l+1,k, . . . ,W

QP
mk−1,k). Specifically, the conditional

distribution in STEP 1 of Sampler 4.3.4 is given by

p(WQP
l,k |WQP

−l,k,W
JC, ϑ̃2, Y

JC, Y QP)

∝ exp

(
− 1

2τ 2
2|1

{[
WQP

l,k − (logXl,k)
>γ2|1 −W JC

l,k α2|1

]2

+

[
log
(
Y QP
k −

∑mk−1

l=1
eW

QP

l,k

)
− (logXmk,k)

>γ2|1 −W JC
mk ,k

α2|1

]2})

×
(
Y QP
k −

∑mk−1

l=1
eW

QP

l,k

)−1

. (4.23)
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Because WQP
l,k does not follow a standard distribution, as shown in (4.23), we again

use a Metropolis-Hastings algorithm with the truncated Gaussian distribution,

Jt(W
QP
l,k |WQP

−l,k,W
JC, ϑ̃2, Y

JC, Y QP)

∝ N
(
(logXl,k)

>γ2|1 +W JC
l,k α2|1, τ

2
2|1

)
· 1{

WQP

l,k
< Y QP

k
−

P
e
W

QP
−l,k

}, (4.24)

as the jumping rule at iteration t. After STEP 1 of Sampler 4.3.4, the last compo-

nent of {WQP
i , i ∈ Kk} for agency k is also recovered from WQP

mk ,k
= log

(
Y QP
k −

∑mk−1
l=1 eW

QP

l,k

)
. Once we complete STEP 1, the conditional distribution in STEP 2 of

Sampler 4.3.4 is simplified as

p(ϑ̃2|{WQP
l,k , l = 1, . . . , mk − 1, k = 1, . . . , K},W JC, Y JC, Y QP)

= p(ϑ̃2|W JC,WQP)

∝ (τ 2
2|1)

−(n/2+1) exp

(
− 1

2τ 2
2|1

∑n

i=1

[
WQP

i − (logXi)
>γ2|1 −W JC

i α2|1

]2)
.(4.25)

Thus, the regression parameters ϑ̃2 = (γ2|1, τ
2
2|1, α2|1) can be drawn from standard

probability distributions derived from (4.25).

Fitting the Bivariate Lognormal Model Using SIR

As an another approach to fitting the bivariate lognormal model in (4.4), we con-

sider the componentwise imputations using SIR. Under the target model in (4.4),

the marginal distribution of ZJC is given by

logZJC
i

ind∼ N
(
(logXi)

>γ1, τ
2
1

)
for i = 1, 2, . . . , n, (4.26)

which implies that

Y ?
j ≡

∑

i∈Jj

logZJC
i

ind∼ N

((∑

i∈Jj

logXi

)>
γ1, τ

2
1nj

)
for j = 1, 2, . . . , J. (4.27)

Our goal is to impute the variable at the community level. Ideally, if we observed

Y ? = (Y ?
1 , Y

?
2 , . . . , Y

?
J ), we could easily compute p({ZJC

i , i ∈ Jj}|Y ?
j , ϑ1) using prop-

erties of the multivariate normal distribution and impute the community-level
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response variable ZJC, as illustrated by fitting the Bivariate Gaussian model in

Section 4.3.2. Unfortunately, however, we do not observe Y ? and cannot com-

pute it from the observed Y JC = {∑i∈Jj
ZJC
i , j = 1, 2, . . . , J} because log Y JC

j =

log
∑

i∈Jj
ZJC
i 6= ∑

i∈Jj
logZJC

i = Y ?
j for nj > 1. Thus, directly fitting the bivariate

lognormal model is intractable based on our observed data.

To circumvent this difficulty, we can impute a large number of “proposal” data sets

under a working model that is relatively tractable, and resample several imputations

according to the importance ratios computed using the posterior predictive dis-

tributions under the target and working models, i.e., p(ZJC|Y ?)/p(ZJC|Y JC). The

importance ratio measures the likelihood of a particular value of the response vari-

ables in each community under the target model in (4.26) relative to its likelihood

under the working model. By resampling the proposal data sets according to the

importance ratios, we are correcting the working model toward the target model:

Proposal data sets that are more likely under the working model than under the

target model tend to be discarded, whereas proposal data sets that are more likely

under the target model tend to be retained. As a tractable working model, we

consider a truncated normal model, i.e.,

ZJC
i

ind∼ N(X>
i γ̃1, τ̃

2
1 )1{ZJC

i >0} for i = 1, 2, . . . , n, (4.28)

where ZJC
i is truncated to be positive.

The importance resampling procedure begins by fitting the working model. Under

the working model in (4.28), the observed Y JC
j in county j also follow a truncated

normal distribution,

Y JC
j

ind∼ N

((∑

i∈Jj

Xi

)>
γ̃1, τ̃

2
1nj

)
1{Y JC

i >0}, for j = 1, 2, . . . , J, (4.29)

due to the additivity of the variables. Based on (4.29), we simulate M draws of

ϑ̃1 = (γ̃, τ̃ 2
1 ) from the posterior distribution p(ϑ̃1|Y ). Because the likelihood implied

by (4.29) involves a truncated normal distribution under the working model, a
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least squares method based on a normal distribution cannot be directly used to fit

the parameters. Instead, we tentatively impute the supposed truncated negative

values of the response variable given the corresponding covariates and the current

draw of the parameters, add them to the observed data set with the covariates, and

use weighted least squares to update the parameters ϑ̃1. Specifically, we draw the

number of negative values of Y JC
j from a geometric distribution,

Tj ∼ Geometric
(
p(Y JC

j < 0)
)

for j = 1, 2, . . . , J, (4.30)

and impute the negative response variables via a truncated normal distribution,

V JC
`j

ind∼ N

((∑

i∈Jj

Xi

)>
γ̃1, τ̃

2
1nj

)
1{V JC

`j
<0}, for ` = 1, . . . , Tj and j = 1, . . . , J. (4.31)

This procedure is iteratively repeated in order to obtain a sample from the poste-

rior distribution of ϑ̃1. We emphasize that the supposed truncated negative values

of the response variable are introduced for computational convenience. They have

no interpretation outside of the sampling algorithm. Given the posterior draws of

ϑ̃1 and the observed sums Y JC, we impute M data sets of ZJC at the community

level by drawing from p(ZJC|ϑ̃1, Y
JC). In particular, the joint conditional distribu-

tion of {ZJC
i , i ∈ Jj} given the parameters ϑ̃1 and the observed sum Y JC

j is a mul-

tivariate truncated normal distribution that is truncated to an interval between 0

and the total sum Y JC
j . Directly drawing from the multivariate truncated normal

distribution is not straightforward, so that we take advantage of the nested Gibbs

sampling technique used when the bivariate Gaussian model is fitted.

Let ZJC(m)
i denote the mth data set imputed in community i by using the mth pos-

terior draw of ϑ̃1 for i = 1, 2, . . . , n and m = 1, 2, . . . ,M . Once we obtain the M

imputed data sets at the community level, we must compute importance ratios

that are used to compare the target and working models and to resample several

imputations based on the importance ratios. To do this, the posterior predictive

distributions under the target and working models are evaluated at each of the M

imputed data sets. That is, the objective is to compute p(logZJC(m)|Y ?) under the
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target model and p(ZJC(m)|Y JC) under the working model, for m = 1, 2, . . . ,M .

Unfortunately, p(logZJC(m)|Y ?) cannot be evaluated directly, because Y ? is not

observed. To circumvent this difficulty, we instead compute p(logZJC(m)|Y ?(m))

where Y ?(m) =
∑

i∈Jj
logZ

JC(m)
i . Thus, for each ZJC(m), we evaluate the posterior

predictive distribution under the target model,

p(logZJC(m)|Y ?(m)) =

∫
p(logZJC(m)|ϑ1)p(ϑ1|Y ?(m))dϑ1

≈ 1

L

L∑

`=1

p(logZJC(m)|ϑ(`)
1 ), (4.32)

where ϑ(`)
1 for ` = 1, 2, . . . , L represents the posterior samples of ϑ1 from p(ϑ1|Y ?(m))

under the target model with Y ? replaced by its value under the mth imputed data

set. The L draws of ϑ1 are used to numerically integrate ϑ1 out of the joint dis-

tribution p(logZJC(m), ϑ1|Y ?(m)). The posterior predictive distribution under the

working model is evaluated via

p(ZJC(m)|Y ) =

∫
p(ZJC(m)|ϑ̃1)p(ϑ̃1|Y )dϑ̃1

≈ 1

L

L∑

`=1

p(ZJC(m)|ϑ̃(`)
1 ), (4.33)

where ϑ̃(`)
1 for ` = 1, 2, . . . , L represents the posterior samples from p(ϑ̃1|Y ) under

the working model. The L draws of ϑ̃1 are used to numerically integrate ϑ̃1 out

of the joint distribution p(ZJC(m), ϑ̃1|Y ). With the two evaluated posterior predic-

tive distributions in hand, we can compute the importance ratios (IR) for the M

imputed data sets, as

IRm ≡ p(ZJC(m)|Y ?)

p(ZJC(m)|Y )
≈ p(ZJC(m)|Y ?(m))

p(ZJC(m)|Y )

=
p(logZJC(m)|Y ?(m))|Jm|

p(ZJC(m)|Y )
, for m = 1, 2, . . . ,M, (4.34)

where |Jm| is the Jacobian of the transformation ZJC 7→ logZJC for themth imputed

data set given by

|Jm| =

n∏

i=1

1

Z
JC(m)
i

= exp

(
−

n∑

i=1

logZ
JC(m)
i

)
. (4.35)
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Using probabilities that are proportional to the importance ratios, we resample

several sets of community-level imputations without replacement.

Once we obtain M imputations of ZJC, we sequentially impute the second compo-

nent ZQP using each of the M imputations as an additional covariate. That is, the

above procedure is repeated for each imputation of ZJC to obtain the correspond-

ing imputation of ZQP, after we replacing the target imputation model p(ZJC|ϑ1)

with p(ZQP|ZJC, ϑ).

Fitting the Poisson Regression Model

To create joint imputations from the Poisson regression model in (4.5) and (4.6),

we employ the componentwise imputation method. That is, the first compo-

nent ZJC is imputed from the incoherent marginal distribution p(ZJC|δ1, Y JC),

then we impute the second component ZQP from the conditional distribution

p(ZQP|ZJC, δ1, δ2, Y
JC, Y QP), using each imputation of ZJC as an additional covari-

ate for each imputation of ZQP.

We begin our imputation method by illustrating the marginal imputation proce-

dure of ZJC. Based on the Poisson regression model in (4.5), the observed sum in

county j, Y JC
j =

∑
i∈Jj

ZJC
i , follows a Poisson distribution,

Y JC
j

ind∼ Poisson
(∑

i∈Jj

λJC
i

)
= Poisson

(∑
i∈Jj

eX
>
i δ1
)
, (4.36)

for j = 1, 2, . . . , J . Thus, under the flat prior distribution p(δ1) ∝ 1, the observed-

data log posterior distribution is given by

log p(δ1|Y JC) = constant +
J∑

j=1

{
Y JC
j log

(∑

i∈Jj

eX
>
i δ1

)}
−

J∑

j=1

∑

i∈Jj

eX
>
i δ1 . (4.37)

Because the posterior distribution of δ1 is not a standard distribution, we sample

δ1 using a Metropolis-Hastings algorithm. As a jumping rule, we choose the mul-

tivariate Gaussian distribution whose mode and curvature are computed using
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a multivariate Newton-Raphson method and matched to the observed posterior

distribution. To compute the posterior mode, δ̂1, we run the following Newton-

Raphson iteration from a starting value δ(0)
1 until a pre-specified precision is met:

δ
(t)
1 = δ

(t−1)
1 −

[
L′′
(
δ
(t−1)
1

)]−1
L′
(
δ
(t−1)
1

)
, for t = 1, 2, . . . , (4.38)

where L(δ1) ≡ log p(δ1|Y JC), L′(δ1) is a p × 1 vector of first derivatives of the log

posterior distribution, and L′′(δ1) is a p× p matrix of second derivatives of the log

posterior distribution.

Given the posterior draws of δ1, we impute the community-level data, ZJC, subject

to the observed sums, Y JC. In particular, the conditional distribution p({ZJC
i , i ∈

Jj}|δ1, Y JC
j ) follows a multinomial distribution, i.e.,

{ZJC
i , i ∈ Jj}

∣∣(δ1, Y JC
j ) ∼ Multinomial

(
Y JC
j ,

{
exp(X>

i δ1), i ∈ Jj
}

∑
i∈Jj

exp(X>
i δ1)

)
. (4.39)

After completely imputing ZJC, we use the imputations of ZJC to sequentially im-

pute ZQP in the model (4.6). Thus, we repeat the same imputation procedure as

above to create the imputations of ZQP, except that each imputation of ZJC is used

as an additional covariate.

4.4 Simulation Study

To test and compare our models and computational methods, we conduct four

simulation studies. We simulate data for a number of communities in a fixed re-

gion, and then aggregate the community-level data to the county or agency level.

In our simulation studies, we have the same number of communities (i.e., n = 120),

and we construct the counties and agencies by combining every nj = 5 commu-

nities and every mk = 8 communities, respectively. This means that there are

J = 120/5 = 24 counties and K = 120/8 = 15 agencies.
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Figure 4.2: Quantile-Quantile Plots of Joint Multiple Imputations and Original
Data Simulated Under the Bivariate Gaussian Model. The first row of the figure is
drawn for the Job Creation variable, W JC, and the second row for the Qualification
Program variable, WQP.

For the bivariate Gaussian model, we generate data using the regression coeffi-

cients, β1 = (1.0 0.5)> and β2 = (1.0 0.2)>, and the covariance matrix,
( σ2

1 σ12

σ12 σ2
2

)
=

( 1 1.8
1.8 4

)
. The values of these model parameters are used to simulate n = 120

community-level data. Our observed data are given by taking the partial sums

of every five ZJC variables (i.e, Y JC) and every eight ZQP variables (i.e, Y QP). To

compare data imputed under the model to the original full data, we construct a

quantile-quantile plot. If the multiple imputations are from the same distribution

as the original data, the quantile-quantile plot will be linear, i.e., the points in the

plot follow a 45-degree line. As confirmed in Figure 4.2, each quantile-quantile plot

follows almost exactly the 45-degree line, so that our imputations are very close to

the original data. That is, the partially marginalized MCMC sampler performs rea-
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Figure 4.3: Quantile-Quantile Plots of Joint Multiple Imputations and Original
Data Simulated Under the Bivariate Lognormal Model. The first row of the fig-
ure is drawn for the Job Creation variable, W JC = logZJC, and the second row for
the Qualification Program variable, WQP = logZQP.

sonably well, although the incoherent marginal distribution is substituted for the

correct marginal distribution.

As the set up for the second simulation study, we fix the number of communi-

ties at n = 120 and construct the counties and agencies the same way as be-

fore. We use the same values of the model parameters, i.e., the regression co-

efficients are γ1 = (1.0 0.5)> and γ2 = (1.0 0.2)>, and the covariance matrix is( τ 2
1 τ12
τ12 τ 2

2

)
=
( 1 1.8

1.8 4

)
. As described in Section 4.3.2, we fit the test data simu-

lated under the bivariate lognormal model by using MCMC samplers. In particu-

lar, we first create multiple imputations for one component of a bivariate response

variable using an MCMC sampler and then, using each imputation as an addi-

tional covariate, we create the corresponding imputation for the other component
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using another MCMC sampler. The number of sampling steps that compose each

MCMC sampler increases as more communities are nested in each of the coun-

ties or agencies. That is, if the number of communities is much greater than the

number of counties or agencies, we have more community-level data to impute.

This may cause inefficiency in the algorithm and unreliable imputations because

our observed information is much less than missing information. Moreover, if the

residual variances are large, the computation may be unstable because σ2
1 and σ2

2

are the variances on the log scale of ZJC and ZQP, respectively. In a moderate sit-

uation with reasonably large number of communities in each county or agency

and with relatively small residual variances, however, we expect this strategy to

be efficient and reliable. Figure 4.3 shows the comparison of the joint multiple im-

putations and the original data simulated with the true values of the parameters.

The quantile-quantile plots are almost linear for both W JC and WQP.

As another way to create joint multiple imputations, we can fit the bivariate log-

normal model using the SIR algorithm. However, when a truncated normal dis-

tribution is considered as a working model, it fails to cover the thick right tail

probability of the lognormal distribution in the target model. To illustrate how the

SIR method performs, we generate n = 120 community-level response variables

from a univariate lognormal distribution. Our observed data are composed of

J = 120/5 = 24 county-level variables, by combining every five of the community-

level variables. For the model parameters, we use γ1 = (1.0 0.5)> and τ 2
1 = 1. After

imputing 200 community-level variables under the working model, we resample

the M = 6 best imputations according to the importance ratios. Figure 4.4 shows

the quantile-quantile plots comparing these multiple imputations with the orig-

inal data and illustrates the working model fails to generate the extreme values

observed in the original data.

Due to this limitation, we may consider another tractable but more flexible work-

ing model with a much thicker tail than a truncated normal distribution. That is,
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Figure 4.4: Quantile-Quantile Plots of Multiple Imputations and Original Data
Simulated Under the Lognormal Model. Because the truncated normal distribu-
tion of the working model has a thinner right tail probability then the lognormal
distribution, all the six imputations clearly do not cover the right tail of the origi-
nal data simulated under the lognormal model. This simulation study is done only
for one component of the bivariate response variable, i.e., ZJC, but it suffices for
illustrating the problem.

we can use a truncated t model with degrees of freedom (df) adjusted to allow

for more or less thickness in the tails. For the truncated t model, we use the same

procedure as with a truncated normal model, except that we replace the weighted

least squares fitting for the parameters with a weighted t-regression routine (i.e., it-

eratively reweighted least squares fitting). However, another simulation study not

shown here illustrates that a truncated t model also fails to cover extreme values

under a lognormal distribution.

Lastly, we fit the Poisson regression model for non-nested data. In our simulation

study, we use δ1 = (1.0 0.5)> and δ2 = (1.0 0.2)>. It is difficult to model the correla-
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Figure 4.5: Quantile-Quantile Plots of Joint Multiple Imputations and Original
Data Simulated Under the Poisson Regression Model for Non-Nested Data. The
first row of the figure is drawn for the Job Creation variable, ZJC, and the second
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tion structure of a bivariate response variable using the Poisson regression model,

but practically the joint imputation model performs very well. Fitting the Poisson

regression model is less computationally intensive compared to the other models,

and is more robust to the extreme cases. (This is verified through other simulation

studies with many different values of the parameters.) In Figure 4.5, we confirm

that our multiple imputations are very close to the original data simulated with

known parameters.
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Figure 4.6: Quantile-Quantile Plots of Joint Multiple Imputations and True Unem-
ployment Data Measured in the German State of Barvaria in the Year 2001. The
first two rows of the figure are drawn for the Job Creation variable, ZJC, and its log
transformation, logZJC, respectively. The last two rows correspond to the Qual-
ification Program variable, ZQP, and its log transformation, logZQP, respectively.
The bivariate response variable is jointly imputed by using the Poisson regression
mode for non-nested data.
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4.5 Analysis of German Unemployment Data

As a real data example, we use the German unemployment data measured on

the German state of Barvaria. The state of Barvaria consists of 2056 communities,

which are contained by both 96 counties and 27 agencies. Each of the counties con-

tains 1 to 58 communities, while 38 to 124 communities are nested in the agencies.

(We note that ni and mk are large.) To impute the community-level bivariate re-

sponse variable in Barvaria, we can consider either the bivariate lognormal model

or Poisson regression model, eliminating the bivariate Gaussian model because the

response variable is non-negative.

In the case of the bivariate lognormal model, we can fit the target model using the

MCMC sampler or SIR method. However, these computational methods may not

be appropriate to impute the German unemployment data. First, the MCMC sam-

pler constructed for the bivariate lognormal model may not be efficient because

each agency or county is composed of so many communities. For example, our ob-

served data consist of 27 agency-level variables, but 2029 (= 2056 – 27) community-

level variables are missing and need to be imputed. With the SIR method, the

truncated normal model as a working model fails to cover the thick right tail of

the target lognormal model, as illustrated in Figure 4.4. Indeed, the distribution of

the bivariate response variable in the German data is highly right skewed (see the

x-axis of panels in the first and third rows of Figure 4.6), so that the distribution

cannot be well approximated by the truncated normal distribution or truncated t

distribution. Thus, unless the working model has sufficient thickness in the right

tail, our imputation will not be correct.

Instead, we consider fitting the Poisson regression model for non-nested data be-

cause this approach is relatively robust to the data with few observations and many

to impute. In the year 2001, the bivariate response variable, JC and QP, was mea-

sured on both the agencies and communities in Bavaria. A number of descriptive
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variables were also measured on the communities, so that we consider them as

covariates in the imputation model: the (male and female) population, employed

(male and female) population, living employed (male and female) population, size

of area, and GNP. Because these descriptive variables tend to be highly correlated

with one another, however, they are transformed into a set of five orthogonal vari-

ables by using principle components analysis after a log transformation. The re-

sulting principle components serve as covariates in the Poisson regression model

for non-nested data. We aim to create ten imputations of the community-level

data only using the agency-level response variable, and compare the joint multi-

ple imputations to the true community-level data. By doing so, we are able to see

how good our imputations are in the real data situation. In particular, we use the

Poisson regression model given in (4.5) and (4.6). That is, the variable ZJC is first

imputed, then we impute the variable ZQP given ZJC as an additional covariate.

Figure 4.5 shows the quantile-quantile plots comparing the joint multiple imputa-

tions with the true data measured in the communities. Because of the large original

scale for ZJC andZQP, we also draw the quantile-quantile plots on a log scale in the

second and fourth rows of Figure 4.5. These plots illustrate that our imputations

appear to be close to the true data.

The three largest communities in Barvaria in terms of population are outliers in the

bivariate response variable (ZJC, ZQP). They are the community of Städt München

with ZJC = 343 and ZQP = 2827, the community of Städt Nürnberg with ZJC = 365

and ZQP = 2240, and the community of Städt Augsburg with ZJC = 185 and

ZQP = 1288. Excluding these three communities, we randomly select three other

communities and compare the true values of ZJC and ZQP with a histogram of

the ten imputations. The three randomly selected communities are representa-

tive of all the communities excluding Städte München, Nürnberg, and Augsburg in

that the multiple imputations cover the true values. Figure 4.7 presents this com-

parison and illustrates that our multiple imputations seem reasonable except the
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Figure 4.7: Histograms of Multiple Imputations with Indication of True Unemploy-
ment Data Measured in the Six Communities of Barvaria in the Year 2001. The first
two rows of the figure correspond to the bivariate response variable for the com-
munities with outlier response variables. For the first two rows, the three columns
correspond to the communities of Städte München, Nürnberg, and Augsburg, re-
spectively. The last two rows correspond to the multiple imputation of ZJC and
ZQP for the randomly selected communities. The vertical solid lines represent the
true data measured in the communities.
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communities of Städte München and Augsburg for which our imputations always

underpredict.

4.6 Concluding Remarks

We present three different joint imputation models considered for a bivariate vari-

able measured on the misaligned geographical partitions. To create joint impu-

tations while properly accounting for the correlation structure of the bivariate

response variable, we devise efficient Monte Carlo based algorithms used to fit

the joint imputation models. Our simulation studies illustrate the advantages

and limitations of the models and the corresponding computational algorithms.

Among the joint imputation models, we prefer the Poisson regression model for

non-nested data because its underlying Poisson assumptions agree with the real

unemployment data, and the computational method to fit the model is robust and

easy to implement. We apply our modeling and computational strategies to the

real German unemployment data, which illustrates the multiple imputations cre-

ated from the Poisson regression model are close to the real data measured on the

highest level of resolution.
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Chapter 5

Computing Hardness Ratios
with Poissonian Errors

5.1 Introduction

X-rays are high energy electromagnetic waves, i.e., photons, which are emitted by

an astronomical source. The detector aboard the space-based Chandra X-ray Obser-

vatory measures the energy, sky coordinates, and arrival time for each emanating

photon that arrives at the detector; because of the digital nature of the instrument,

each of these measurements is necessarily discrete. In particular, the distribution

of the photons as a function of their energies, called a spectrum, is of main interest

because the shape of the energy spectrum of an astronomical source is highly in-

formative as to the physical processes at the surface of the source. The insufficient

number of photons detected for a faint X-ray source, however, makes any sophisti-

cated spectral analysis infeasible and generally leads us to consider an alternative

description for the spectrum. That is, a hardness ratio, which is based on aggregate

photon counts in two sub-energy bands, becomes a useful tool to quantify and



characterize the source spectrum. When the energy is split into two sub-energy

bands, the lower energy end of the X-ray spectrum is called the soft band and the

higher energy end is called the hard band. Based on the soft and hard counts that

are aggregate photons detected in the soft and hard bands, respectively, a hardness

ratio is defined as either the ratio of the soft counts and hard counts or a monotone

function of the ratio; the choice of which to use is determined by the astronomical

field of application. We consider three types of a hardness ratio, i.e.,

the simple counts ratio, R =
S

H
,

the X-ray color, C = log10

S

H
, and (5.1)

the fractional difference hardness ratio, HR =
H − S

H + S
,

where S and H represent the photon counts in the soft and hard bands, respec-

tively. These classical definitions of the hardness ratio are simply based on the

observed source counts and fail to account for the underlying Poissonian nature

of the counts especially when we study faint X-ray sources. Here, we present

Bayesian methods that correctly deal with the non-Gaussian nature of low count

data and asymptotically agree with (5.1) under Gaussian assumptions for high

counts data.

Advanced X-ray instruments such as the Chandra X-ray Observatory allow us to

detect more faint sources with low counts. For such low counts data, hardness

ratios are typically used to extract spectral properties of X-ray sources, although a

hardness ratio is the coarsest description of a spectrum. For example, a low value

of R (equivalently, a low value of C and a high value of HR) implies that we expect

relatively more hard counts than soft counts. In this case, the source is more likely

to be classified into a hard one that has high temperature generated in flares. The

spectral shape of an X-ray source can be also inferred by comparing the hardness

ratio with its theoretical values under the power-law or thermal models.
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In the context of Chandra data, three sub-energy bands are often used, called the

soft band (0.3 – 0.9 keV), the medium band (0.9 – 2.5 keV), and the hard band (2.5

– 8.0 keV). In this case, a source spectrum can be described by using two hardness

ratios based on the soft and medium counts or the medium and hard counts, and

drawing a so-called X-ray color-color diagram. Sometimes, the soft and medium

bands are also merged into a single band, yielding another soft band (0.3 – 2.5 keV).

Thus, the number of sub-energy bands is flexible and the choice of energy ranges

is not particularly confined.

The remainder of this chapter is organized into six sections. The chapter begins in

Section 5.2 with recapitulating the classical method of computing hardness ratios

with background contamination under Gaussian assumptions. Section 5.3 models

the observed counts with Poissonian errors and redefine the hardness ratios by

using parameters. In Section 5.4, we describe prior specification and introduce

new Bayesian methods corresponding to the Poisson model. Section 5.5 compares

the classical method with the new Bayesian approach through a simulation study.

Section 5.6 outlines various applications of the hardness ratios computed by the

Bayesian methods. Discussion and future work follow in Section 5.7.

5.2 The Classical Method

The conventional hardness ratios are computed as (5.1) when no background

sources are present in a source area. In the presence of some X-ray sources other

than the one of interest, the detected photons are subject to background contam-

ination. To quantify the background contamination, we take another observation

around, but some distance away from the source of interest in a region of space

that contains no apparent X-ray source. As illustrated in Figure 5.1, source counts

are obtained in a source area represented by the smaller circle and background

counts are collected in the annulus around the source area to account for back-
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Figure 5.1: Illustration of How to Collect Photon Counts in the Sky. The smaller
circle represents a source area where the soft and hard source counts are detected,
and background counts are recorded in the annulus around the smaller circle. The
brightness of each pixel corresponds to the total number of photon counts detected
in the pixel.

ground contamination in the source area. Each detected photon is classified into

either the soft or hard count according to its own energy. In addition to the dif-

ference in the exposure area of source and background observations, we account

for the difference in the exposure time because more photon counts are expected

to be observed with longer exposure time. The overall difference in the exposure

area and exposure time is summarized and denoted by a known constant r. With

the background counts in the soft band (BS) and the hard band (BH) collected in a

background area that is r times the source area, the conventional hardness ratio is

generalized to

the simple counts ratio, R =
S − BS/r

H − BH/r
,

the X-ray color, C = log10

(
S − BS/r

H −BH/r

)
, and (5.2)

the fractional difference hardness ratio, HR =
(H − BH/r) − (S − BS/r)

(H − BH/r) + (S − BS/r)
.
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In words, the background counts adjusted for the the difference in the exposure

area and exposure time are directly subtracted from the counts observed in the

source area, simply based on the method of moments. The uncertainty of the hard-

ness ratios is propagated under Gaussian assumptions, i.e., the delta method is

used to compute their standard errors such as

σR =
S

H

√
σ2
S + σ2

BS
/r2

(S −BS/r)2
+
σ2
H + σ2

BH
/r2

(H −BH/r)2
,

σC =
1

ln(10)

√
σ2
S + σ2

BS
/r2

(S − BS/r)2
+
σ2
H + σ2

BH
/r2

(H − BH/r)2
, and (5.3)

σHR =
2
√

(H −BH/r)2
(
σ2
S + σ2

BS
/r2
)

+ (S −BS/r)2
(
σ2
H + σ2

BH
/r2
)

[
(H − BH/r) + (S − BS/r)

]2 ,

where σS , σH , σBS
, and σBH

are the standard errors of S, H , BS, and BH , re-

spectively. These errors are typically approximated by the Gehrels prescription

(Gehrels, 1986),

σX ≈
√
X + 0.75 + 1, (5.4)

where X is one of S, H , BS , and BH : One standard error in (5.4) away from the

observed counts approximates the 16th and 84th percentiles for the Poisson counts,

which corresponds to a 68% error bar under the Gaussian assumptions.

5.3 Modeling the Hardness Ratios

Hardness ratios are often used to describe faint X-ray sources with very low counts;

it is not uncommon for either or both of the soft and hard counts to be zero. The

classical method presented in Section 5.2 generally fails to account for the asym-

metric nature of the Poisson counts from such low intensity sources and is not even

applicable when the background subtraction results in a negative estimate for the

source counts. Thus, instead of the Gaussian assumptions on the detected photons,

we directly model photon arrivals as an inhomogeneous Poisson process.
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The observed counts in a source area are a convolution of the source counts (η) and

the background counts (β), hence we can write S = ηS+βS andH = ηH+βH . (Note

that Greek letters indicate unobserved quantities and Roman letters observed ones

throughout this chapter, except for the hardness ratios, i.e., R, C, and HR.) We

model the source counts as independent Poisson random variables,

ηS ∼ Poisson(λS) and ηH ∼ Poisson(λH), (5.5)

where λ denotes the expected source counts in the source exposure area, and the

background counts in a source area are modeled as independent Poisson random

variables,

βS ∼ Poisson(ξS) and βH ∼ Poisson(ξH), (5.6)

where ξ denotes the expected background counts in the source exposure area. Thus

we can simply write S ∼ Poisson(λS + ξS) and H ∼ Poisson(λH + ξH) because the

sum of two independent Poisson random variables is a Poisson random variable

with the sum of two Poisson intensities. The observed background counts col-

lected in the annulus around an X-ray source are modeled as independent Poisson

random variables,

BS ∼ Poisson(r · ξS) and BH ∼ Poisson(r · ξH), (5.7)

where the intensity ξ is scaled by the known correction factor r that accounts for

the difference in source and background areas. Given the source intensities (λS

and λH), it is legitimate for the hardness ratios to be rewritten as

the simple counts ratio, R =
λS
λH

,

the X-ray color, C = log10

λS
λH

, and (5.8)

the fractional difference hardness ratio, HR =
λH − λS
λH + λS

,
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which are parameter-driven rather than data-driven as in (5.2). As such, the rewrit-

ten hardness ratios are of more direct scientific interest. In particular, the clas-

sical hardness ratios in (5.2) are simply the method-of-moments estimates of the

rewritten hardness ratios in (5.8). Also notice that the background contamination

is explicitly taken into account via direct modeling, as shown in (5.6) and (5.7), so

that we implicitly eliminate the case of negative source counts sometimes resulting

from the background subtraction in (5.2).

5.4 Bayesian Approach

5.4.1 A Bayesian Model for a Single Source

With the underlying Poisson likelihood functions in (5.5) and (5.6), we assign in-

dependent conjugate gamma prior distributions for both source and background

intensities. That is, we assign independent gamma prior distributions for λ and ξ,

λS ∼ Gamma
(
ψS1

, ψS2

)
and λH ∼ Gamma

(
ψH1

, ψH2

)
(5.9)

ξS ∼ Gamma
(
ψS3

, ψS4

)
and ξH ∼ Gamma

(
ψH3

, ψH4

)
(5.10)

where µ ∼ Gamma(α, β) if p(µ) ∝ µα−1 exp(−βµ) for α > 0 and β > 0, and the val-

ues of ψ are calibrated according to our prior knowledge (and uncertainty) about

the parameters; see Section 5.4.3 for the discussion of choosing a prior distribution.

Here, we assume that the soft and hard intensities are a priori independent because

we cannot compute the correlation between λS and λH with a single source. With

a survey of sources, however, we relax the independence assumption and devise a

hierarchical mixture model for X-ray sources; refer to Section 5.4.2.
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Monte Carlo Integration: Gibbs Sampling

As discussed in Section 5.3, the detected photons in the source region are a convo-

lution of the source and background counts, i.e., S = βS + ηS and H = βH + ηH . In

the Bayesian missing data model, we treat the background counts in the source ex-

posure area (βS and βH) as missing data; the net source counts (ηS and ηH) are fully

determined when βS and βH are known. Intuitively, it is straightforward to esti-

mate the Poisson intensities if detected photons are split into the source and back-

ground counts. Based on this setting, the Gibbs sampler produces Monte Carlo

draws of λS and λH along with stochastically imputing the missing data (βS and

βH). Due to the conditional independence we assume, both soft and hard bands

also have exactly the same sampling steps, hence we illustrate the Gibbs sampler

only for the soft band. First, the joint posterior distribution of λS , ξS, and βS is

given by

p(λS, ξS, βS|S,BS) ∝ p(S|λS, βS)p(BS|ξS)p(βS|ξS)p(λS)p(ξS)

∝ 1

(S − βS)!βS!
λS−βS+ψS1

−1ξB+βS+ψS3
−1

exp
(
− (1 + ψS2

)λS − (1 + c+ ψS4
)ξS

)
. (5.11)

That is, conditional on the total soft counts (S), the unobserved background counts

in the source exposure area (βS) follows a binomial distribution: Given the current

iterates of the parameters, λ(t)
S and ξ

(t)
S , STEP 1 is given by

STEP 1 : Draw β
(t+1)
S from p(βS|λ(t)

S , ξ
(t)
S , S, BS) = Binomial

(
S,

ξ
(t)
S

λ
(t)
S + ξ

(t)
S

)
,

where the binomial probability is the relative magnitude of the source intensity

and the combined intensity. Next, STEPS 2 and 3 draw the source and background

intensities from the gamma distributions. In particular, STEPS 2 and 3 find the next

iterates of the intensities using

STEP 2 : Draw λ
(t+1)
S from p(λS|ξ(t)

S , β
(t+1)
S , S, BS)
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= Gamma
(
S − β

(t+1)
S + ψS1

, 1 + ψS2

)

STEP 3 : Draw ξ
(t+1)
S from p(ξS|λ(t+1)

S , β
(t+1)
S , S, BS)

= Gamma
(
BS + β

(t+1)
S + ψS3

, 1 + r + ψS4

)
.

To accomplish one Gibbs iteration, these steps are implemented for the soft and

hard bands. After iterating the Gibbs sampler T times, we collect a posterior sam-

ple {λ(t)
S , λ

(t)
H , t = t0 + 1, . . . , T} for a sufficiently long burn-in period t0. The an-

alytical calculation to determine burn-in is far from computationally feasible in

most situations. However, visual inspection of plots of the Monte Carlo output

is commonly used for determining burn-in. More formal tools for determining

t0, called convergence diagnostics, have been proposed; for a recent review, see

Cowles and Carlin (1996). Under a monotone transformation of the posterior sam-

ples, (T − t0) Monte Carlo draws for each hardness ratio are obtained, which en-

ables us to find its point estimates and the corresponding error bar. Because the

Monte Carlo draws are free of transformation, the posterior distribution of each

type of hardness ratio can be computed by transforming the Monte Carlo draws of

λS and λH , according to (5.8).

Numerical Integration: Gaussian Quadrature

By analytically obtaining the marginal posterior distribution of the source inten-

sity, we can more precisely compute the posterior distribution of each hardness

ratio. Because the models for the hard and soft bands are symmetric, we again

illustrate the computation only for the soft source intensity λS . To begin with, we

write the joint posterior distribution of λS and ξS as

p(λS, ξS|S,BS) =
p(λS)p(ξS)p(S|λS, ξS)p(BS|ξS)∫∞

0

∫∞

0
p(λS)p(ξS)p(S|λS, ξS)p(BS|ξS)dξS dλS

=
(λS + ξS)

Sλ
ψS1

−1

S ξ
BS+ψS3

−1

S e−(1+ψS2
)λS−(1+r+ψS4

)ξS

∫∞

0

∫∞

0
(λS + ξS)Sλ

ψS1
−1

S ξ
BS+ψS3

−1

S e−(1+ψS2
)λS−(1+r+ψS4

)ξSdξSdλS
.(5.12)
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Then, the binomial expansion to (λS + ξS)
S , i.e.,

(λS + ξS)
S =

S∑

j=0

Γ(S + 1)

Γ(j + 1)Γ(S − j + 1)
λjS ξ

S−j
S , (5.13)

enables us to analytically obtain the marginal posterior distribution of λS by inte-

grating ξS out of the joint distribution in (5.12). Using the binomial expansion and

integrating ξS out of the joint posterior distribution in (5.12), the marginal posterior

distribution of λS is computed as

p(λS|S,BS) =

S∑

j=0

Γ(S − j +BS + ψS3
)

Γ(j + 1)Γ(S − j + 1)(1 + r + ψS4
)S−j+BS+ψS3

λ
j+ψS1

−1

S e−(1+ψS2
)λS

S∑

j=0

Γ(S − j +BS + ψS3
)

Γ(j + 1)Γ(S − j + 1)(1 + r + ψS4
)S−j+BS+ψS3

· Γ(j + ψS1
)

(1 + ψS2
)j+ψS1

.(5.14)

Here a priori independence of λS and λH decomposes the joint posterior distribu-

tion of these two intensities into a product of their marginal posterior distributions,

i.e.,

p(λS, λH |S,H,BS, BH) = p(λS|S,BS)p(λH |H,BH). (5.15)

Based on the joint posterior distribution of λS and λH in (5.15), we compute the

posterior distribution of each hardness ratio as follows: The posterior distribution

of R is obtained by integrating λH out of p(R, λH|S,H,BS, BH), i.e.,

p(R|S,H,BS, BH) =

∫
p(R, λH |S,H,BS, BH)dλH

=

∫
p(λS, λH |S,H,BS, BH)

∣∣∣∣
∂(λS , λH)

∂(R, λH)

∣∣∣∣dλH

=

∫
p(RλH , λH |S,H,BS, BH)λH dλH, (5.16)

where λS is substituted with RλH in (5.16); the posterior distribution of C is ob-

tained by integrating λH out of p(C, λH |S,H,BS, BH), i.e.,

p(C|S,H,BS, BH) =

∫
p(C, λH |S,H,BS, BH)dλH

=

∫
p(λS, λH |S,H,BS, BH)

∣∣∣∣
∂(λS , λH)

∂(C, λH)

∣∣∣∣dλH

=

∫
p(10CλH , λH |S,H,BS, BH)10C ln(10)λH dλH , (5.17)
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where λS is substituted with 10CλH in (5.17); and the posterior distribution of HR

is obtained by integrating ω = λS + λH out of p(HR, ω|S,H,BS, BH), i.e.,

p(HR|S,H,BS, BH) =

∫
p(HR, ω|S,H,BS, BH)dω

=

∫
p(λS, λH |S,H,BS, BH)

∣∣∣∣
∂(λS , λH)

∂(HR, ω)

∣∣∣∣dω

=

∫
p

(
(1 − HR)ω

2
,
(1 + HR)ω

2

∣∣∣S,H,BS, BH

)
ω

2
dω, (5.18)

where λS and λH are substituted with (1−HR)ω/2 and (1+HR)ω/2 in (5.18). Com-

puting the marginal posterior distribution of each hardness ratio involves with

integrating over a nuisance parameter. We thus employ Gaussian quadrature to

precisely evaluate the marginal posterior distribution via numerical integration;

refer to Wichura (1989) for details of the computational technique. To approximate

the distribution, we treat each hardness ratio as a discrete variable and evaluate its

marginal posterior distribution at each of abscissas equally spaced over the finite

range of the hardness ratio. Our inferences are based on the approximate posterior

distributions.

5.4.2 A Bayesian Hierarchical Model for Clustering

With a survey of X-ray sources, we are interested in the relationship between

hardness ratios across different sources, which can be used to cluster the X-ray

sources. Thus, we relax the independence assumption and devise a hierarchical

mixture model. With a slight modification for the likelihood functions in (5.5), (5.6),

and (5.7), i.e.,

Si = ηS,i + βS,i ∼ Poisson(λS,i + ξS,i), (5.19)

Hi = ηH,i + βH,i ∼ Poisson(λH,i + ξH,i), (5.20)

BS,i ∼ Poisson(ri · ξS,i), and (5.21)

BH,i ∼ Poisson(ri · ξH,i), (5.22)
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we assign bivariate lognormal prior distributions to both λ and ξ. In particular, we

assume two mixture components on λ but a single component on ξ, i.e.,
(

log10 λS,i
log10 λH,i

) ∣∣∣ µλ,Σλ, α ∼ (1 − α) · N2

(
µλ,0, Σλ,0

)
+ α · N2

(
µλ,1, Σλ,1

)
and (5.23)

(
log10 ξS,i
log10 ξH,i

) ∣∣∣ µξ,Σξ ∼ N2

(
µξ, Σξ

)
, (5.24)

where µλ,δi is a 2× 1 vector of means of source intensities for component δi, Σλ,δi is

a 2× 2 positive definite covariance matrix of source intensities for component δi, δi

is a mixture components indicator variable for source i with δi
iid∼ Bernoulli(α), µξ

is a 2 × 1 vector of means of background intensities, Σξ is a 2 × 2 positive definite

covariance matrix of background intensities, and i = 1, 2, . . . , n with n the num-

ber of X-ray sources in a survey. For the hyper-parameters, the conjugate prior

distributions are assigned as

Σλ,δi ∼ Inv−Wishart(d0, D0), (5.25)

µλ,δi |Σλ,δi ∼ N2

(
a0,Σλ,δi/b0

)
, (5.26)

Σξ ∼ Inv−Wishart(d1, D1), (5.27)

µξ |Σξ ∼ N2

(
a1,Σξ/b1

)
, and (5.28)

α ∼ Beta(c0, c1), (5.29)

where a, b, c, d, and D are fixed constants.

Gibbs Sampling with Metropolis-Hastings Steps

With the hierarchical mixture model, we treat both the background counts in

the source exposure area, β, and the mixture components indicator variables, δ.

Then based on the joint posterior distribution, p(β, δ, λ, ξ, µ,Σ, α|Yobs), a Gibbs

sampler is constructed as follows. Given the current iterates of the parameters

θ(t) = (λ(t), ξ(t), µ(t),Σ(t), α(t)), STEP 1 draws the net background counts in the source

exposure area for source i via
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STEP 1.1 : Draw β
(t+1)
S from p(βS,i|θ(t), S, BS) = Binomial

(
Si,

ξ
(t)
S,i

λ
(t)
S,i + ξ

(t)
S,i

)
, and

STEP 1.2 : Draw β
(t+1)
H from p(βH,i|θ(t), H,BH) = Binomial

(
Hi,

ξ
(t)
H,i

λ
(t)
H,i + ξ

(t)
H,i

)
.

Next, STEP 2 updates the mixture indicator variables via Bernoulli distributions

STEP 2 : Draw δ
(t+1)
i from p(δi|θ(t))

= Bernoulli

(
αN2

(
log10 λ

(t)
i ;µ

(t)
λ,1,Σ

(t)
λ,1

)
π1

(1 − α)N2

(
log10 λ

(t)
i ;µ

(t)
λ,0,Σ

(t)
λ,0

)
π0 + αN2

(
log10 λ

(t)
i ;µ

(t)
λ,1,Σ

(t)
λ,1

)
π1

)
,

where N2( · ;µ,Σ) denotes a bivariate Gaussian density function with mean µ

and covariance matrix Σ, and πk is the prior distribution of (µλ,k,Σλ,k) in (5.26)

and (5.27), i.e., πk = p(µλ,k,Σλ,k) for k = 0, 1. Then, STEP 3 jointly draws the mean

vector and covariance matrix for component δi. Because the models for two com-

ponents are symmetric, we illustrate the sampling step only for component 1:

STEP 3.1 : Draw Σ
(t+1)
λ,1 from p

(
Σλ,1

∣∣δ(t+1)
i , λ(t)

)

= Inv−Wishart
(
d0 +

∑
i δ

(t+1)
i ,Υλ,1

)
,

where Υλ,1 is computed as

Υλ,1 = D0 +

n∑

i=1

δi
(
log10 λi − λ̃

)(
log10 λi − λ̃

)>
+

b0
∑

i δi
b0 +

∑
i δi

(
λ̃− a0

)(
λ̃− a0

)>
,

λi = (λS,i λH,i)
>, and λ̃ = (

∑
i δi log λi)/

∑
i δi. Then, we draw the next iterate of the

the mean vector µλ,1 given Σ
(t+1)
λ,1 , i.e.,

STEP 3.2 : Draw µ
(t+1)
λ,1 from p

(
µλ,1

∣∣δ(t+1)
i ,Σ

(t+1)
λ,1 , λ(t)

)

= N2

(
µ̃λ,1,Σ

(t+1)
λ,1 /(b0 +

∑
i δi)
)

,
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where µ̃λ,1 is given by

µ̃λ,1 =
b0a0 +

∑
i δiλ̃

b0 +
∑

i δi
.

In STEP 4, the mean vector and covariance matrix of background intensities are

drawn in the same fashion as STEP 3. Namely, we first draw Σξ, then draw µξ

given Σξ:

STEP 4.1 : Draw Σ
(t+1)
ξ from p

(
Σξ

∣∣ξ(t)
)

= Inv−Wishart
(
d1 + n,Υξ

)
,

where Υξ is computed as

Υξ = D1 +
n∑

i=1

δi
(
log10 ξi − ξ̄

)(
log10 ξi − ξ̄

)>
+

b1n

b1 + n

(
ξ̄ − a1

)(
ξ̄ − a1

)>
,

ξi = (ξS,i ξH,i)
> and ξ̄ = (

∑
i log ξi)/n. Then, we draw the next iterate of the mean

vector µξ given Σ
(t+1)
ξ , i.e.,

STEP 4.2 : Draw µ
(t+1)
ξ from p

(
µξ
∣∣Σ(t+1)

ξ , ξ(t)
)

= N2

(
µ̃ξ,Σ

(t+1)
ξ /(b1 + n)

)
,

where µ̃ξ is given by

µ̃ξ =
b1a1 + nξ̄

b1 + n
.

STEP 5 updates the mixture proportion α given δ(t+1)
i , i.e.,

STEP 5 : Draw α(t+1) from p(α|δ(t+1)) = Beta
(∑

i δ
(t+1)
i + c0,

∑
i

(
1 − δ

(t+1)
i

)
+ c1

)
.

Lastly, STEP 6 draws the source and background intensities, and Metropolis-

Hastings steps (Metropolis and Ulam, 1949; Hastings, 1970) are used in this step

because their conditional distributions are not standard distributions. Because the

distributions are symmetric, we again illustrate its implementation only for the

soft intensities:
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STEP 6.1 : Draw λ
(t+1)
S,i from p

(
λS,i
∣∣β(t+1)
S , δ(t+1), µ

(t+1)
λ ,Σ

(t+1)
λ , λ

(t)
H

)

∝ λ
Si−βS,i−1
S,i exp


−λS,i −

(
log10 λS,i − µλS ,δi − ρλ,δi

σλS,δi

σλH,δi

(
log10 λH,i − µµH ,δi

))2

2
(
1 − ρ2

λ,δi

)
σ2
λS ,δi


 ,

where the covariance matrix Σλ,δi is written as

Σλ,δi =

(
σ2
λS ,δi

ρλ,δi · σλS ,δi · σλH ,δi

ρλ,δi · σλS ,δi · σλH ,δi σ2
λH ,δi

)
, and

STEP 6.2 : Draw ξ
(t+1)
S,i from p

(
ξS,i
∣∣β(t+1)
S , µ

(t+1)
ξ ,Σ

(t+1)
ξ , ξ

(t)
H

)

∝ ξ
BS,i+βS,i−1
S,i exp


−(1 + ri)ξS,i −

(
log10 ξS,i − µξS − ρξ

σξS

σξH

(
log10 ξH,i − µµH

))2

2
(
1 − ρ2

ξ

)
σ2
ξS


 ,

where the covariance matrix Σξ is written as

Σξ =

(
σ2
ξS

ρξ · σξS · σξH
ρξ · σξS · σξH σ2

ξH

)
.

For the Metropolis-Hastings steps, jumping rules are bivariate Gaussian distribu-

tions whose mode and curvature are matched to the target distributions in STEP 6.

If the mode of a target distribution is below zero, however, an exponential dis-

tribution whose moments are matched given the previous draws is used as the

jumping rules. Then λ
(t+1)
S and ξ

(t+1)
S are updated with λ∗

S ∼ JλS ,t+1(λ
∗
S|λ(t)

S ) and

ξ∗S ∼ JξS ,t+1(ξ
∗
S|ξ(t)

S ) with probabilities

p(λ∗S|θ−λS
)/JλS ,t+1(λ

∗
S|λ(t)

S )

p(λ
(t)
S |θ−λS

)/JλS ,t+1(λ
(t)
S |λ∗S)

and
p(ξ∗S|θ−ξS)/JλS ,t+1(ξ

∗
S|ξ(t)

S )

p(ξ
(t)
S |θ−ξS)/JξS ,t+1(ξ

(t)
S |ξ∗S)

, (5.30)

respectively, where θ−ψ denotes model parameters θ other than ψ.

5.4.3 Prior Specification

If there is a strong belief as to the hardness ratio (location or spread), we can incor-

porate the information as a prior distribution, which is called an informative prior
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distribution. The Bayesian method produces the posterior distribution, which may

be used as an informative prior distribution for future observation of the same

source. In particular, the Gibbs sampler for a single source directly produces the

gamma posterior distributions of source and background intensities, hence they

can serve as informative prior distributions.

With no prior information available, however, we typically use a flat (or non-

informative) prior distribution that minimizes the effect of a prior distribution on

posterior inferences. In the Poisson likelihood of a single source, we generally

consider three sorts of a flat prior distributions for the positive intensity: when

X|θ ∼ Poisson(θ),

1. a flat prior distribution on the original scale, i.e.,

p(θ) ∝ 1,

2. a Jeffrey’s flat prior distribution, i.e.,

p(θ) ∝ I
1/2
θ ,

3. a flat prior distribution under a log transformation, i.e.,

p(log θ) ∝ 1,

where Iθ = E[−∂2 log p(X|θ)/∂θ2|θ] is the expected Fisher information (Casella and

Berger, 1990). In words, the first flat prior distribution is flat between 0 and ∞;

the second flat prior distribution is proportional to the square root of the Fisher

information; and the third flat prior distribution is flat under a log transformation.

The functional forms of these prior distributions are generalized to p(θ) ∝ θφ−1,

where we call φ an index: The first flat prior distribution corresponds to φ = 1.0;

the second flat prior distribution corresponds to φ = 0.5; and the third flat prior
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distribution corresponds to φ = 0.0. We notice that these three flat prior distri-

butions are all improper, i.e., non-integrable. An improper prior distribution may

cause an improper posterior distribution on which no inferences can be made. In

our case, as long as φ is strictly positive, a posterior distribution is proper. Thus,

in the third case, we adopt values of φ that are strictly positive but close to 0, e.g.,

φ = 10−1 that is denoted by 0.0+.

Although these prior distributions are all flat, they slightly differ in specific as-

sumptions based on which they are constructed. Thus, in the case of low counts

data, the posterior distribution of a hardness ratio may somewhat vary with the

choice of the flat prior distribution; however, we expect the posterior distributions

under different flat prior distributions to be almost identical when observed data

contain sufficient information (Appendix A). Based on our simulation study, we

prefer using the Jeffrey’s flat prior distribution with a single source. In the case

of the hierarchical mixture model in Section 5.4.2, we also employ diffuse prior

distributions that mimic the multivariate Jeffrey’s flat prior distributions, i.e.,

dk → −1, |Dk| → 1, bk → 0, and ck → 0,

for k = 0, 1 for (5.26), (5.27), (5.28), (5.29), and (5.29).

5.5 Verification

5.5.1 Comparison with the Classical Method

The Gaussian assumptions are inherent in the classical method of computing hard-

ness ratios. However, the assumptions are inappropriate for faint X-ray sources

with low counts which hardness ratios are typically used to describe. The detected

photons are non-negative integers, so that it is also not valid to model these counts

with a Gaussian distribution that is continuous over the real numbers. In this case,
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a better strategy, which we adopt, directly models the arrival of photons as an in-

homogeneous Poisson process, as discussed in Section 5.3. The error propagation

method in (5.3) is an asymptotic result for large samples. If counts are not large

enough, the use of the error propagation method cannot be justified. The standard

error in (5.4) is also approximated by simulation, which cannot be generalized ei-

ther.

In the classical method, the background contamination is typically accounted for

by directly subtracting the adjusted background counts from the observed source

counts; the result is analyzed as if it were a source observation free of background

contamination. This procedure is clearly questionable, especially when the de-

tected photons are low. It can lead to the rather embarrassing problem of nega-

tive resulting counts, where no statistical inferences can be made. In our Bayesian

methods, we model the counts in the source and background observations as in-

dependent Poisson random variables, one with the sum of the source and back-

ground intensities and the other with the scaled background intensity (van Dyk,

2003), so that no data are discarded due to the negative resulting counts.

5.5.2 Simulation Study

In order to compare the classical method with our Bayesian methods, a simulation

study for the case of a single source is designed to calculate frequentist coverage

rates for a true value of each hardness ratio. Given the true values of parameters,

source and background counts test data are generated and then used to construct

95% intervals of each hardness ratio with the classical and Bayesian methods. We

summarize the computed intervals in terms of two statistics, the coverage rate

and mean length. The coverage rate is the percentage of the intervals that contain

the true value of the hardness ratio, while the mean length is the average of the

ranges of the intervals. In addition to these summary statistics, we compute and
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Table 5.1: Comparison between the Classical and Bayesian Methods.

Hardness Coverage Mean Mean Square Error
Method Ratio Rate Length by mode by mean

R 95.0% 1.24 0.065
Classical C 98.5% 0.54 0.013
Method HR 99.0% 0.61 0.016

R 94.0% 1.03 0.056 0.069
CASE I Gibbs C 96.0% 0.44 0.012 0.012

Sampler HR 95.0% 0.49 0.016 0.015
R 94.5% 1.03 0.055 0.069

Gaussian C 96.0% 0.43 0.012 0.012
Quadrature HR 94.5% 0.49 0.016 0.015

R 97.5% 192.44 93.27
Classical C 100.0% 6.02 0.27
Method HR 100.0% 3.70 0.21

R 97.0% 8.96 0.317 85.482
CASE II Gibbs C 99.5% 1.52 0.078 0.113

Sampler HR 95.0% 1.23 0.184 0.083
R 97.0% 8.18 0.394 20.338

Gaussian C 99.5% 1.51 0.074 0.112
Quadrature HR 95.0% 1.23 0.187 0.083

compare the mean square error of point estimates from the classical and Bayesian

methods. The mean square error of the point estimate θ̂ of θ is defined as the sum

of the variance and squared bias for an estimator, i.e., MSE(θ̂) = E[(θ̂ − θ)2] =

Var(θ̂) + [E(θ̂) − θ]2. A method that constructs shorter intervals with the similar

coverage rate and produces a point estimate with a lower mean square error is

generally preferred. The entire simulation was repeated with different magnitudes

of the source intensities, λS and λH . Intrinsically, we are interested in the following

two prototypical cases:

CASE I : hardness ratios for high counts, i.e.,

λS = λH = 30, ξS = ξH = 0.1, and r = 100;
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CASE II : hardness ratios for low counts, i.e.,

λS = µH = 3, ξS = ξH = 0.1, and r = 100.

This simulation study illustrates two typical cases, i.e., high counts and low counts

sources. CASE I represents high counts sources with which Poisson assumptions

asymptotically agree with Gaussian assumptions; CASE II represents low counts

sources where the Gaussian assumptions are inappropriate.

Table 5.1 presents the results of 200 imaginary sources for each case. The data are

used to compute point estimates and 95% intervals by using the classical method,

Gibbs sampler, and Gaussian quadrature. The Bayesian methods use flat prior

distributions on λ and ξ on an original scale, i.e., φ = 1.0; refer to Section 5.4.3. In

CASE I, the posterior distributions of the hardness ratios agree with the correspond-

ing Gaussian approximation of the classical method. The results of CASE II, how-

ever, indicate that the Gaussian assumptions clearly fail in the classical method

that yields too wide intervals and point estimates with large mean square errors.

In particular, the hardness ratio HR is defined between –1 and 1, so that the max-

imum length of an interval must be 2. However, the mean length of intervals

computed by the classical method is 3.70, which is by no means informative. This

comparison between the classical and Bayesian methods is illustrates in Figures 5.2

and 5.3. Since the Gaussian quadrature tends to yield more precise intervals, we

generally prefer the Gaussian quadrature to the Gibbs sampler. However, because

of the summation inside the posterior density in (5.14), the Gaussian quadrature

tends to be computationally more expensive as the detected source counts are big-

ger; on the other hand, the Gibbs sampler is very quick with the reasonable length

of a chain, no matter how big the source counts are. Thus, we recommend using

the Gaussian quadrature for relatively low counts data and the Gibbs sampler for

high counts data.

138



−4 −2 0 2 4

0
50

10
0

15
0

20
0

Classical method

R

S
im

ul
at

io
n

−2 −1 0 1 2

0
50

10
0

15
0

20
0

Classical method

C

S
im

ul
at

io
n

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

Classical method

HR

S
im

ul
at

io
n

−4 −2 0 2 4

0
50

10
0

15
0

20
0

Monte Carlo method

R
S

im
ul

at
io

n

−2 −1 0 1 2

0
50

10
0

15
0

20
0

Monte Carlo method

C

S
im

ul
at

io
n

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

Monte Carlo method

HR

S
im

ul
at

io
n

−4 −2 0 2 4

0
50

10
0

15
0

20
0

Quadrature

R

S
im

ul
at

io
n

−2 −1 0 1 2

0
50

10
0

15
0

20
0

Quadrature

C
S

im
ul

at
io

n

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

Quadrature

HR

S
im

ul
at

io
n

Figure 5.2: Simulation Results of CASE I using the Bayesian and Classical Methods.
Three columns correspond to the classical method, Gibbs sampler, and Gaussian
quadrature, respectively. The horizontal lines are the 95% intervals computed for
each set of test data, and the vertical white lines represent true values of hardness
ratios. Notice that all the different methods exhibit similar performance in this
case.
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Figure 5.3: Simulation Results of CASE II using the Bayesian and Classical Meth-
ods. Three columns correspond to the classical method, Gibbs sampler, and Gaus-
sian quadrature, respectively. The horizontal lines are the 95% intervals computed
for each set of test data, and the vertical white lines represent true values of hard-
ness ratios. Notice that, in the case of low counts data, the Bayesian methods dra-
matically outperform the classical method.
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Because the inferences for each hardness ratio are based on its posterior distribu-

tion, we consider two point estimates, the posterior mode and posterior mean.

The last two columns of Table 5.1 present the comparison of the posterior mean

and mode in terms of a mean square error. A posterior mode is the most likely

value of a posterior distribution and is invariant to transformation, so that it is

expected to represent a posterior distribution better than any other estimates. In

the case of HR, however, a posterior mean seems to be a better estimate than a

posterior mode because the posterior mean is more robust to the boundary effects

that HR has. Thus, a posterior mode is generally preferable for both R and C, but

a posterior mean for HR.

5.6 Applications

5.6.1 Characterizing Source Spectra

A color-color diagram is a popular graphical summary for the spectra of faint X-

ray sources. We can divide an energy spectrum into three sub-energy bands, i.e.,

the soft, middle, and hard bands, as described in Section 5.1. Then, the soft X-

ray color (CS) is computed with the soft and middle source intensities, while the

hard X-ray color (CH) is computed with the middle and hard source intensities:

CS = log10(λS/λM) and CH = log10(λM/λH). Then the color-color diagram is sim-

ply a scatter plot of the soft and hard colors for different X-ray sources. Figure 5.4

shows the ideal locations of soft and hard X-ray colors for a source spectrum which

follows either the power-law or thermal model with specified parameter values.

Based on the color-color diagram, we aim to infer the spectrum of a source with

uncertainty from the location of its colors on the diagram, to differentiate the spec-

tral shapes of several different sources, and to compare the spectral shape of sev-

eral difference observations of the same source. Here we illustrate the application

of the Bayesian method to extract spectral shape of a faint X-ray source.
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Figure 5.4: A X-ray Color-Color Diagram with the Grids of the Power-Law and
Thermal Models. The power-law model is parameterized in terms of NH and Γ,
while the thermal model is parameterized in terms of NH and Temperature. The
grids are drawn for an ideal detector response.

We simulate data for one faint source with λS = 10, λM = 20, and λH = 10, which

puts this source into the sector of NH = (0.075− 0.125) and Γ = (1.25− 1.50) of the

power-law model; the simulated data set consists of S = 8, M = 18, and H = 7,

assuming no background contamination. When the classical method is applied to

the data, we obtain point estimates with one-dimensional errors bars, as shown

in the top left panel of Figure 5.5. However, CS and CH are not independent but

negatively correlated by construction, so that two marginal error bars do not yield

the compact summary of uncertainty. On the other hand, the Bayesian method

enables us to directly obtain a joint posterior distribution of the soft and hard col-

ors; we use the flat prior distribution, φ = 1.0. Because we assume independence

among source intensities in the sub-energy bands with a single source, the Gibbs

sampler runs two independent chains for one with S and M and the other with M

and H . Based on the Monte Carlo draws of the source intensities, we obtain a joint

posterior distribution of CS and CH . The top right panel of Figure 5.5 shows the

142



−1.0 −0.5 0.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

log(S/M)

lo
g(

M
/H

)

−1.0 −0.5 0.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

log(S/M)
lo

g(
M

/H
)

PSfrag replacements

log(S/M)

−1.0

−0.5

0.0

lo
g(

M
/H

)

0.0

0.5

1.0

1.5

D
raw

s

0
200

400
600

800
1000

log(S/M)

lo
g(

M
/H

)

−1.0 −0.5 0.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

PSfrag replacements

Figure 5.5: X-ray Colors Fitted by the Classical and Bayesian Methods. The top
left panel shows the point estimates of colors with marginal error bars fitted by
the classical method. In the top right panel, posterior draws of the X-ray colors
simulated by the Bayesian method are superimposed on the grids. The bottom
panels show three-dimensional graphical summaries for the posterior draws. The
large dot in the panels except the bottom left one represents the true values of X-ray
colors.
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Table 5.2: Posterior Probabilities for the Grid of the Power-Law Model. The 95%
posterior region is indicated in bold face.

NH

0.250–0.500 0.125–0.250 0.075–0.125 0.050–0.075 0.025–0.050 0.010–0.025

1.75–2.00 11.36% 13.93% 3.35% 1.00% 0.53% 0.24%
1.50–1.75 5.56% 13.70% 5.99% 2.34% 1.70% 0.67%
1.25–1.50 1.80% 7.76% 5.61% 3.11% 2.82% 1.56%

Γ
1.00–1.25 0.38% 2.71% 2.87% 2.26% 2.33% 1.58%
0.75–1.00 0.07% 0.54% 0.82% 0.75% 1.00% 0.81%
0.50–0.75 0.01% 0.09% 0.15% 0.18% 0.23% 0.17%

joint posterior draws of CS and CH resulting from the Gibbs sampler; a large dot

in the diagram represents the true values of the X-ray colors. In the bottom row

of Figure 5.5 presents the three-dimensional histogram of the draws to the left and

the contour plot to the right.

Because the Monte Carlo draws are superimposed on the grids of the power-law

and thermal models in the color-color diagram, we can reversely infer the param-

eters of the models by computing posterior probabilities corresponding to each

section split by the grids. Table 5.2 presents the normalized posterior probabili-

ties of the X-ray colors in the grid of the power-law model. The 95% highest joint

posterior density (HJPD) region is shown in bold face. If the power-law model is

believed for this source, the most likely parameter values are N̂H = (0.125− 0.250)

and Γ̂ = (1.75 − 2.00).

5.6.2 Cluster Analysis for Galaxy Sources

With a survey of X-ray sources, hardness ratios can be used to answer scientific

questions of interest. For example, the negative relationship between the soft band

X-ray flux (λS) and the reciprocal of the simple hardness ratio (1/R = λH/λS) is of

interest; in this case, the energy spectrum is divided into two sub-energy bands.
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Figure 5.6: Band Ratio As a Function of Soft-Band (0.5 – 2.0 keV) Count Rate for
Chandra Sources. By this figure, Brandt et al. (2001) reported that fainter sources
tend to have more hard-band (2.0 – 8.0 keV) counts per unit soft count.

This scientific question specifically means that sources with fewer soft counts tend

to have more hard counts per unit soft count. Brandt et al. (2001) report this neg-

ative relationship on a log scale, based on the method of moments. However, the

correlation between log10 λS and log10(λH/λS) is analytically decomposed into

Corr

(
log10 λS, log10

λH
λS

)
=

Corr(log10 λS, log10 λH)

√
Var(log10 λH)√
Var(log10 λS)

− 1
√

Var(log10 λH − log10 λS)
/√

Var(log10 λS)
, (5.31)

and its sign is negative if and only if the numerator is less than zero. In other

words, the correlation of scientific interest becomes negative when the slope for

regressing log10 λH on log10 λS is less than one, i.e.,

ϕ ≡ Corr(log10 λS, log10 λH)

√
Var(log10 λH)√
Var(log10 λS)

< 1. (5.32)

Thus, the scientific question must be re-formalized in terms of the regression slope

ϕ. If the regression slope is zero, knowing log10 λS does not help explain the vari-
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Figure 5.7: Posterior Distributions of the Regression Slopes and Overall Correla-
tions Fitted by MODEL 1 and MODEL 2. The top row shows the posterior distribu-
tions of ϕ, while the bottom row shows the posterior distributions of the correlation
between log10 λS and log10(λH/λS).

ation in log10 λH . However, a zero regression slope results in a negative overall

correlation in (5.31), thereby misleading its interpretation.

To address the scientific question, we use real X-ray source data from Chandra Mul-

tiwavelength Project (ChaMP). To begin with, we consider two hierarchical mixture

models introduced in Section 5.4.2:

MODEL 1 : X-ray sources are from one underlying component.

MODEL 2 : X-ray sources are from two underlying components.

In order words, MODEL 1 has no mixture component, while MODEL 2 has two mix-

ture components. Using the Gibbs sampler described in Section 5.4.2, we fit both
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models to obtain the posterior distribution of the regression slope. The top row

of Figure 5.7 presents the posterior distribution of the regression slope ϕ. Under

MODEL 1, the posterior distribution of ϕ is below one, so that the overall correlation

between log10 λS and log10(λH/λS) in (5.31) is negative. In the case of MODEL 2, the

component-wise regression slopes are also less than one and imply the negative

overall correlations, but they differ in how much the slope is less than one. Using

the mixture model, the posterior mode of the mixture proportion is around 34%.

Thus, almost one third of X-ray sources in ChampX have an almost zero regres-

sion slope, implying that the soft and hard intensities may not be correlated with

each other. The second row of Figure 5.7 shows the overall correlation in (5.31).

As expected, the posterior distributions of the overall correlation are below zero.

Interestingly, the overall correlation fitted by MODEL 1 is distributed between the

posterior distributions of two well-separated component-wise overall correlations

fitted by MODEL 2. This, the overall correlation of MODEL 1 seems to serve as a

pooled estimate of the two component-wise overall correlations of MODEL 2.

5.7 Discussion

5.7.1 R versus C versus HR

With low counts data, the posterior distribution of the counts ratio, R, tends to

be skewed to the right because of the Poissonian nature of data; R is necessarily

positive. The X-ray color, C = log10 R, is a log transformation of R, which makes

the skewed distribution more symmetric. The fractional difference hardness ratio,

HR = (1 − R)/(1 + R), is a monotonically decreasing transformation of R, so that

HR approaches to 1 as R tends to 0 (i.e., a source gets harder) and to –1 as R tends

to ∞ (i.e., a source gets softer). The monotone transformation makes the values

of HR bounded below by –1 and above by 1, thereby reducing asymmetry of the

skewed distribution. R and HR are bounded on one side or two sides, while C is
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unbounded due to the log transformation.

The posterior distribution of any hardness ratio becomes more symmetric as both

soft and hard intensities increase. Regardless of the size of intensities, however,

the X-ray color has the most symmetric posterior distribution among the popular

definitions of a hardness ratio. Figure 5.8 illustrates the effect of the magnitude of

source intensities on the symmetry of the posterior distribution of each hardness

ratio; the posterior distribution of C is confirmed to have the most symmetric pos-

terior distribution. In the figure, we fix R = 2 and the soft and hard intensities are

determined by beginning with λS = 2 and λH = 1 and increasing the intensities by

a factor of 5 in each subsequent column, assuming no background contamination

in the simulation.

5.7.2 Advantages

A significant improvement that our Bayesian methods provide over the classical

way of computing hardness ratios is that we use the correct Poisson distribution

throughout and do not make asymptotic Gaussian assumptions for high counts

data. Thus, while the classical method works well only with high counts data

and fails to give reliable results with low counts data, our methods are valid in

all regimes. Because the observed counts are non-negative integers, moreover, it

is not appropriate to model the counts with Gaussian random variables which are

defined on a real line.

Because our methods are based on Poisson assumptions in a fully model based

statistical approach, we need not rely on the data-driven estimates of hardness

ratios. Instead, we compute the posterior probability distribution of each hardness

ratio, which provides reliable estimates and correct error bars even when either or

both soft and hard counts are very low. In particular, our methods are not limited

to “detectable” counts, requiring no minimum number of counts. Even with high
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Figure 5.8: Posterior Distributions of R (top row), C (middle row), and HR (bottom
row), with Different Source Intensities and Flat Prior Distributions. The solid lines
represent the flat prior distribution φ = 0.0+, the dashed lines φ = 0.5, and the
dotted lines φ = 1.0. At small counts shown in the left column, the non-symmetric
shape of the posterior distribution for each hardness ratio is clear as does the ef-
fect of the choice of flat prior distributions. At higher counts shown in the right
column, the posterior distributions tend to be symmetric and the effect of the prior
distributions on the posterior distribution is minimal.
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counts data, our Bayesian methods give more precise estimates and error bars for

the hardness ratios than the classical method, although both methods yield similar

results. Moreover, a priori information can be embedded into our Bayesian model

and can be updated by observed data, thereby producing more accurate results as

we collect more data.

5.7.3 Limitations

Because the Bayesian methods do not allow for a simple analytic solution similar

to standard error propagation in the Gaussian case, the computational methods

used to obtain the probability distributions become important. In this chapter, we

implement the Markov chain Monte Carlo scheme (e.g., the Gibbs sampler) and

Gaussian quadrature. The Gibbs sampler is based on Monte Carlo simulation,

hence the convergence behavior need to be closely examined, especially for the

Gibbs sampler with Metropolis-Hastings steps. On the other hand, the Gaussian

quadrature precisely computes the posterior distribution as long as the number

of bins is large enough; however, its computation becomes expensive as the ob-

served source counts become large. In general, the Gibbs sampler is computation-

ally much quicker than the method based on Gaussian quadrature, but care must

be taken to ensure that the number of iterations is sufficient to ensure convergence

of a Markov chain. Generally we recommend using the Gibbs sampler for high

counts data and the Gaussian quadrature for low counts data.
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Appendix

A. Effect of Flat Prior Distributions

For comparison of the effect of these flat prior distributions, we simulate the data

sets for different magnitudes of source intensities assuming no background con-

tamination. When a Poisson intensity is small, the shape of a hardness ratio is

susceptible to the choice of flat prior distributions because observed data do not

contain much information about the intensity. On the other hand, the distribution

of a hardness ratio for large counts data hardly depends on the different prior dis-

tributions. Table 5.4 illustrates the posterior behavior of the color, C, depending on

the magnitudes of intensities (λS and λH) and the choice of flat prior distributions

(φ = 0.0+, 0.5, 1.0). In particular, Table 5.4 presents the coverage rate and mean

length of the 95% posterior intervals computed for the color with 1000 test data

simulated with each pair of λS and λH in the grid of intensities; the legend key

is given in Figure 5.3. The coverage rate is the percentage of the simulations that

produce 95% posterior intervals of the color actually containing its true value com-

puted with each (λS, λH) pair, while the mean length is the average of the range for

the 95% posterior intervals for the color. We compare the effect of three flat prior

distributions on these posterior quantities for the color; we carry out this calcula-

tion for three choices of the prior index, φ = 0.0+, 0.5, 1.0, corresponding to the top,

Table 5.3: Legend Key for Table 5.4.

Hard band source intensity, λH
Coverage rate of Average length of

intervals with φ = 0.0+ intervals with φ = 0.0+

Soft band Coverage rate of Average length of
source intensity, λS intervals with φ = 0.5 intervals with φ = 0.5

Coverage rate of Average length of
intervals with φ = 1.0 intervals with φ = 1.0
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Table 5.4: Coverage of the X-ray Color (C) Using the Bayesian Method with Different Indexes (0.0+, 0.5, and 1.0).

λH

0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0
100 % 23.99 100 % 22.67 100 % 21.19 100 % 19.02 100 % 14.07 100 % 11.32 100 % 11.14 100 % 11.11

0.5 100 % 5.10 100 % 4.88 99.9 % 4.51 99.9 % 3.95 100 % 3.35 99.9 % 3.09 99.7 % 3.02 100 % 3.03
100 % 2.87 100 % 2.71 99.0 % 2.50 98.4 % 2.25 98.4 % 2.02 97.2 % 1.90 97.0 % 1.82 98.4 % 1.83
100 % 22.95 100 % 21.59 100 % 19.61 100 % 17.40 100 % 12.24 100 % 10.03 100 % 9.84 100 % 9.51

1.0 100 % 4.91 100 % 4.69 99.7 % 4.31 100 % 3.77 99.9 % 3.04 99.8 % 2.80 99.7 % 2.74 99.8 % 2.71
100 % 2.73 100 % 2.58 99.2 % 2.37 98.9 % 2.14 98.5 % 1.85 97.3 % 1.73 97.7 % 1.67 98.0 % 1.65
100 % 21.42 100 % 19.57 99.8 % 17.52 99.7 % 15.04 99.6 % 10.54 99.3 % 8.45 99.9 % 7.95 99.8 % 7.82

2.0 99.9 % 4.52 99.9 % 4.30 99.7 % 3.89 99.6 % 3.27 99.5 % 2.56 99.2 % 2.33 99.0 % 2.21 99.4 % 2.21
99.1 % 2.51 99.5 % 2.37 99.7 % 2.14 98.8 % 1.87 97.8 % 1.60 98.1 % 1.49 97.3 % 1.40 97.7 % 1.39
100 % 18.60 100 % 16.80 99.9 % 15.18 99.2 % 13.11 97.9 % 8.87 97.9 % 6.06 97.0 % 5.85 96.8 % 5.63

4.0 100 % 3.92 100 % 3.68 99.6 % 3.30 99.2 % 2.64 98.5 % 1.89 98.0 % 1.60 97.9 % 1.53 96.6 % 1.49
98.4 % 2.24 99.2 % 2.09 99.0 % 1.87 99.1 % 1.59 97.7 % 1.29 97.3 % 1.14 97.1 % 1.08 97.4 % 1.04

λS 100 % 13.66 100 % 12.28 99.3 % 10.93 98.3 % 8.74 99.2 % 5.13 98.2 % 2.50 97.8 % 2.26 97.4 % 2.14
8.0 99.9 % 3.29 100 % 3.04 99.7 % 2.64 97.8 % 1.86 98.8 % 1.25 97.6 % 0.96 97.2 % 0.86 97.4 % 0.83

97.7 % 1.99 98.7 % 1.85 98.7 % 1.63 97.5 % 1.28 98.1 % 1.01 97.3 % 0.83 96.3 % 0.75 97.1 % 0.71
100 % 11.37 100 % 9.96 99.8 % 8.49 97.7 % 6.11 98.6 % 2.41 97.9 % 0.73 96.7 % 0.60 95.5 % 0.54

16.0 99.9 % 3.10 99.8 % 2.79 99.2 % 2.34 97.8 % 1.60 98.0 % 0.95 96.6 % 0.65 95.6 % 0.55 94.4 % 0.50
97.5 % 1.91 98.0 % 1.73 98.2 % 1.49 97.2 % 1.14 96.7 % 0.83 96.6 % 0.63 95.3 % 0.54 93.7 % 0.49
100 % 10.82 100 % 9.56 99.3 % 8.00 97.7 % 5.74 97.3 % 2.33 95.7 % 0.59 97.1 % 0.43 93.8 % 0.37

32.0 99.9 % 2.98 99.6 % 2.71 99.0 % 2.21 97.8 % 1.51 96.5 % 0.88 94.4 % 0.55 97.2 % 0.43 94.3 % 0.36
98.2 % 1.80 97.4 % 1.65 96.0 % 1.40 97.1 % 1.06 96.0 % 0.75 94.5 % 0.54 97.2 % 0.42 94.5 % 0.36
100 % 10.99 100 % 9.52 99.7 % 7.84 97.7 % 5.69 97.7 % 2.11 96.3 % 0.53 94.6 % 0.36 96.5 % 0.29

64.0 99.9 % 3.02 99.6 % 2.72 99.0 % 2.23 98.1 % 1.52 97.7 % 0.83 94.8 % 0.50 94.8 % 0.36 96.5 % 0.29
98.5 % 1.82 97.4 % 1.66 97.1 % 1.40 97.8 % 1.05 96.6 % 0.71 94.2 % 0.49 94.9 % 0.36 96.5 % 0.28
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middle, and bottom elements in each cell of Table 5.4. In order to simplify the com-

parison, we simulate test data using the soft and hard source intensities assuming

no background contamination. Based on Table 5.4, we can consider the following

four different scenarios, i.e,

1. when both λS and λH are small (e.g., λS = λH = 0.5),

2. when both λS and λH are large (e.g., λS = λH = 64),

3. when λS is much smaller than λH (e.g., 0.5 = λS � λH = 64), and

4. when λH is much smaller than λS (e.g., 64 = λS � λH = 0.5).

The first scenario is the case of low counts data, while the second scenario is the

case of large counts data. A lower value of φ makes the posterior distributions

of both λS and λH more leaning toward zero, which results in thicker left and

right tails of the posterior distribution of the color, respectively; this is because a

smaller λS makes C smaller and a smaller λH makes C larger. Thus, as φ tends to be

small with low counts data, the mean length of the 95% posterior intervals becomes

larger, while maintaining high coverage rates for different values of φ. The second

scenario is the case of high counts data, which is opposite to the first scenario in

terms of the number of counts. In this case, because observed data contain more

information about the intensities, the effect of φ on the posterior distribution of the

color is minimal, and we have almost identical results no matter what flat prior

distributions are used. When one intensity is much smaller than the other, the

posterior behavior of the color can be dramatically changed. That is, in the third

scenario, a small value of φ affects only λS, making the color even smaller. Namely,

small φ makes the posterior distribution of the color have an elongated left tail,

but the right tail is barely affected. In the case of the fourth scenario, the exactly

opposite situation occurs: the left tail remains similar for different values of φ, but
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Figure 5.9: Empirical Distributions of Coverage Rates with Different Indexes. Each
histogram represents the empirical distribution of a coverage rate for the color.
The vertical dotted lines represent the theoretical coverage rate 95%. The top row
corresponds to the cases where at least one of λS and λH is less than or equal to 4
in Table 5.4, while the bottom row to the cases where both λS and λH are greater
than or equal to 8.

the right tail is thicker with a small value of φ. Thus, smaller φ can result in the

bigger mean length of the 95% posterior intervals, as we confirm in Table 5.4.

Considering all different scenarios in Table 5.4, we suggest using the Jeffrey’s flat

prior distribution (i.e., φ = 0.5) especially when either soft or hard intensity is low.

As it turns out, φ = 0.5 is a conservative choice because it maintains fairly good

coverage rates and yields the reasonably large mean length of the 95% posterior

intervals, regardless of different values of the (λS, λH) pair. The top row of Fig-

ure 5.9 shows the empirical distributions of the coverage rates when at least one of

λS and λH is less than or equal to 4. When we do not have much information about

the source intensities, we prefer conservative results with high coverage rates and,

at the same time, with reasonably large mean length of the intervals. Among the
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three choices of the flat prior distributions, Figure 5.9 suggests the Jeffrey’s flat

prior distribution as the most conservative flat prior distribution in that sense.

With high counts data, i.e., when both λS and λH are greater than or equal to 8

in Table 5.4, all flat prior distributions seem equivalent because the resulting pos-

terior distributions are very similar to one another, as shown in the bottom row of

Figure 5.9. Due to the sampling errors, we expect most coverage rates to be be-

tween 93% and 97% which are three standard deviations away from 95% because

the standard deviation of the coverage probability for the 95% posterior intervals

is given by
√

(0.95)(0.05)/1000 = 0.0069.
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