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Abstract

Gibbs-type samplers are widely used tools for obtaining Monte Carlo samples from pos-

terior distributions under complicated Bayesian models. Standard Gibbs samplers up-

date component quantities of the parameter by sequentially sampling their conditional

distributions under the target joint distribution. However, this strategy can be slow to

converge if the components are highly correlated. We formalize a general strategy to

construct more efficient samplers by replacing some of the conditional distributions with

conditionals of a surrogate distribution. The surrogate distribution is designed to share

certain marginal distributions with the target, but with lower correlations among its

components. Although not necessarily recognized when they were introduced, a number

of existing strategies for improving Gibbs can be formulated in this way (e.g., Marginal

Data Augmentation, Partially Collapsed Gibbs sampling, Ancillarity-Sufficiency Inter-

weaving Strategy, etc.). The use of surrogate distributions in Gibbs-type samplers may

lead to incompatible conditional distributions and thus sensitivity to the order of the

component draws. We propose a framework to combine different strategies involving sur-

rogate distributions into a single coherent sampler that maintains the target stationary

distribution and outperforms any of its component algorithms in terms of convergence.

We use both theoretical arguments and numerical examples to illustrate the implemen-

tation and efficiency of our strategy. A problem in supernova cosmology has motivated

our work and serves as a realistic testing ground for our methods. Finally, we correct

two errors in the related Marginal Data Augmentation algorithms of Imai and van Dyk

(2005) that are quite popular for fitting multinomial probit models.
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1
Introduction

Multilevel statistical models with hierarchical structures have become more and more

popular in the physical, social, and engineering sciences, since they allow us to model

complex phenomena and data-generating mechanisms. In Bayesian analyses, such mod-

els are generally fit by obtaining a Monte Carlo sample from their posterior distributions

and using this sample to quantify likely values of model parameters, their correlations

and uncertainties, and to make predictions under the models. Although it is often infea-

sible to obtain an independent Monte Carlo sample, a Markov chain can be constructed

such that its stationary distribution equals the target posterior distribution. This is

Markov Chain Monte Carlo (MCMC), for which Robert and Casella (2004) provided

a brief history. Realizations of MCMC chains after sufficient burn-in approximate a

correlated sample from the target posterior distribution.

Two of the most common strategies for constructing MCMC samples are the Gibbs

sampler and Data Augmentation (DA) algorithm. The Gibbs sampler was introduced

by Geman and Geman (1984) to cope with specific problems in Bayesian image analy-
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sis, and Smith and Roberts (1993) developed it for general Bayesian computation. The

Gibbs sampler is an example of the method of model reduction, which uses a set of

conditional distributions to construct a simple-to-implement and stable algorithm. In

particular, it decomposes a high-dimensional joint distribution by using two or more

steps, each of which samples a lower-dimensional component of the parameter from its

complete conditional distribution, i.e., the distribution conditioning on the current val-

ues of all the other components. Gibbs is especially useful when the joint distribution

cannot be easily sampled, while the complete conditional distributions are in closed

form or are easy to sample. Furthermore, under mild conditions, as the number of iter-

ations grows, the distribution of the joint Gibbs Markov chain converges to the target

and distributions of the (perhaps non-Markovian) sub-chains converge to their corre-

sponding marginal distributions, see Robert and Casella (2004) and Meyn and Tweedie

(1993). Unfortunately, the Gibbs sampler, while easy to implement, is sometimes slow

to converge.

While the DA algorithm can be viewed as a two-step Gibbs sampler, it has distinct his-

tory, motivation, and implementation strategy. Instead of decomposing the parameter

space, data augmentation expands the dimension of the unknown quantities in such a

way that the target distribution is preserved while enabling a simple Gibbs sampler on

a larger set of unknowns. Tanner and Wong (1987) used the idea of data augmentation

in posterior sampling and developed the DA algorithm. As with the Gibbs sampler, the

main goal of the DA algorithm is to simplify implementation rather than to improve

speed. The method of auxiliary variables (see, e.g., Besag and Green (1993) for an

overview), which was developed independently of the DA algorithm, essentially utilized

the same strategy but with the goal of speeding up convergence. See van Dyk and Meng

(2010) for a detailed review and comparison of algorithms involving data augmentation.

A variety of extensions of the Gibbs sampler and the DA algorithm have been proposed

to improve their convergence. The conditional data augmentation (CDA) and marginal

data augmentation (MDA) algorithms (Meng and van Dyk, 1999), for example, were

inspired by the idea of expanding the parameter space. Both methods introduce a work-
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ing parameter, and either condition on the value of the working parameter leading to

the best performance (in the case of CDA) or sample it in the iteration (in the case

of MDA). Their effectiveness has been demonstrated in faster samplers for fitting fac-

tor analysis models (Ghosh and Dunson, 2009), capture-recapture models (Royle and

Dorazio, 2012), Gaussian copula factor models (Murray et al., 2013), probit models for

independent or spatially correlated ordinal data (Schliep and Hoeting, 2015), etc. The

MDA algorithm was developed independently by Liu and Wu (1999) under the name

Parameter-Expanded Data Augmentation (PXDA). Both Meng and van Dyk (1999)

and Liu and Wu (1999) pointed out the potential to further boost computational effi-

ciency using generalized versions of their algorithms under limiting improper priors for

the working parameter. Meng and van Dyk (1999) used empirical evidence to illustrate

the possibility of obtaining positive recurrent Markov chains with better convergence by

purposely constructing a non-positive recurrent chain in a larger parameter space using

improper working priors. Liu and Wu (1999) proved that the PX-DA algorithm with

a Haar measure prior (often improper) for the working parameter is optimal among

a class of such acceleration algorithms. Hobert and Marchev (2008) unified the DA,

PX-DA, and Haar PX-DA algorithms under the framework of “sandwiched” transition

kernels, verified the computational advantage of (Haar) PX-DA using this framework,

and provided a promising general approach for improving convergence of the DA algo-

rithm. Hobert and Marchev (2008) also claimed that when group structure is present in

the set of one-to-one mappings indexed by the working parameter, the MDA algorithm

under limiting improper working priors is equivalent to the Haar PX-DA in regard to the

sandwiched framework. Moreover, van Dyk (2010) introduced the technique of MDA

into Gibbs samplers and broadened the class of problems that can benefit from MDA.

The Partially Collapsed Gibbs (PCG) sampler (van Dyk and Park, 2008; Park and

van Dyk, 2009) is a useful tool to accelerate the convergence of Gibbs samplers. The

PCG sampler, deploying the model reduction technique, improves the convergence of

a Gibbs sampler by reducing the conditioning in some of its steps. This strategy has

been very effective in practice, for example, in algorithms for fitting quantile regres-
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sion models (Reed and Yu, 2009), spatial probit regression models (Berrett and Calder,

2012), a model for orthogonal component analysis of sparse representation (Dobigeon

and Tourneret, 2010), a model determining the parameters of multi-path components for

ultra-wide-band channels in engineering (Kail et al., 2011), and a model for reconstruct-

ing the full three dimensional velocity field from observed distances and spectroscopic

galaxy catalogues in astrophysics (Lavaux, 2016). PCG can be viewed as a generaliza-

tion of blocking and collapsing (Liu et al., 1994), which also improve the performance

of Gibbs samplers.

A good choice of parameterization is essential to producing efficient sampling schemes.

This is emphasized, for example, by Papaspiliopoulos et al. (2007) in the context of

hierarchical models. Yu and Meng (2011) developed a strategy for boosting the efficiency

of Gibbs-type samplers by interweaving two special parameterizations. As implied by

its name, ASIS uses a pair of DA schemes: a sufficient and an ancillary augmentation.

It is usually the case that the sampler constructed via one of these two augmentations

is fast while the other is slow. ASIS takes advantage of this “beauty-and-beast” feature

of the two DA algorithms by interweaving one into the other, producing a sampler

that is more efficient than either alone. The computational benefits of ASIS have been

illustrated in fitting, e.g., the multinomial logit model with Gaussian process priors

(Filippone et al., 2012), stochastic volatility models (Kastner and Fruhwirth-Schnatter,

2014), and the complex hierarchical model of infrared spectral energy distributions in

astrophysics (Kelly et al., 2012).

In a Gibbs-type sampler, when one or more of its component conditional distributions

is not in closed form, we can use a Metropolis-Hastings (MH) update (Metropolis et al.,

1953; Hastings, 1970). While using MH within a Gibbs sampler is straightforward,

embedding MH within a PCG sampler can alter the stationary distribution of the chain.

This can happen even when the PCG sampler would work perfectly well if all of the

conditional updates were available without resorting to MH updates. Examples arise

even in a two-step MH within PCG sampler. Woodard et al. (2013), for example, pointed

out this problem in certain samplers described in the literature for regression with

4



functional predictors. Although they did not use the framework of PCG, these samplers

are simple special cases of improper MH within PCG samplers. In this dissertation, we

illustrate difficulties that may arise when using MH updates within a PCG sampler and

develop a general procedure for deriving an MH within PCG sampler from the original

Gibbs sampler while maintaining the target stationary distribution. We use theoretical

arguments to guide the choice between different MH within PCG sampling schemes, and

use numerical examples from our applied work to illustrate the MH within PCG sampler

and its computational advantage. The work on embedding MH into PCG samplers has

been published in van Dyk and Jiao (2015).

Among the many acceleration strategies, we focus on the MDA, ASIS, and PCG al-

gorithms. In practice, we sometimes find that one of these strategies is efficient for

improving convergence, but only for a subset of the parameters. At the same time,

another strategy may only help the set of parameters unaffected by the first strategy.

Thus, if there are multiple parameters that exhibit poor convergence, it can be difficult

to decide which strategy to use. We propose constructing new samplers that use multiple

acceleration strategies. This allows for more flexibility and power to produce samplers

that are both easy to implement and fast to converge. There are already examples

adopting this combining strategy in the literature. For example, as mentioned above,

MH is often embedded into a Gibbs-type algorithm to facilitate sampling from one or

more of its component conditional distributions (e.g., Gilks et al., 1995; van Dyk and

Jiao, 2015). In another example, van Dyk and Meng (2001) showed how the conditional

and marginal data augmentation algorithms could be combined to derive efficient data

augmentation schemes. Unless we are careful, however, combining strategies in this way

may alter the stationary distribution of the overall sampler. Thus in this dissertation,

we construct a general framework for combining different acceleration strategies into a

single coherent sampler that maintains the target stationary distribution, and verify the

efficiency of this framework for improving convergence using both theoretical arguments

and numerical examples.

The essence of a number of existing acceleration strategies for improving the conver-
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gence rate of Gibbs samplers is to reduce the correlation between components within

the Gibbs Markov chain. Inspired by this idea, we formalize a general strategy to con-

struct more efficient samplers by replacing some of the conditional distributions with

conditionals of a surrogate distribution. The surrogate distribution is designed to share

certain marginal distributions with the target, but with lower correlations among its

components. Although not necessarily recognized when they were introduced, MDA

(including Haar PX-DA), PCG, and ASIS can all be formulated in terms of surro-

gate distributions. Thus in the combining strategy described above, when combining

different strategies into a single sampler, we in fact replace some of the conditional

distributions of the original sampler with conditionals of different surrogate distribu-

tions. As mentioned above, Hobert and Marchev (2008) has already adopted the idea of

unifying different acceleration strategies under a general framework, which is promising

to produce more efficient samplers. Their work, however, just focused on DA, PX-DA,

and Haar PX-DA algorithms. The use of surrogate distributions in Gibbs-type samplers

may lead to incompatible conditional distributions and thus sensitivity to the order of

the component draws. In this dissertation, we demonstrate how to derive surrogate

distributions from PCG, MDA, and ASIS algorithms, and use several examples to il-

lustrate the potential of manipulating surrogate distributions to further improve the

convergence of Gibbs-type samplers.

Combining strategies to improve the convergence of Gibbs samplers via the framework

of surrogate distributions is motivated by computational challenges from our applied

work in supernova cosmology. The Physics Nobel Prize (2011) was awarded for the dis-

covery that the expansion of the universe is accelerating, a phenomenon attributed to

the existence of “dark energy”. Type Ia supernova (SN) observations have been instru-

mental in this discovery and remain an important tool to quantify the characteristics

of dark energy (March et al., 2011). Although details remain unclear, it is thought that

a Type Ia SN occurs when a compact, carbon-oxygen white dwarf star accumulates

extra material until its mass approaches a critical threshold (“Chandrasekhar thresh-

old”: 1.44M�, where M� is the mass of the sun). Because of their common formation
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mechanism, all Type Ia SNe have similar absolute luminosity (which is measured in ab-

solute magnitudes, i.e., the negative logarithm of flux). This means that their distance

can be estimated from their apparent magnitude (i.e., their brightness as viewed from

earth). We can also directly measure their redshift, a stretching of the wavelength of

light emanating from objects moving away from us due to the expansion of the uni-

verse. The underlying cosmological models of interest predict the relationship between

redshift and the difference between apparent and absolute magnitudes, called “distance

modulus”. We embed the cosmological model into a Gaussian hierarchical model that

naturally represents the structure of the problem and dependence among its parameters.

(See March et al. (2011) for more details on the formation of Type Ia SNe and their

utility in fitting cosmological models.) When sampling from the posterior distribution

of the cosmological hierarchical model, the standard Gibbs sampler converges slowly.

This fact has largely motivated our work in developing more efficient samplers. Because

of its complexity, the overall model has served as an ideal testing ground of our new

computational methods. In this manuscript, we explore the relative efficiencies of four

algorithms in fitting the hierarchical model and confirm the efficiency of both PCG and

ASIS. Furthermore, we verify that we can gain more efficiency by combining two or

more strategies into one sampler. In addition, we briefly describe our applied work in

supernova cosmology, for which the details appear in Shariff et al. (2016).

We also consider the samplers for fitting the multinomial probit (MNP) model in some

detail. The MNP model is widely used for modelling discrete-choice data in social

sciences and transportation studies and it is typically fit from a Bayesian perspective

using MCMC. Popular algorithms specify a set of latent Gaussian variables as aug-

mented data, whose relative magnitudes determine the choices. McCulloch and Rossi

(1994), for example, advocated a Gibbs sampler that was the first feasible Bayesian ap-

proach to fitting the MNP model. In their specification, however, the prior distribution

for the identifiable parameters is only determined as a byproduct (Imai and van Dyk,

2005) (henceforth, IvD). Improvements to McCulloch and Rossi (1994) were introduced

by Nobile (1998) and McCulloch et al. (2000), which are the bases for the comprehen-
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sive bayesm R package. Another set of samplers, based on the MDA algorithm, were

introduced by IvD. Like McCulloch et al. (2000), IvD specified their model in terms

of prior distributions that are set directly on the identifiable parameters, making the

priors relatively easy to interpret. IvD also demonstrated that their algorithms tend

to be faster than that of McCulloch et al. (2000). Because of their apparent advan-

tages, IvD’s algorithms have been widely used in practice to fit MNP models. Unfortu-

nately, there are two errors in IvD’s algorithms; both occur when sampling the variance-

covariance matrix. First, IvD reparameterized the variables to facilitate the sampling

of the variance-covariance matrix, and they made a mistake when transforming to the

original parameterization. Second, when updating the variance-covariance matrix, a

constraint on the matrix was overlooked. These errors can alter the stationary distri-

bution and hence the fitted values and standard errors of the model parameters. They

also can affect the efficiency of convergence. Burgette and Nordheim (2012) (henceforth,

BN) modified the model of IvD by changing the manner in which unidentifiability in

the scale is addressed. In particular, they fixed the trace of the variance-covariance ma-

trix while IvD, like previous authors, fixed the first diagonal element. BN’s algorithm

for sampling from the posterior distribution builds upon Algorithm 1 of IvD. Thus the

two errors made by IvD also affect BN’s algorithm. BN made another mistake when

updating the regression coefficient parameter, β. In this manuscript, we explain how

to correct the errors in the algorithms of both IvD and BN, and use both a simulation

study and real-data analyses to illustrate the difference between the original and the

corrected algorithms in terms of their estimated posterior distributions and convergence

properties. The corrections we propose are summarized in Jiao and van Dyk (2016),

and will be implemented in the MNP R package.

The remainder of the manuscript is organized as follows. In Section 1.1, we introduce

the notations used through the dissertation, in Section 1.2, we review the details of the

MDA, ASIS, and PCG algorithms, and in Section 1.3, we describe various methods we

use to compare relative efficiencies of different algorithms. In Chapter 2, we introduce

the subtleties of embedding MH into PCG samplers, in Chapter 3, we construct the
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framework of combining different strategies into one single sampler, and in Chapter 4,

we illustrate the potential of the framework of surrogate distribution strategy to further

improve the performance of Gibbs-type samplers. In each of Chapters 2–4, we provide

both theoretical arguments and numerical examples for illustration. We describe our

applied work in supernova cosmology in Chapter 5. In a closing post-script, we correct

the errors in algorithms of IvD and BN for fitting MNP models. Finally, we summarize

our results and discuss future work in Chapter 7.

1.1 Markov Chain Background and Notations

1.1.1 Basic Notions of Markov Chains

We review the basic notions of Markov chains based on Robert and Casella (2004).

Definition of the Markov chain

Suppose {X(t), t = 0, 1, . . . } is a sequence of random variables. The support of each

x(t) is X , an non-empty set equipped with a countably generated σ-algebra, B(X ). A

transition kernel K is a function defined on X × B(X ) such that

i) ∀x ∈ X , K(·|x) is a probability measure;

ii) ∀A ∈ B(X ), K(A|·) is measurable.

If X is discrete, the transition kernel K is simply a matrix K with elements,

Kxx′ = Pr(X(t+1) = x′|X(t) = x), ∀x, x′ ∈ X . (1.1)

If X is continuous, the kernel denotes the conditional density K(x′|x) of the transition

K(·|x), that is, ∀x ∈ X and ∀A ∈ B(X ),

Pr(X ∈ A|x) =

∫
A

K(y|x)dy. (1.2)
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Given a transition kernel K, the random variable sequence {X(t), t = 0, 1, . . . } is a

Markov chain if for any t, the distribution of X(t+1) given X(t) = x(t), X(t−1) =

x(t−1), . . . , X(0) = x(0) is the same as the distribution of X(t+1) given X(t) = x(t),

that is, ∀A ∈ B(X ),

Pr(X(t+1) ∈ A|x(t), x(t−1), . . . , x(0)) = Pr(x(t+1) ∈ A|x(t)) =

∫
A

K(x|x(t))dx. (1.3)

A chain {X(t), t = 0, 1, . . . } is time-homogeneous if the distribution of (X(t1), . . . , X(tk))

given X(t0) = x(t0) is the same as the distribution of (X(t1−t0), . . . , X(tk−t0)) given

X(0) = x(0), ∀k ∈ N and each (k + 1)-uplet t0 ≤ t1 ≤ · · · ≤ tk. The structure of

a time-homogeneous Markov chain is entirely determined by its transition kernel and

initial state, x(0) (or initial distribution, µ). In this dissertation, we only consider time-

homogeneous Markov chains.

Given K1(A|x) = K(A|x), ∀x ∈ X and ∀A ∈ B(X ), the kernel for t (t ∈ N+) transitions

is defined by

Kt(A|x) =

∫
X
Kt−1(A|y)K(y|x)dy. (1.4)

Chapman-Kolmogorov equations provide the convolution formulas for the transition

kernels of the type, Kt+s (∀t, s ∈ N), that is, ∀x ∈ X and ∀A ∈ B(X ),

Kt+s(A|x) =

∫
X
Ks(A|y)Kt(y|x)dy. (1.5)

If X is discrete, (1.5) is simply a matrix product.

Stability properties of Markov chains

Before recalling the properties of a Markov chain to ensure its convergence, we review

some related basic notions. The first t for which the Markov chain {X(t), t = 0, 1, . . . }

enters a set A ∈ B(X ) is denoted by τA = inf{t ≥ 1 : X(t) ∈ A}, and the number of

passages in A is defined by ηA =
∑∞

t=1 I{X(t) ∈ A}, where I{·} is an indicator function,

which equals to one if the condition in the brackets is satisfied, and equals to zero
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otherwise. Two related quantities, that is, the average number of passages, E(ηA|x),

and probability of returning to A in a finite number of steps, Pr(τA < +∞|x), are of

particular importance. A set C ∈ B(X ) is small if there exists t ∈ N+ and a measure

νt > 0 such that, ∀x ∈ C and ∀A ∈ B(X ), Kt(A|x) ≥ νt(A). A σ-finite measure π is

invariant for the transition kernel K(·|·) if

π(A) =

∫
X
K(A|x)π(x)dx, ∀A ∈ B(X ). (1.6)

The invariant distribution is also referred to as stationary if π is a probability measure,

since X(0) ∼ π implies that X(t) ∼ π, for every t. The total variation norm for two

arbitrary measures, µ1 and µ2, is defined by

||µ1 − µ2||TV = supA∈B(X )|µ1(A)− µ2(A)|. (1.7)

A Markov chain must enjoy good stability properties to guarantee an acceptance ap-

proximation of the simulated model. The first property we consider is irreducibility,

which is the measure of the sensitivity of a Markov chain to the initial conditions (x(0)

or µ). In the discrete case, the chain {X(t), t = 0, 1, . . . } is irreducible if all states

communicate, that is, if

Pr(τx′ <∞|x) > 0, ∀x, x′ ∈ X . (1.8)

In the continuous case, the chain is ξ-irreducible for some measure ξ, if for every A ∈

B(X ) with ξ(A) > 0, there exists t such that

Kt(A|x) > 0, ∀x ∈ X . (1.9)

Irreducibility implies that every set A ∈ B(X ) has a chance to be visited by the Markov

chain {X(t), t = 0, 1, . . . }. However, this property is too weak to ensure that the tra-

jectory of {X(t), t = 0, 1, . . . } will enter A often enough. Thus, furthermore, we in-
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troduce the property of recurrence. In the general case, a set A ∈ B(X ) is recurrent

if E(ηA|x) = +∞ for every x ∈ A. The set A is uniformly transient if there exists a

constant M such that E(ηA|x) < M for every x ∈ A; A is transient if there exists a

countable collection of uniformly transient sets {Bi} such that A = ∪
i
Bi. A Markov

chain {X(t), t = 0, 1, . . . } is recurrent if

i) there exists a measure ξ such that {X(t), t = 0, 1, . . . } is ξ-irreducible, and

ii) for every A in B(X ) with ξ(A) > 0, E(ηA|x) = +∞ for every x ∈ A.

The chain {X(t), t = 0, 1, . . . } is transient if it is ξ-irreducible and X is transient. Note

that a ξ-irreducible Markov chain is either recurrent or transient. The property of

recurrence can be strengthened by requiring not only an infinite average number of

visits to every set but also an infinite number of visits to every path of a Markov chain.

The stronger requirement leads to the property of Harris recurrence. A set A ∈ B(X )

is Harris recurrent if

Pr(τA < +∞|x) = 1 (1.10)

for every x ∈ X . A Markov chain {X(t), t = 0, 1, . . . } is Harris recurrent if there exists

a measure ξ such that {X(t), t = 0, 1, . . . } is ξ-irreducible and every set A ∈ B(X ) with

ξ(A) > 0 is Harris recurrent.

An increased level of stability for a Markov chain {X(t), t = 0, 1, . . . } is attained by the

existence of an invariant measure. If {X(t), t = 0, 1, . . . } is a recurrent Markov chain,

there exists an invariant σ-finite measure, π, which is unique up to a multiplicative

factor. If π is an invariant probability measure (i.e., stationary distribution), the chain

is positive; otherwise, the chain is called null recurrent. The stationary distribution of

a Markov chain can be identified by the detailed balance condition. A Markov chain

{X(t), t = 0, 1, . . . } with transition kernel K satisfies the detailed balance condition if

there exists a function f such that, for every (x, y) ∈ X ,

K(x|y)f(y) = K(y|x)f(x). (1.11)
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If a Markov chain {X(t), t = 0, 1, . . . } with transition kernel K satisfies the detailed

balance condition with f a probability density function, then

i) the density f is the stationary distribution of the chain, and

ii) the chain is reversible, that is, the distribution of X(t+1) given X(t+2) = x is the

same as the distribution of X(t+1) given X(t) = x.

With the existence of the kernel K and the stationary distribution f , detailed balance

is equivalent to reversibility.

The behaviour of a Markov chain {X(t), t = 0, 1, . . . } may sometimes be restricted

by deterministic constraints on the transitions from X(t) to X(t+1). These constraints

are formalized in terms of period. Generally, a ξ-irreducible Markov chain {X(t), t =

0, 1, . . . } has a cycle of length d if there exists a small set C, an integer M , and a

probability distribution νM such that d is the greatest common denominator (g.c.d.) of

{t ≥ 1 : ∃ δt > 0 such that C is small for νt ≥ δtνM}. (1.12)

The period of {X(t), t = 0, 1, . . . } is defined by the largest d satisfying (1.12) and

{X(t), t = 0, 1, . . . } is aperiodic if d = 1.

Limiting behaviour of Markov chains

It is important to explore the limiting behaviour of a Markov chain {X(t), t = 0, 1, . . . }.

The invariant distribution π is a natural candidate for the limiting distribution of

{X(t), t = 0, 1, . . . } because of its existence and uniqueness. We review sufficient con-

ditions for {X(t), t = 0, 1, . . . } to be asymptotically distributed as its invariant dis-

tribution π without depending on the initial conditions, that is, ergodicity. First, if

{X(t), t = 0, 1, . . . } is Harris positive recurrent and aperiodic, then for every initial

distribution µ,

lim
t→+∞

∣∣∣∣∣∣∣∣ ∫ Kt(·|x)µ(x)dx− π
∣∣∣∣∣∣∣∣

TV

= 0. (1.13)
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In particular, MCMC algorithms lead to aperiodic chains, recurrence or even Harris

recurrence holds for most MCMC algorithms, and moreover, the chain produced by an

MCMC algorithm naturally possess an invariant distribution due to its construction.

1.1.2 Notations

We denote the generic observed data and unknown parameter by Yobs and ψ, respec-

tively. We wish to sample from the posterior distribution of ψ, i.e., p(ψ|Yobs). The

MCMC algorithms we consider are Gibbs-type samplers that rely on the complete

conditional distributions of either p(ψ|Yobs) or its multivariate marginal distributions.

Thus, we divide ψ into N possibly multivariate non-overlapping components, that is,

ψ = (ψ1, . . . , ψN) with N ≥ 2. The Gibbs sampler updates each ψj in each iteration

by sampling its complete conditional distribution, see Figure 1.1(a) for an example of

a Gibbs sampler. In this dissertation, we only consider systematic-scan Gibbs samplers

Liu et al. (1995). That is, in each iteration, the components of ψ are updated in a fixed

ordering and each component is updated exactly once. The DA algorithm divides ψ into

only two components. Owing to the different motivation of DA and following existing

literature on DA, we denote these two components by θ and Ymis. In the DA scenario, the

distribution of interest is usually p(θ|Yobs) and the augmented data, Ymis, is introduced

to enable Gibbs sampling by iteratively updating p(Ymis|θ, Yobs) and p(θ|Ymis, Yobs). The

MDA (Haar PX-DA), ASIS, and PCG samplers all start with a Gibbs (or DA) sampler,

and transform it in some way to improve its convergence properties. Henceforth, we

refer to the original Gibbs sampler as the parent Gibbs sampler.

We wish to obtain a Monte Carlo sample from the generic target distribution, p(ψ).

We achieve this by using an MCMC sampler to construct a Markov chain {ψ(t), t =

1, 2, . . . } with the stationary distribution π(ψ). We refer to a sampler as proper if

it has a stationary distribution and that distribution coincides with the target, i.e.,

π(ψ) = p(ψ); otherwise we call the sampler improper. In a typical Bayesian setting,

p(ψ) ≡ p(ψ|Yobs). A Markov chain with transition kernel K(ψ|ψ′) means that the

conditional distribution of ψ(t) given ψ(t−1) is K
(
ψ(t)|ψ(t−1)

)
. In this dissertation, we
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focus on cases where the transition kernel is parameterized as K(ψ|ψ′; ζ), where ζ is some

parameter that is not part of the Markov chain but affects its kernel and perhaps also

its stationary distribution. Sometimes, the transition kernel may not depend on ψ′ or

may depend on only some components of ψ′. These two cases are indicated by K(ψ| ; ζ)

and K(ψ1, ψ2|ψ′2; ζ), respectively. We denote the transition kernel of an MCMC sampler

updating p(ψ) by K(ψ|ψ′), where the prime indicates the current state of a parameter.

The joint Gibbs Markov chain, {ψ(t), t = 1, 2, . . . }, has stationary distribution equal to

p(ψ|Yobs), and each sub-chain {ψ(t)
j , t = 1, 2, . . . }, can be viewed, upon convergence, as

a sample from its corresponding marginal posterior distribution, i.e., p(ψj|Yobs).

The transition kernel of a Gibbs sampler updating p(ψ) can be written as the product

of N component transition kernels of lower-dimensional Markov chains, that is,

K(ψ|ψ′) =
N∏
j=1

Kj[ψj| ;Fj(ψ, ψ′)], (1.14)

where Kj is the transition kernel for a Markov chain with stationary distribution

p(ψj|Fj(ψ, ψ′)). In a standard Gibbs sampler, Kj[ψj| ;Fj(ψ, ψ′)] = p[ψj|Fj(ψ, ψ′)],

which does not depend on ψ′j; Fj(ψ, ψ′) is the sub-vector of (ψ, ψ′) taking the com-

ponents of ψ already updated in the current iteration and components of ψ′ that are

not. Suppose, for example, ψ = {ψ1, ψ2, ψ3}, and the transition kernel K(ψ|ψ′) is

equal to
∏3

j=1 p[ψj|Fj(ψ, ψ′)], where F1(ψ, ψ′) = (ψ′2, ψ
′
3), F2(ψ, ψ′) = (ψ1, ψ

′
3), and

F3(ψ, ψ′) = (ψ1, ψ2). If a conditional distribution is not in closed form, we update

it with MH; this alters the transition kernel. Suppose, for example, we cannot sample

p(ψ1|ψ2, ψ3) directly and use MH. In this case, we specify a jumping rule (i.e., a proposal

distribution), denoted by J1|2,3(ψ1|ψ′1, ψ′2, ψ′3), where the subscript specifies the target

conditional distribution. In the MH update, we sample ψprop
1 ∼ J1|2,3(ψ1|ψ′1, ψ′2, ψ′3) and

set ψ1 = ψprop
1 with probability r = min

{
1,

p(ψprop
1 |ψ′2, ψ′3)J1|2,3(ψ′1|ψ

prop
1 , ψ′2, ψ

′
3)

p(ψ′1|ψ′2, ψ′3)J1|2,3(ψprop
1 |ψ′1, ψ′2, ψ′3)

}
;

otherwise the current value is retained, i.e., ψ1 = ψ′1. Thus the component transition

kernel of ψ1 becomes K1[ψ1|ψ′1;F1(ψ, ψ′) = (ψ′2, ψ
′
3)], which depends on ψ′1 because the

acceptance probability of the MH algorithm involves ψ′1, and because the new iterate of
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ψ1 is set to ψ′1 if the proposal of ψ1 is rejected. We denote this MH transition kernel by

M1|2,3(ψ1|ψ′1, ψ′2, ψ′3), where M emphasizes the use of MH and the subscript specifies

its stationary distribution.

1.2 Review of the Algorithms

1.2.1 Marginal Data Augmentation

Formally, for a DA scheme to be legitimate, the augmented-data model p(Ymis, Yobs|θ)

must be a completion (see Definition 10.3 of Robert and Casella (2004)) of the observed-

data model p(Yobs|θ), i.e.,

∫
p(Ymis, Yobs|θ)dYmis = p(Yobs|θ). (1.15)

The MDA algorithm expands the augmented-data model p(Ymis, Yobs|θ) by introducing a

working parameter α. The expanded model p̃(Ỹmis, Yobs|θ, α) must also be a completion

of p(θ|Yobs), that is, ∫
p̃(Ỹmis, Yobs|θ, α)dỸmis = p(Yobs|θ). (1.16)

By (1.16), α is not identifiable under the observed-data model p(Yobs|θ). A general

method for introducing α into an augmented-data model is to construct a one-to-one

and differentiable mapping between Ymis and Ỹmis. Specifically, following Liu and Wu

(1999), we assume that

LW-1: the working parameter α indexes a “data-transformation” mechanism with

Ỹmis = Gα(Ymis), that is, for any fixed α, Gα induces a one-to-one and differ-

entiable mapping (i.e., a diffeomorphism) between Ymis and Ỹmis. (Note that Liu

and Wu (1999) defined the “data transformation” via Ymis = tα(Ỹmis). Thus their

tα is G−1
α here.)

Meng and van Dyk (1999) pointed out that G can operate on the parameter θ as well,

but in this dissertation we focus on the case where G depends only on α. For each G,
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there typically exists a scalar e such that Ge(Ymis) = Ymis.

When the prior distribution of the working parameter α is proper, the MDA algorithm

proceeds as

Step 1: (Ỹ
(t+1)

mis , α?) ∼ p̃(Ỹmis, α|θ(t), Yobs), (Sampler 1.1)

Step 2: (θ(t+1), α(t+1)) ∼ p̃(θ, α|Ỹ (t+1)
mis , Yobs); set Y

(t+1)
mis = G−1

α(t+1)

(
Ỹ

(t+1)
mis

)
.

In Sampler 1.1, α is sampled in both steps and the first update of α is not part of the

final output. We refer to updates which are sampled but not included in the output

of each iteration as intermediate quantities, following van Dyk and Park (2008), and

indicate them with a “?” in their superscript. We refer to Sampler 1.1 as a collapsed

DA sampler, since it can be viewed as sampling the complete conditional distributions

of p̃(Ỹmis, θ|Yobs) =
∫
p(Ỹmis, θ, α|Yobs)dα. In this regard, Sampler 1.1 is equivalent to

a standard DA sampler constructed from p̃(Ỹmis, θ|Yobs). Thus the marginal Markov

chain, {θ(t), t = 0, 1, . . . }, produced by Sampler 1.1 is reversible with p(θ|Yobs) as its

stationary distribution (Liu et al., 1994). Collapsing α out increases the (expected)

variance of the conditional distributions used in Sampler 1.1. This allows for bigger

jumps and thus faster convergence, see Meng and van Dyk (1999) and van Dyk and

Meng (2001) for both theoretical and practical illustrations.

Meng and van Dyk (1999) showed that the rate of convergence of MDA depends on the

choice of prior on α and argued for optimizing the rate of convergence within a class of

certain priors. In some cases, the optimal choice is an improper prior on α. Because

α does not appear in the likelihood of (1.16), however, an improper prior results in

an improper posterior. Thus we cannot marginalize α out in Step 1 of Sampler 1.1.

Suppose we instead condition on the previous iteration of α when sampling Ỹmis:

Step 1: Ỹ
(t+1)

mis ∼ p̃(Ỹmis|θ(t), α(t), Yobs), (Sampler 1.2)

Step 2: (θ(t+1), α(t+1)) ∼ p̃(θ, α|Ỹ (t+1)
mis , Yobs); set Y

(t+1)
mis = G−1

α(t+1)

(
Ỹ

(t+1)
mis

)
.
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With a proper prior on α, Sampler 1.2 is also a standard DA sampler but with stationary

distribution p̃(Ỹmis, α, θ|Yobs). We can use an improper prior for α if we can verify that

the marginal chain {θ(t), t = 0, 1, . . . } is a positive recurrent Markov chain with p(θ|Yobs)

as its stationary distribution, despite of the fact that the joint chain {(α(t), θ(t)), t =

0, 1, . . . } is null recurrent. This occurs when the two conditions in Lemma 1 of van Dyk

and Meng (2001) hold, that is, letting p̃∞(α, θ|Ỹmis, Yobs) be the joint distribution of θ

and α conditioning on Ỹmis = Gα(Ymis) under an improper working prior p∞(α),

vDM-1: there exists a sequence of proper working priors indexed by m, i.e., {pm(α)}

and an m∞ such that the corresponding p̃m(α, θ|Ỹmis, Yobs)converges to p̃∞(α,

θ|Ỹmis, Yobs) as m→ m∞;

vDM-2: the conditional distribution of the expanded posterior with the improper prior,

p̃(θ|Gα(Ymis), Yobs), is free of α.

Under Conditions vDM-1 and vDM-2, the sub-chain {θ(t), t = 0, 1, . . . } induced by

Sampler 1.2 with the working prior p∞(α) is Markovian, and its transition kernel

p∞(θ(t+1)|θ(t), α(t)) is the limit of the kernel pm(θ(t+1)|θ(t)) induced by Sampler 1.1 with

the working prior pm(α) as m → m∞, see Lemma 1 of van Dyk and Meng (2001).

Thus Conditions vDM-1 and vDM-2 are sufficient to guarantee that {θ(t), t = 0, 1, . . . }

induced by Sampler 1.2 under p∞(α) is a positive recurrent reversible Markov chain

with p(θ|Yobs) as its unique stationary distribution, see Theorem 2 of Meng and van

Dyk (1999).

Liu and Wu (1999) explored the benefits of PX-DA samplers with Haar measure working

priors which are accessible when the set of transformations indexed by α, i.e., {G−1
α , α ∈

A}, forms a locally compact group. We briefly review the basic knowledge of group

structure and Haar measure below. See Liu and Wu (1999) and Hobert and Marchev

(2008) for more details.

A set A is a group with respect to an operator “·” if i) for all α ∈ A, β ∈ A, α · β ∈ A;

ii) there exist an identity element e ∈ A so that α · e = e · α = α, for all α ∈ A; iii) for

all α ∈ A, we can find a unique α−1 ∈ A so that α · α−1 = α−1 · α = e. Following Liu
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and Wu (1999), we assume that {G−1
α , α ∈ A} has the same group structure as A, that

is, G−1
e is an identity mapping, and for all α ∈ A, β ∈ A, G−1

α (G−1
β (Ymis)) = G−1

α·β(Ymis).

Group A is called a locally compact group or topological group, if topologically A is

locally compact and the operations (α, β) → α · β and α → α−1 are continuous. If

Group A is finite, then it is automatically a locally compact group. If the operations

are analytic, A is called a Lie group.

For any measurable subset A ⊂ A and any element β ∈ A, A · β defines a subset of A

resulting from “operating” on every element of A by β. A right Haar measure H(dα)

on Group A is a measure that is invariant under the group operation on the right side,

that is,

H(A) =

∫
A

H(dα) =

∫
A·β

H(dα) = H(A · β), ∀β ∈ A, (1.17)

for all measurable subset A ⊂ A. A left Haar measure can be defined in a similar

manner. Under mild conditions, the right (or left) Haar measure is unique up to a

positive constant, see Rao (1987). When the right Haar measure of A is also its left Haar

measure, A is called unimodular. When A is compact or abelian (i.e., α ·β = β ·α; e.g.,

the translation and scale groups), its right Haar measure is unimodular (Rao, 1987). If

A is a compact group, its unimodular Haar measure is the uniform probability measure.

WhenA is a translation group (e.g., G−1
α (Ymis) = Ymis+α), the unimodular Haar measure

for A is the Lebesgue measure. When A is a scale group (e.g., G−1
α (Ymis) = αYmis), the

unimodular Haar measure for A is proportional to |α|−1dα. Following Liu and Wu

(1999), we assume that a density H(α) exists for the unimodular Haar measure with

respect to the Lebesgue or counting measure, i.e., H(dα) = H(α)dα.

The Haar PX-DA proceeds by

Step 1: Y ?
mis ∼ p(Ymis|θ(t), Yobs), (Sampler 1.2l)

Step 2: α? ∼ p̃(α|Y ?
mis, Yobs); set Y

(t+1)
mis = G−1

α?

(
Y ?

mis

)
,

Step 3: θ(t+1) ∼ p(θ|Y (t+1)
mis , Yobs),
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where Step 2 imposes a transition from Y ?
mis to Y

(t+1)
mis . Let Z be the state space of Ymis.

For a fixed Ymis, Liu and Wu (1999) defined the set {G−1
α (Ymis), α ∈ A} ⊂ Z as an orbit ;

Y
(t+1)

mis and Y ?
mis lie on the same orbit if and only if there exists a unique α ∈ A so that

Y
(t+1)

mis = G−1
α (Y ?

mis). Different orbits do not intersect, and Z can be regarded as the

union of all of the orbits, each of which has the same structure as A. The set of orbits

can be represented by a smooth cross-section Q, which is defined by a subset of Z that

intersects with (almost) every orbit exactly once. See Liu and Wu (1999) for illustrative

examples of orbits and cross-sections. With the cross-section Q, any Ymis ∈ Z can be

represented together by its orbit r ∈ Q and its position β ∈ A on the orbit. Step 2

of Sampler 1.2l is equivalent to generating a new position of Ymis conditioning on its

orbit. To prove the propriety of this step, Liu and Wu (1999) stated that the following

condition should hold, that is,

LW-2: The group A is locally compact and has a unimodular Haar measure H(α)dα.

There exists a smooth cross-section Q ⊂ Z, and the mapping Z: Z(β, r) =

G−1
β (r) for A × Q → Z is one-to-one and continuously differentiable, that is, a

diffeomorphism.

With the mapping Z, we can reparameterize each Ymis ∈ Z as that there exists a pair

of (β, r), such that Ymis = Z(β, r). For all α ∈ A and Ymis = Z(β, r), G−1
α (Ymis) =

G−1
α (Z(β, r)) = Z(α · β, r). Thus Sampler 1.2l can simply be described by

θ(t) → (β, r)→ (α? · β, r)→ θ(t+1). (1.18)

Liu and Wu (1999) proved that under Conditions LW-1 and LW-2, Step 2 of Sampler 1.2l

keeps p(Ymis|Yobs) invariant, that is, if Y ?
mis ∼ p(Ymis|Yobs), then Y

(t+1)
mis ∼ p(Ymis|Yobs).

Thus the Haar PX-DA sampler, i.e., Sampler 1.2l, is proper, that is, it maintains the

target stationary distribution p(Ymis, θ|Yobs), see Theorem 4 and Corollary 1 of Liu and

Wu (1999). As mentioned above, Hobert and Marchev (2008) verified that when the

group structure is present, the Haar PX-DA is equivalent to the MDA algorithm under

the limiting improper working prior, i.e., Sampler 1.2. In this dissertation, we confine
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our attention to Haar PX-DA algorithms to obtain optimal computational efficiency.

1.2.2 Ancillarity-Sufficiency Interweaving Strategy

As described above, ASIS utilizes two special DA schemes: a sufficient augmentation,

Ymis,S, such that p(Yobs|Ymis,S, θ) is free of the parameter θ, and an ancillary augmen-

tation, Ymis,A, such that p(Ymis,A|θ) does not depend on θ. Normally, given θ, Ymis,S is

related to Ymis,A via a one-to-one mapping, Hθ, that is, Ymis,A = Hθ(Ymis,S) (but see Yu

and Meng (2011) for an exception). We assume Hθ is differentiable when Ymis,S is con-

tinuous. ASIS forms a new sampler by interweaving a DA algorithm constructed with

a sufficient augmentation into one constructed with an ancillary augmentation:

Step 1: Y ?
mis,S ∼ p(Ymis,S|θ(t), Yobs), (Sampler 1.3)

Step 2: θ? ∼ p(θ|Y ?
mis,S, Yobs); set Y

(t+1)
mis,A = Hθ?(Y

?
mis,S),

Step 3: θ(t+1) ∼ p(θ|Y (t+1)
mis,A , Yobs); set Y

(t+1)
mis,S = H−1

θ(t+1)(Y
(t+1)

mis,A ).

Here, we assume the joint distribution, p(Ymis,S, Ymis,A, θ|Yobs), is well defined with

marginal distributions p(Ymis,S, θ|Yobs), p(Ymis,S, Ymis,A|Yobs), and p(Ymis,A, θ|Yobs). In par-

ticular, p(Ymis,S, θ|Yobs) and p(Ymis,A, θ|Yobs) share the same marginal distribution for θ,

i.e., p(θ|Yobs). (This is a necessary consequence of both augmentation schemes being

legitimate DA schemes.) Step 2 of Sampler 1.3 is equivalent to sampling Ymis,A from

p(Ymis,A|Y ?
mis,S, Yobs). Thus, the transition kernel of θ under ASIS is

K(θ(t+1)|θ(t)) =∫ ∫
p(θ(t+1)|Y (t+1)

mis,A , Yobs)p(Y
(t+1)

mis,A |Y ?
mis,S, Yobs)p(Y

?
mis,S|θ(t), Yobs)dY

?
mis,SdY

(t+1)
mis,A .

(1.19)

It is easy to verify that the stationary distribution of K(θ(t+1)|θ(t)) is the target marginal,

p(θ|Yobs), see Yu and Meng (2011) for details.

Yu and Meng (2011) found that Steps 1-3 of Sampler 1.3 can be regarded as sampling

(θ, Ymis,S) along different directions. ASIS selects a particular combination of sampling
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(a) Gibbs Sampler

1. p(ψ1|ψ′2, ψ′3, ψ′4)

2. p(ψ2|ψ1, ψ
′
3, ψ

′
4)

3. p(ψ3, ψ4|ψ1, ψ2)

(b) Marginalization

1. p(ψ1, ψ
?
3|ψ′2, ψ′4)

2. p(ψ2|ψ1, ψ
?
3, ψ

′
4)

3. p(ψ3, ψ4|ψ1, ψ2)

(c) Permute

1. p(ψ2|ψ′1, ψ′3, ψ′4)

2. p(ψ1, ψ
?
3|ψ2, ψ

′
4)

3. p(ψ3, ψ4|ψ1, ψ2)

(d) Trim

1. p(ψ2|ψ′1, ψ′3, ψ′4)

2. p(ψ1|ψ2, ψ
′
4)

3. p(ψ3, ψ4|ψ1, ψ2)

Figure 1.1: An example of using three tools to transform a Gibbs sampler into a proper PCG sampler.
The parent Gibbs sampler appears in (a). The sampler in (b) updates ψ3 rather than conditioning on it in
Step 1. The steps of this sampler are permuted in (c) to make the draw of ψ?3—in Step 2 of (c)—to be
redundant. Trimming ψ?3 , we obtain the PCG sampler in (d).

directions such that the resulting sampler substantially outperforms both parent DA

samplers, while the additional computational expense is small, see Yu and Meng (2011).

1.2.3 Partially Collapsed Gibbs Sampling

The PCG sampler replaces some of the complete conditional distributions of an ordinary

Gibbs sampler with the corresponding conditionals of marginal distributions of the

target joint posterior distribution (van Dyk and Park, 2008). This generally leads to

a larger variance of the conditional distribution, bigger average jump sizes, and thus

improved convergence relative to the parent Gibbs sampler.

One must be careful, however, to ensure that the target distribution is maintained;

van Dyk and Park (2008) provided three tools for transforming a Gibbs sampler into

a PCG sampler, while maintaining the target distribution, specifically, marginalization,

permutation and trimming. Suppose, for example, ψ = (ψ1, ψ2, ψ3, ψ4) and we wish to

sample p(ψ). The marginalization stage replaces one or more steps of a Gibbs sampler

with steps that update rather than condition on some components of ψ, see Step 1 in

Figure 1.1(b). This results in the same component being sampled in two or more steps.

The steps of the marginalized sampler are then permuted to make some intermediate

quantities redundant, which means they are neither subsequently conditioned upon nor

part of the final output, see ψ3 in Step 2 of Figure 1.1(c). Finally, we trim the redundant

quantities; this results in one or more steps that samples from a conditional distribution

of a marginal distribution of p(ψ), such as Step 2 in Figure 1.1(d). We refer to such steps
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as reduced steps. We must guarantee only redundant quantities are trimmed, because

trimming intermediate quantities conditioned upon in subsequent steps can alter the

stationary distribution. Since all three stages preserve the stationary distribution of

the parent Gibbs sampler, the resulting PCG sampler maintains the target stationary

distribution. Marginalization can significantly improve the rate of convergence, while

permutation typically has a minor effect and trimming has no effect (van Dyk and

Park, 2008). PCG samplers generally exhibit better and often much better convergence

properties than their parent Gibbs samplers. More details and examples can be found

in van Dyk and Park (2008) and Park and van Dyk (2009).

In some cases, a PCG sampler is simply a blocked or collapsed version of its parent Gibbs

sampler. PCG is a more general strategy, however, because in some cases, PCG samplers

involve incompatible conditional distributions, that is, conditionals for which there is no

corresponding joint distribution, e.g., the PCG sampler in Figure 1.1(d). Unlike the

Gibbs sampler, permuting the steps of such a PCG sampler may alter its stationary

distribution. Suppose, for example, we obtain (ψ′1, ψ2, ψ
′
3, ψ

′
4) from p(ψ1, ψ2, ψ3, ψ4)

and update ψ1 according to Step 2 of the PCG sampler in Figure 1.1(d). The joint

distribution of (ψ1, ψ2, ψ
′
3, ψ

′
4) would be

∫
p(ψ1|ψ2, ψ

′
4)p(ψ′1, ψ2, ψ

′
3, ψ

′
4)dψ′1 = p(ψ1, ψ2, ψ

′
4)p(ψ′3|ψ2, ψ

′
4), (1.20)

which is different from the target in that ψ1 and ψ′3 are conditionally independent.

However, the joint distribution of ψ1 and ψ2 in (1.20) is the target posterior distribution

and Step 3 of the PCG sampler conditions only on (ψ1, ψ2). Thus after Step 3, the joint

distribution of the parameters is again the target. Thus after a cyclic permutation of

steps of the PCG sampler in Figure 1.1(d), the sampler ending with either Step 1 or 3

is proper, whereas ending with Step 2 is improper. With non-cyclic permutation, the

stationary distribution is unknown.
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1.3 Tools for Comparing Efficiencies of Algorithms

In this manuscript, we typically need to compare the convergence efficiencies of different

algorithms. The tools we use to make comparisons are i) visualizing methods: time-

series and autocorrelation plots of parameters (the lag-k autocorrelation of a time series

{ψ(t), t = 0, 1, . . . } is defined by corr(ψ(t), ψ(t−k)) = γk/γ0, where γk = cov(ψ(t), ψ(t−k))

and γ0 is the unconditional variance of the time series), ii) effective sample size per

second of parameters, and iii) the cyclic-permutation bound of a sampler.

1.3.1 Effective Sample Size

The effective sample size (ESS) is defined as

ESS(ψ) =
T

1 + 2
∑∞

t=1 ρt(ψ)
, (1.21)

where T is the total posterior sample size and ρt(ψ) is the lag-t autocorrelation of the

parameter ψ. The ESS approximates the size of an independent sample with equivalent

information in terms of the Monte Carlo variance of the sample mean, and is indicative

of how well the chain mixes, see Kass et al. (1998) and Liu (2001). We use the function

“effectiveSize” in the R package coda to estimate the ESS. To account for computa-

tional time, we use ESS/sec (i.e., ESS/(CPU time)) of a parameter to compare different

algorithms. The larger the ESS/sec, the more efficient is the convergence.

1.3.2 Cyclic-Permutation Bound

We use L2(p) to denote the set of all functions h(ψ) such that
∫
h2(ψ)p(ψ)dψ < ∞.

This set is a Hilbert space with inner product < h, g >= Ep[h(ψ)g(ψ)]. For a general

Markov chain, {ψ(t), t = 0, 1, . . . } with transition kernel K(ψ|ψ′), we define the forward

operator on L2(p) of K by
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Ph(ψ′) =

∫
h(ψ)K(ψ|ψ′)dψ. (1.22)

Denote L2
0(p) = {h ∈ L2(p),Ep[h(ψ)] = 0, varp[h(ψ)] < ∞}, which is also a Hilbert

space with the same inner product and forward operator as L2(p). For h ∈ L2
0(p),

||h||2 = varp(h). We define P0 the forward operator on L2
0(p) induced by P . The norm

of this forward operator is ||P0|| ≡ suph∈L2
0(p)
||P0h||
||h|| , and it is easy to verify that

||P0|| ≡ sup
h∈L2

0(p),varp(h)=1

{
varp

[
E(h(ψ(1))|ψ(0))

]}1/2
= ρ(ψ(1), ψ(0)), (1.23)

where ρ(ψ(1), ψ(0)) represents the maximum correlation of ψ(1) and ψ(0). The spectral

radius of P0, r(P0), which is defined by

r(P0) = lim
t→∞
||P t

0||
1/t
, (1.24)

is called the convergence rate of the Markov chain, and r(P0) ≤ ||P0||. Smaller con-

vergence rate implies faster convergence to the stationary distribution of the Markov

chain. Although Liu et al. (1994) provided the explicit form of r(P0) for two-step

Gibbs samplers, it is typically difficult to derive r(P0) for Gibbs samplers with more

than two steps. Thus van Dyk and Park (2008) introduced an upper-bound of r(P0),

named by cyclic-permutation bound. Consider an N -step Gibbs sampler and define a

j-step-lagged Gibbs sampler, for j = 0, . . . , N − 1, by the Gibbs sampler starting with

Step j + 1 obtained via cyclically permuting the steps of the original sampler. The

j-step-lagged Gibbs samplers (j = 0, . . . , N − 1) have the same spectral radius, but

possibly different norms (or equivalently, maximum correlations). We denote the norm

of the forward operator corresponding to the j-step-lagged Gibbs sampler by γj, and

the cyclic-permutation bound is defined by minj∈{0,...,N−1}{γj}. The cyclic-permutation

bound is much easier to handle than the convergence rate. Thus we also use this quan-

tity to analyse the convergence properties of Gibbs-type samplers in this dissertation.

Smaller cyclic-permutation bounds indicate better convergence properties.

25



2
Embedding the MH Algorithm

into PCG Samplers

In this chapter, we introduce difficulties that may arise when using MH updates within

a PCG sampler and develop a general strategy for using such updates while maintaining

the target stationary distribution. We begin in Section 2.1 with a motivating exam-

ple from our applied work in X-ray astronomy to illustrate the complications that arise

when MH is introduced into PCG samplers and set the stage for the methodological and

theoretical contributions of our strategy. The MH within PCG sampler is introduced

in Section 2.2 along with methods for ensuring that its stationary distribution is the

target distribution and two strategies for implementing the sampler while maintaining

this target. Theoretical arguments are presented in Section 2.2.3 that aim to guide

the choice between different implementations of the MH within PCG sampler. The

proposed methods and theoretical results are illustrated in Section 2.3 with several ex-

amples, including the spectral analysis model in astrophysics, the hierarchical Gaussian
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model in supernova cosmology, and a factor analysis model. Final discussion appears

in Section 2.4, concluding our strategy of embedding MH steps into PCG samplers and

shedding light on its connection with the combining strategy, which to be introduced

in Chapter 3.

2.1 Motivating Example

We begin with a spectral analysis model in X-ray astronomy that can be fitted with

Gibbs-type samplers (van Dyk et al., 2001; van Dyk and Meng, 2010). In this chapter,

we use variants of this example as a running illustration of the methods we propose.

The X-ray detectors used in astronomy are typically on board space-based observatories

and record the number of photons detected in each of a large number of energy bins.

Spectral analysis aims to estimate the distribution of the photon energies. We use the

Poisson distribution to model the recorded photon counts, where the expected count is

parameterized as a function of the energy, Ei of bin i. A simple example is

Yi
ind∼ Poisson

{
Λi = α(Ei

−β + γI{i = µ})e−φ/Ei
}
, for i = 1, . . . , n, (2.1)

where Yi is the count in bin i; α, β, γ, µ, and φ are model parameters; I{·} is the

indicator function; and n is the number of energy bins. The αEi
−β term in (2.1) is a

continuum—a smooth term that extends over a wide range of energies. The αγI{i = µ}

term is an emission line—a sharp narrow term that describes a distinct aberration

from the continuum. The emission line in (2.1) is very narrow in that it is contained

entirely in one energy bin. The parameters of the continuum and emission line describe

the composition, temperature, and general physical environment of the source. The

factor e−φ/Ei in (2.1) accounts for absorption—lower energy photons are more likely to

be absorbed by inter-stellar material and not be recorded by the detector. A typical

spectral model might contain multiple summed continua and emission lines. We use a

simple example here to focus attention on computational issues. We assume that α, β, γ,

µ, and φ are a priori independent and that µ is a priori uniform on {1, . . . , n}, while the
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Sampler 2.1

1. Mµ|Y,α,β,γ,φ(µ|Y, α′, β′, γ′, µ′, φ′)
2. p(YL|Y, α′, β′, γ′, µ′, φ′)
3. p(α|Y, YL, β′, γ′, µ, φ′)
4. Mβ|Y,YL,α,γ,µ,φ(β|Y, YL, α, β′, γ′, µ, φ′)
5. p(γ|Y, YL, α, β, µ, φ′)
6. Mφ|Y,YL,α,β,γ,µ(φ|Y, YL, α, β, γ, µ, φ′)

Sampler 2.2

1. Mµ|Y,β,γ,φ(µ|Y, β′, γ′, µ′, φ′)
2. Mφ|Y,β,γ,µ(φ|Y, β′, γ′, µ, φ′)
3. Mβ|Y,γ,µ,φ(β|Y, β′, γ′, µ, φ)

4. p(α|Y, β, γ′, µ, φ)

5. p(YL|Y, α, β, γ′, µ, φ)

6. p(γ|Y, YL, α, β, µ, φ)

Sampler 2.3

1. Mµ|Y,β,γ,φ(µ|Y, β′, γ′, µ′, φ′)
2. Mβ,φ|Y,γ,µ(β, φ|Y, β′, γ′, µ, φ′)
3. p(α|Y, β, γ′, µ, φ)

4. p(YL|Y, α, β, γ′, µ, φ)

5. p(γ|Y, YL, α, β, µ, φ)

Sampler 2.4

1. Mµ|Y,β,γ,φ(µ|Y, β′, γ′, µ′, φ′)
2. Mφ|Y,β,γ,µ(φ|Y, β′, γ′, µ, φ′)
3. Mα,β|Y,γ,µ,φ(α, β|Y, α′, β′, γ′, µ, φ)

4. p(YL|Y, α, β, γ′, µ, φ)

5. p(γ|Y, YL, α, β, µ, φ)

Figure 2.1: Samplers 2.1–2.4. The four samplers are all MH within PCG samplers for fitting the spectral
model in (2.1). Sampler 2.1 (top-left) is the proper sampler with the lowest degree of partial collapsing.
Sampler 2.2 (top-right) is another proper sampler but with a higher degree of partial collapsing. Samplers 2.3
(bottom-left), which blocks Steps 2 and 3 of Sampler 2.2 into a single MH step, is the proper sampler with
the highest degree of partial collapsing. Sampler 2.4 (bottom-right) blocks Steps 3 and 4 of Sampler 2.2.
Unlike Sampler 2.3, however, Sampler 2.4 is improper.

other four parameters are a priori uniform on the positive real line R+. In practice, we

do not observe Y = (Y1, . . . , Yn) directly because photon counts are subject to stochastic

censoring, misclassification, and background contamination, see Lee et al. (2011) and

van Dyk and Jiao (2015) for the complete spectral analysis model considering all these

factors. In this dissertation, for simplicity, we assume that Y is observed directly and

ignore censoring, misclassification, and background contamination.

The model in (2.1) is a finite mixture model and can be fitted via the standard data

augmentation scheme that sets Yi = YiC + YiL, where YiC
ind∼ Poisson

(
αEi

−βe−φ/Ei
)

and

YiL
ind∼ Poisson

(
αγI{i = µ}e−φ/Ei

)
, are the photon counts in bin i generated from the

continuum and emission line, respectively. We consider samplers that target p(YL, α,

β, γ, µ, φ|Y ) rather than p(α, β, γ, µ, φ|Y ) because introduction of the augmented data,
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YC = (Y1C , . . . , YnC) and YL = (Y1L, . . . , YnL), highly simplifies the complete conditional

distributions. We begin with the six-step Gibbs sampler which updates each of YL, α,

β, γ, µ, and φ from its complete conditional distribution iteratively, see Figure 2.3(a).

Three of its steps need MH updates. Because YL completely specifies the line location

µ, varp(µ|YL) = 0. Thus this MH within Gibbs sampler is not irreducible, and the

subchain for µ does not move from its starting value µ(0), for any choice of µ(0). We

solve this problem by updating µ without conditioning on YL, and obtain an MH within

PCG sampler, i.e., Sampler 2.1, given in the top-left panel of Figure 2.1. Sampler 2.2

in the top-right panel of Figure 2.1 is another MH within PCG sampler but with a

higher degree of partial collapsing, i.e., more quantities are marginalized out in steps of

Sampler 2.2 than in Sampler 2.1. Sampler 2.2 marginalizes XL out when updating not

only µ, but also α, β, and φ, and marginalizes α out of its first three steps, whereas

Sampler 2.1 does not remove α from any step. Samplers 2.3 and 2.4 attempt to further

improve Sampler 2.2 by blocking two of its steps. Sampler 2.3 blocks the updates

of β and φ into one single MH step, see the bottom-left panel of Figure 2.1, while

Sampler 2.4 blocks the updates of β and α, see the bottom-right panel of Figure 2.1.

Details of Samplers 2.1–2.4 and other samplers introduced in this chapter appear in

Appendix A.

Unfortunately, Sampler 2.4 is improper, while Samplers 2.1–2.3 are proper MH within

PCG samplers with common parent Gibbs sampler. The failure of Sampler 2.4 rests in

the MH update of Step 3. The MH transition kernel Mα,β|Y,γ,µ,φ(α, β|Y, α′, β′, γ′, µ, φ)

depends on (α′, β′) via its acceptance probability and its output if its proposal is rejected,

see Section 1.1.2 of Chapter 1. If the joint distribution of (α′, β′) and (γ′, µ, φ) were the

target, Mα,β|Y,γ,µ,φ(α, β|Y, α′, β′, γ′, µ, φ) would deliver a draw from p(α, β|Y, γ′, µ, φ).

However, Steps 1 and 2 of Sampler 2.4 update µ and φ without conditioning on α′.

Thus α′ and (µ, φ) are conditionally independent andMα,β|Y,γ,µ,φ(α, β|Y, α′, β′, γ′, µ, φ)

fails to deliver a draw from p(α, β|Y, γ′, µ, φ). If the conditional distribution of (α, β)

were available without resorting to an MH update, Sampler 2.4 would be proper because

under this scenario, the transition kernel of (α, β) would only depend on (γ′, µ, φ), whose
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joint distribution is the target. Thus unlike an ordinary Gibbs sampler, introducing MH

into a PCG sampler can destroy its stationary distribution. Examples appear even in

simplest two-step MH within PCG samplers, see Section 2.2.1. We must take extra care

to guarantee that an MH within PCG sampler is proper.

Like a standard PCG sampler, permuting the steps of a proper MH within PCG sampler

may alter its stationary distribution. Suppose, for example, we obtain (Y ′L, α
′, β′, γ′, µ′, φ′)

from p(YL, α, β, γ, µ, φ|Y ) and update µ according to Step 1 of Sampler 2.1. The joint

distribution of (Y ′L, α
′, β′, γ′, µ, φ′) would be

∫
p(µ|Y, α′, β′, γ′, φ′)p(Y ′L, α′, β′, γ′, µ′, φ′|Y )dµ′

= p(α′, β′, γ′, µ, φ′|Y )p(Y ′L|Y, α′, β′, γ′, φ′).
(2.2)

Because the joint distribution of (α′, β′, γ′, φ′) and µ in (2.2) is the target posterior

distribution and Step 2 of Sampler 2.1 conditions only on (α′, β′, γ′, φ′) and µ, the joint

distribution of the parameters after Step 2, that is, of (YL, α
′, β′, γ′, µ, φ′), is again the

target. Thus a cyclic permutation of the steps in Sampler 2.1 that ends with each of

Steps 2–6 leads to a proper sampler, but ending with Step 1 does not. With non-cyclic

permutations, the stationary distribution is unknown. It is the conditional independence

of X ′L and µ in (2.2) that makes Sampler 2.1 much faster than its parent MH with Gibbs

sampler; recall varp(µ|XL) = 0. In addition, Sampler 2.3, i.e., the proper MH within

PCG sampler with the highest degree of partial collapsing, converges much faster than

Sampler 2.1, the sampler with the lowest degree of partial collapse. Sampler 2.2 is

also more efficient than Sampler 2.1, but worse than Sampler 2.3. See Section 2.3.1 for

numerical illustration. Thus proper MH within PCG samplers outperform their parent

Gibbs samplers in computational efficiency, and higher degree of partial collapsing can

typically lead to better performance in convergence.

Motivated by this example, we consider developing a general strategy for using MH

updates within PCG samplers while maintaining the target stationary distribution, and

illustrating the computational advantage of proper MH within PCG samplers using

examples from our applied work.
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Figure 2.2: Proper and improper samplers, for the bivariate Gaussian target distribution. The first two
panels give scatter plots of ψ1 and ψ2 for 10,000 draws from Samplers 2.5 and 2.6, respectively. The
marginal distributions from the two samplers are compared in the two quantile-quantile plots. The improper
Sampler 2.6 severely underestimates the correlation between ψ1 and ψ2, and slightly overestimates the
variance of ψ2.

2.2 Using the MH Algorithm within PCG samplers

2.2.1 An error of embedding MH into simplest PCG samplers

The potential pitfalls of introducing MH updates into a PCG sampler can be illustrated

using the simplest possible PCG sampler. We start with a two-step Gibbs sampler with

target distribution p(ψ1, ψ2), where the second step relies on an MH update:

Step 1: ψ
(t+1)
1 ∼ p(ψ1|ψ(t+1)

2 ), (Sampler 2.5)

Step 2: ψ
(t+1)
2 ∼M2|1(ψ2|ψ(t+1)

1 , ψ
(t)
2 ).

While this sampler is proper, replacing Step 1 with ψ
(t+1)
1 ∼ p(ψ1) results in an improper

sampler:

Step 1: ψ
(t+1)
1 ∼ p(ψ1), (Sampler 2.6)

Step 2: ψ
(t+1)
2 ∼M2|1(ψ2|ψ(t+1)

1 , ψ
(t)
2 ).

The problem with Sampler 2.6 can be illustrated using a simulation study. Figure 2.2

compares 10,000 draws generated by Samplers 2.5 and 2.6 with p(ψ1, ψ2) given by
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The MH jumping rule in Step 2 of both samplers is a Gaussian distribution centered

at the previous draw of ψ2 with variance equal to 6. Sampler 2.6 underestimates the

correlation of the target distribution and overestimates the marginal variance of ψ2.

Of course, if we repeat Step 2 a sufficient number of times within each iteration of

Sampler 2.6, it would deliver a draw (approximately) from its target, p(ψ2|ψ1), and

Sampler 2.6 would deliver (approximately) independent draws from p(ψ1, ψ2). We dis-

cuss this strategy for constructing an approximately proper sampler in Section 2.2.2.

Similarly, iterating Step 2 of Sampler 2.5 would (approximately) lead to a standard

two-step Gibbs sampler.

Like Sampler 2.4 in Section 2.1, the key to understanding the failure of Sampler 2.6

(without iterating Step 2) lies in the MH jumping rule used in Step 2 of both samplers.

The kernel M2|1(ψ2|ψ(t+1)
1 , ψ

(t)
2 ) depends on ψ

(t)
2 . Although M(ψ2|ψ(t+1)

1 , ψ
(t)
2 ) delivers

a draw from p(ψ2|ψ1) if given a sample (ψ
(t+1)
1 , ψ

(t)
2 ) from the target distribution, in

Sampler 2.6, ψ
(t+1)
1 and ψ

(t)
2 are independent and M(ψ2|ψ(t+1)

1 , ψ
(t)
2 ) does not deliver a

draw from the target conditional distribution.

Unfortunately, there are a number of samplers in the literature that have the same

structure as the improper Sampler 2.6, for instance, Liu et al. (2009), Lunn et al. (2009),

McCandless et al. (2010), and even in the popular WinBUGS package (Spiegelhalter,

Thomas, Best and Lunn 2003). These samplers do not generally exhibit the desired

stationary distributions.

2.2.2 Embedding the MH algorithm into PCG samplers

Verifying the stationary distribution

As the example in Section 2.2.1 illustrates, introducing MH into a well behaved PCG

sampler can alter the sampler’s stationary distribution. Here we describe the basic
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complication that arises when MH is introduced into a PCG sampler and give advice

on how to guarantee that the sampler is proper.

When deriving a PCG sampler (without MH), the marginalization stage means some

components of ψ are updated in multiple steps. If the same component is updated in

consecutive steps, the Markov transition kernel does not depend on the first update. The

first update is therefore redundant and can be omitted without affecting the stationary

distribution of the chain. The situation becomes more complicated when some of the

steps of the PCG sampler require MH updates. Suppose, for example, we wish to sample

from p(ψ) with ψ = (ψ1, ψ2, ψ3) using a proper PCG sampler in which ψ1 and ψ2 are

jointly updated in Step j via a draw from the conditional distribution p(ψ1, ψ2|ψ3).

Suppose also that ψ2 is to be updated according to its full conditional distribution,

p(ψ2|ψ1, ψ3) in Step j + 1, but this cannot be done directly and we wish to use an MH

update. The remaining unknowns, ψ3, are updated in other steps of the sampler, which

perhaps involve dividing ψ3 into multiple subcomponents. That is, Steps j and j + 1 of

the sampler are

Step j: (ψ
(t+1)
1 , ψ?2) ∼ p(ψ1, ψ2|ψ′3), (Sampler Fragment 1)

Step j + 1: ψ
(t+1)
2 ∼M2|1,3(ψ2|ψ(t+1)

1 , ψ?2, ψ
′
3).

If we were able to draw ψ2 directly from its complete conditional distribution in Step j+

1, ψ?2 would be redundant and we could remove it from the sampler. Then Step j is

replaced with the reduced step ψ
(t+1)
1 ∼ p(ψ1|ψ′3). The MH update in Step j + 1,

however, depends on ψ?2 and replacing it with ψ
(t)
2 may change the chain’s stationary

distribution in an unpredictable way. In short, the MH update used in Step j+1 means

that we cannot reduce Step j. Generally speaking, an MH update in a step that follows

a reduced step is problematic because reduced steps result in independences that do not

exist in the target. (A reduced step that follows an MH step, however, is not inherently

problematic.) More precisely, the kernel, Mj1|j2,j3(ψj1|ψ′j1 , ψ
′
j2
, ψ′j3), can only be used if

no component of (ψj1 , ψj2 , ψj3) is trimmed in the previous step.

Fortunately, the stationary distribution of an MH within PCG sampler can be verified
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using the same three-stage framework of van Dyk and Park (2008) that are used for an

ordinary PCG sampler. The first two stages, marginalization and permutation, apply

equally well to MH within Gibbs samplers. Neither updating additional components of

ψ in one or more steps nor permuting the order of the steps upsets the stationary dis-

tribution of an MH within Gibbs sampler. The final stage involves removing redundant

updates. Because an MH step depends on the current draws of not only the components

of ψ conditioned upon in the target conditional distribution of that step, but those to

be updated in the step also, there are fewer redundant draws when some steps involve

MH. Nonetheless, any redundant updates that are identified can safely be removed in

the trimming stage—by definition they do not affect the transition kernel. The critical

point is that unlike with an ordinary Gibbs sampler, we cannot simply replace some of

the component draws of a PCG sampler with MH updates. Rather we must construct

an MH within PCG sampler by applying the three-stage framework.

Now suppose we wish to implement the marginalization in an MH step. In Sampler

Fragment 1, for example, we aim to sample ψ3 along with ψ2 using a single MH up-

date in Step j + 1. This typically requires replacing Step j + 1 with (ψ
(t+1)
2 , ψ3) ∼

M2,3|1(ψ2, ψ3|ψ(t+1)
1 , ψ?2, ψ

′
3). Because the MH transition kernel of (ψ2, ψ3) depends on

ψ′3, this new Step j + 1 cannot follow a step that reduces ψ3 out. If p(ψ3|ψ1, ψ2) is

a standard distribution, to update ψ2 and ψ3 together, we propose to replace the full

MH step with the reduced MH step followed immediately by a direct draw from the

complete conditional of the reduced quantities. This would entail replacing Step j + 1

of Sampler Fragment 1 with

Step j + 1 with marginalization:

ψ
(t+1)
2 ∼M2|1(ψ2|ψ(t+1)

1 , ψ?2) and ψ3 ∼ p(ψ3|ψ(t+1)
1 , ψ

(t+1)
2 ).

We denote the transition kernel of the full step (i.e., the reduced MH step followed by

the complete conditional of the reduced quantities) byM?. In Sampler Fragment 1, we

rewrite the step with marginalization as

Step j + 1 with marginalization: (ψ
(t+1)
2 , ψ3) ∼M?

2,3|1(ψ2, ψ3|ψ(t+1)
1 , ψ?2).
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(a) Parent MH within Gibbs Sampler

1. p(YL|Y, α′, β′, γ′, µ′, φ′)
2. p(α|Y, YL, β′, γ′, µ′, φ′)
3. Mβ|Y,YL,α,γ,µ,φ(β|Y, YL, α, β′, γ′, µ′, φ′)
4. p(γ|Y, YL, α, β, µ′, φ′)
5. Mµ|Y,YL,α,β,γ,φ(µ|Y, YL, α, β, γ, µ′, φ′)
6. Mφ|Y,YL,α,β,γ,µ(φ|Y, YL, α, β, γ, µ, φ′)

(b) Marginalization

1. p(Y ?
L |Y, α′, β′, γ′, µ′, φ′)

2. p(α?, Y ?
L |Y, β′, γ′, µ′, φ′)

3. M?
β,YL,α|Y,γ,µ,φ(β, Y ?

L , α
?|Y, β′, γ′, µ′, φ′)

4. p(γ|Y, Y ?
L , α

?, β, µ′, φ′)

5. M?
µ,YL,α|Y,β,γ,φ(µ, Y ?

L , α
?|Y, β, γ, µ′, φ′)

6. M?
φ,YL,α|Y,β,γ,µ(φ, YL, α|Y, β, γ, µ, φ′)

(c) Permute

1. M?
µ,YL,α|Y,β,γ,φ(µ, Y ?

L , α
?|Y, β′, γ′, µ′, φ′)

2. M?
φ,YL,α|Y,β,γ,µ(φ, Y ?

L , α
?|Y, β′, γ′, µ, φ′)

3. M?
β,YL,α|Y,γ,µ,φ(β, Y ?

L , α
?|Y, β′, γ′, µ, φ)

4. p(α, Y ?
L |Y, β, γ′, µ, φ)

5. p(YL|Y, α, β, γ′, µ, φ)

6. p(γ|Y, YL, α, β, µ, φ)

(d) Trim (Sampler 2.2)

1. Mµ|Y,β,γ,φ(µ|Y, β′, γ′, µ′, φ′)
2. Mφ|Y,β,γ,µ(φ|Y, β′, γ′, µ, φ′)
3. Mβ|Y,γ,µ,φ(β|Y, β′, γ′, µ, φ)

4. p(α|Y, β, γ′, µ, φ)

5. p(YL|Y, α, β, γ′, µ, φ)

6. p(γ|Y, YL, α, β, µ, φ)

Figure 2.3: The three-stage framework used to derive Sampler 2.2 from its parent MH within Gibbs
sampler. The parent sampler appears in (a) with Steps 3, 5 and 6 requiring MH updates. The conditioning
in steps 2, 3, 5, and 6 is reduced in (b). The steps are permuted in (c) to allow redundant draws of Y ?L and
α? to be trimmed in Steps 1–4. The resulting proper MH within PCG sampler, i.e., Sampler 2.2, appears
in (d).

Note that this full step is not formally an MH update but has the advantage that it does

not depend on the current update of ψ3. Thus, this step can follow a step that reduces

ψ3 out. This MH update ensures that the target stationary distribution is maintained.

Moreover, using this strategy, the updates of the reduced quantities (i.e, ψ3 here) are

expected to be trimmed after the steps are appropriately permuted and that the reduced

MH step, i.e., ψ
(t+1)
2 ∼M2|1(ψ2|ψ(t+1)

1 , ψ?2), can be employed in the final sampler.

We now illustrate the construction of a proper MH within PCG sampler for the spectral

analysis model given in Section 2.1. Figure 2.3(a) gives the six-step Gibbs sampler and

three of its steps require MH updates. The conditioning in four steps is reduced in

Figure 2.3(b), and the steps are permuted in Figure 2.3(c) to allow the redundant

draws of Y ?
L and α? to be trimmed in four steps. The resulting proper MH within PCG
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sampler, i.e., Sampler 2.2, appears in Figure 2.3(d).

Using MH following a reduced step

Using a full MH step immediately following a reduced step can be problematic. Sam-

pler 2.6 in Section 2.2.1 illustrates this in its simplest form: a draw from a marginal

distribution followed by an MH update of the conditional distribution of the remaining

unknowns. As noted in Section 2.2.1, this is a particularly common problem in practice,

even in its simplest form. In more complicated PCG samplers, the general phenomenon

of introducing a full MH step immediately following a reduced step is the typical path

by which introducing MH leads to an improper sampler, e.g., the improper Sampler 2.6

in Section 2.1. This is illustrated in Sampler Fragment 1, where we are unable to re-

place the update in Step j with the reduced step ψ
(t+1)
1 ∼ p(ψ1|ψ′3). Thus, this case

is particularly important and we propose two alternate strategies that maintain the

basic structure of the underlying PCG sampler while allowing a form of MH in the step

following a reduced step. Both solutions are conceptually straightforward.

We begin by studying a special case that is useful for illustrating the two alternative

strategies that we propose. We discuss the more general situation afterwards. In partic-

ular we start in the general setting of Sampler Fragment 1, but consider a PCG sampler

in which ψ1 is updated in Step j via a direct draw from the conditional p(ψ1|ψ3) of the

marginal distribution p(ψ1, ψ3), i.e., a reduced step. Again suppose that an MH update

is required to update ψ2 in Step j + 1. That is, Steps j and j + 1 of the parent PCG

sampler are

Step j: ψ
(t+1)
1 ∼ p(ψ1|ψ′3), (Sampler Fragment 2)

Step j + 1: ψ
(t+1)
2 ∼ p(ψ2|ψ(t+1)

1 , ψ′3).

Because MH is needed for Step j + 1, these steps cannot be blocked.

One straightforward solution to the intractability of p(ψ2|ψ(t+1)
1 , ψ′3) is iterating the MH

update within Step j + 1 to obtain a draw from the target conditional distribution,
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Iterated MH Strategy :

Step j: ψ
(t+1)
1 ∼ p(ψ1|ψ′3), (Sampler Fragment 3)

Step j + 1: Sample ψ
(t+l/L)
2 ∼ M2|1,3(ψ2|ψ(t+1)

1 , ψ
(t+(l−1)/L)
2 , ψ′3), for l = 1, . . . , L, to

obtain ψ
(t+1)
2

approx∼ p(ψ2|ψ(t+1)
1 , ψ′3) at the subiteration l = L.

With sufficiently large L (see the following subsection for methods of determining how

large L must be), the Iterative MH Strategy delivers a sample approximately from

p(ψ2|ψ(t+1)
1 , ψ′3) and thus the sampler is approximately proper. In this special case the

Iterated MH Strategy effectively blocks Steps j and j+ 1 to (approximately) deliver an

independent draw from p(ψ1, ψ2|ψ′3).

Another solution to the intractability of p(ψ2|ψ(t+1)
1 , ψ′3) is a joint MH update on the

blocked version of Steps j and j + 1,

Joint MH Strategy :

Step j: Update (ψ1, ψ2) jointly via the MH jumping rule

J1,2|3(ψ1, ψ2|ψ(t)
2 , ψ′3) = p(ψ1|ψ′3)J2|1,3(ψ2|ψ1, ψ

(t)
2 , ψ′3),

Step j + 1: Omit. (Sampler Fragment 4)

The jumping rule in Step j of Sampler Fragment 4 is exactly the concatenation of Step j

and the jumping rule in Step j + 1 of Sampler Fragment 3. By concatenating we avoid

the iteration.

The Iterated MH Strategy is in some sense a thinned version of the Joint MH Strat-

egy. This, however, is an over simplification for two reasons. First, the Iterated MH

Strategy updates ψ1 only once for every L updates of ψ2 whereas the Joint MH Strat-

egy updates both together in each iteration. Second, although the jumping rule in the

Joint MH Strategy is the concatenation of Step j and the jumping rule used by the first

subiteration in Step j + 1 of Iterated MH Strategy, the acceptance probabilities differ.
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(a) Gibbs Sampler

1. p(ψ3|ψ′1, ψ′2)

2. p(ψ2|ψ′1, ψ3)

3. p(ψ1|ψ2, ψ3)

(b) Marginalization

1. p(ψ3|ψ′1, ψ′2)

2. p(ψ?2|ψ′1, ψ3)

3.M?
1,2|3(ψ1, ψ2|ψ′1, ψ3)

(c) Permute

1. p(ψ3|ψ′1, ψ′2)

2.M?
1,2|3(ψ1, ψ

?
2|ψ′1, ψ3)

3. p(ψ2|ψ1, ψ3)

(d) Trim

1. p(ψ3|ψ′1, ψ′2)

2.M1|3(ψ1|ψ′1, ψ3)

3. p(ψ2|ψ1, ψ3)

1. p(ψ2|ψ′1, ψ′3)

2. p(ψ1|ψ2, ψ
′
3)

3. p(ψ3|ψ1, ψ2)

1. p(ψ?2|ψ′1, ψ′3)

2.M?
1,2|3(ψ1, ψ2|ψ′1, ψ′3)

3. p(ψ3|ψ1, ψ2)

1.M?
1,2|3(ψ1, ψ

?
2|ψ′1, ψ′3)

2. p(ψ2|ψ1, ψ
′
3)

3. p(ψ3|ψ1, ψ2)

1.M1|3(ψ1|ψ′1, ψ′3)

2. p(ψ2|ψ1, ψ
′
3)

3. p(ψ3|ψ1, ψ2)

Figure 2.4: The three-stage framework to derive Sampler Fragment 6 from its parent Gibbs sampler. The
first row corresponds to updating ψ3 before Steps j and j+ 1, while the second row updating ψ3 after that.

This results in a systematic difference in the performance of the resulting samplers, see

Section 2.2.3 for further explanation.

Generalizing Sampler Fragment 2, suppose ψ = (ψ1, ψ2, ψ3, ψ4) and the parent PCG

sampler contains the two steps

Step j: ψ
(t+1)
1 ∼ p(ψ1|ψ(t)

3 , ψ′4), (Sampler Fragment 5)

Step j + 1: (ψ
(t+1)
2 , ψ

(t+1)
3 ) ∼ p(ψ2, ψ3|ψ(t+1)

1 , ψ′4),

where Step j is a reduced step and Step j + 1 cannot be sampled directly. Here the

conditional distributions cannot be blocked into a single step. We can still use the Iter-

ated MH Strategy in Step j+1 to obtain a draw approximately from p(ψ2, ψ3|ψ(t+1)
1 , ψ′4)

and an approximately proper PCG sampler. Likewise we can implement the Joint MH

Strategy, using the jumping rule p(ψ1|ψ(t)
3 , ψ′4)J2,3|1,4(ψ2, ψ3|ψ1, ψ

(t)
2 , ψ

(t)
3 , ψ′4). The sta-

tionary distribution of the joint jumping rule is p(ψ1|ψ(t)
3 , ψ′4)p(ψ2, ψ3|ψ1, ψ

′
4). Although

a legitimate joint distribution of (ψ1, ψ2, ψ3), this does not correspond to a conditional

distribution of p(ψ).

To block or not to block

In the first subsection of Section 2.2.2, we discuss the case where Step j + 1 of Sampler

Fragment 2 requires MH. We now consider the case where Step j requires MH, i.e.,
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Step j: ψ
(t+1)
1 ∼M1|3(ψ1|ψ(t)

1 , ψ′3), (Sampler Fragment 6)

Step j + 1: ψ
(t+1)
2 ∼ p(ψ2|ψ(t+1)

1 , ψ′3).

Sampler Fragment 6 does not lead to convergence problems because the inputs to

Step j + 1, i.e., ψ
(t+1)
1 and ψ′3, follow the desired distribution. Figure 2.4 illustrates

using the three-stage framework to verify the stationary distribution of Sampler Frag-

ment 6, with ψ3 sampled from its complete conditional distribution either before (first

row) or after (second row) Steps K and K + 1.

We consider blocking the two steps of Sampler Fragment 6 into a single MH update as

Step j: Update (ψ1, ψ2) jointly via the MH jumping rule

J1,2|3(ψ1, ψ2|ψ(t)
1 , ψ′3) = J1|3(ψ1|ψ(t)

1 , ψ′3)p(ψ2|ψ1, ψ
′
3),

Step j + 1: Omit. (Sampler Fragment 7)

The jumping rule in Sampler Fragment 7 is exactly the concatenation of Step j+ 1 and

the jumping rule in Step j of Sampler Fragment 6. There is a fundamental difference,

however, in that the transition kernel of Sampler Fragment 7 depends on ψ
(t)
2 because

that if the MH proposal is rejected, (ψ
(t+1)
1 , ψ

(t+1)
2 ) = (ψ

(t)
1 , ψ

(t)
2 ), whereas neither of

the steps in Sampler Fragment 6 depends on ψ
(t)
2 . Thus care must be taken to ensure

blocking in this way does not upset the stationary distribution of the chain.

Steps 3 and 4 of Sampler 2.2 (top-right panel of Figure 2.1) are an example of Sam-

pler Fragment 6, with ψ1 = β, ψ2 = α, and ψ3 = (γ, µ, φ). Blocking Steps 3 and 4

of Sampler 2.2 results in Sampler 2.4 (bottom-right panel of Figure 2.1). As stated in

Section 2.1, unfortunately, Sampler 2.4 is an improper sampler, which we verify using

a simulation study. We begin by generating an artificial data set consisting of n = 550

bins with α = 37.62, β = 1, γ = 40/37.62, µ = 250, and φ = 0.2, see Figure 2.5.

We run two versions of Sampler 2.4 with different jumping rules for updating (α, β).

Sampler 2.4(a) uses the concatenated jumping rule given in Sampler Fragment 7, while
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Figure 2.5: A dataset simulated under the spectral model in (2.1) and used in the simulation study in
Sections 2.2.2 and 2.3.

Sampler 2.4(b) uses an independent bivariate normal jumping rule centered at the cur-

rent value of (α, β). We use a uniform prior distribution for each parameter, and run

30,000 iterations of Samplers 2.2, 2.4(a), and 2.4(b) using the same starting values.

Scatter plots of (α, β, φ) for the last 10,000 draws from the three samplers appear in

Figure 2.6, which shows that Samplers 2.4(a) and 2.4(b) underestimate the correlations

of the target distribution; this effect is especially significant for Sampler 2.4(b). Fig-

ure 2.7 compares the marginal distributions of α, β, and φ generated with Samplers 2.2

and 2.4(b), and shows that Sampler 2.4(b) underestimates the marginal variances of all

three parameters. (The marginals generated with Sampler 2.4(a) are more similar to

those generated with Sampler 2.2.)
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Figure 2.6: Scatter plots of α, β and φ for 10,000 draws from Samplers 2.2, 2.4(a), and 2.4(b) respectively.
The first row displays scatter plots of α and β, whereas the second row displays that of α and φ. The left,
central, and right columns correspond to Samplers 2.2, 2.4(a), and 2.4(b) respectively. Sampler 2.4 blocks
the two steps of Sampler 2.2 that update α and β. Unfortunately, this results in an improper sampler. When
updating (α, β), Sampler 2.4(a) uses the concatenation of Sampler 2.2’s jumping rule for β and its step of
updating α, while Sampler 2.4(b) uses an independent bivariate normal jumping rule. The impropriety of
Sampler 2.4(b) is especially dramatic.

The problem with Sampler 2.4 can be understood in the terms of Section 2.2.2. Blocking

the updates for α and β results in an MH step that follows directly after a pair of reduced

steps (the updates of µ and φ). As it is, the stationary distribution of Sampler 2.4 cannot

be verified with the three-phase framework.

Like the comparison of Sampler Fragments 3 and 4, theoretical arguments on the choice

between Sampler Fragments 6 and 7 appear in Section 2.2.3.

2.2.3 Theoretical Comparisons

In this section we compare the iterated and joint MH strategies in terms of their accep-

tance probabilities.
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Figure 2.7: Quantile-quantile plots of α, β, and φ corresponding to draws generated with Samplers 2.2
and 2.4(b). Sampler 2.4(b) severely underestimates the marginal variances of all three parameters.

Comparing the Iterated and Joint MH Strategies

In this section we compare the Iterated and Joint MH Strategies in terms of their accep-

tance probabilities. Although it is generally conceded that an acceptance probability of

20% to 40% is best for a symmetric Metropolis jumping rule (Roberts et al., 1997), we

argue that the better choice between the two strategies is determined by maximizing the

acceptance probability. This is because both the Iterated and Joint MH Strategies start

with the same proposal—they are numerically identical. The rule of thumb for tuning

the acceptance probability to between 20% and 40% is based on comparing different

proposal distributions with an eye on avoiding high acceptance rates because they typ-

ically correspond to jumping rules that propose very small steps. For the Iterated and

Joint MH Strategies, the initial step sizes are the same and we aim to reduce autocor-

relation by increasing the jumping probability. We begin with theoretical results and

then illustrate them numerically.

To simplify notation we suppress the conditioning on ψ3 in Sampler Fragments 3 and 4.

This is equivalent to a formal comparison of the iterated and joint MH strategies as

alternatives to the improper two-step Sampler 2.6. While the transition kernel used to

update ψ2, i.e.,M2|1(ψ2|ψ′1, ψ′2) will typically depend on ψ′1, the jumping rule often will

not, for example, a symmetric Metropolis jumping rule. Thus we assume that (i) the

samplers for the Iterated and Joint MH Strategies are proper and (ii) their jumping
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rule for updating ψ2 does not depend on the current draw of ψ1, i.e., J2|1(ψ2|ψ′1, ψ′2) =

J2|1(ψ2|ψ′2).

The acceptance probability of the first subiteration in Step j + 1 of the Iterated MH

Strategy is

riter =
p(ψprop

2 |ψ(t+1/L)
1 )J2|1(ψ

(t)
2 |ψ

prop
2 )

p(ψ
(t)
2 |ψ

(t+1/L)
1 )J2|1(ψprop

2 |ψ(t)
2 )

, (2.4)

where ψ
(t+1/L)
1 ∼ p(ψ1) and ψprop

2 ∼ J2|1(ψ2|ψ(t)
2 ). For the Joint MH Strategy, it is

rjoint =
p(ψprop

1 , ψprop
2 ){p(ψ(t)

1 )J2|1(ψ
(t)
2 |ψ

prop
2 )}

p(ψ
(t)
1 , ψ

(t)
2 ){p(ψprop

1 )J2|1(ψprop
2 |ψ(t)

2 )}
=
p(ψprop

2 |ψprop
1 )J2|1(ψ

(t)
2 |ψ

prop
2 )

p(ψ
(t)
2 |ψ

(t)
1 )J2|1(ψprop

2 |ψ(t)
2 )

, (2.5)

where ψprop
1 ∼ p(ψ1) and ψprop

2 ∼ J2|1(ψ2|ψ(t)
2 ).

Lemma 2.1. In the setting described in the previous paragraph,

Ep[riter/rjoint] ≥ 1. (2.6)

The expectation in (2.6) is with regard to the common stationary distribution, p, of

both chains and is conditional on the random seed used at the start of each iteration.

That is, since (ψ
(t+1/L)
1 , ψprop

2 ) sampled under the Iterated MH strategy and (ψprop
1 , ψprop

2 )

sampled under the Joint MH strategy are drawn in exactly the same way, we assume

these quantities are numerically equal. Expression (2.6) asserts that while both strate-

gies start with the same proposal ((ψ
(t+1/L)
1 , ψprop

2 ) for the Iterated MH Strategy and

(ψprop
1 , ψprop

2 ) for the Joint MH Strategy), the iterated MH strategy is on average more

likely to accept ψ2. (The Iterated MH Strategy always accepts ψ1.)

Proof. With the numerical equality of the proposals,

riter

rjoint

=
p(ψ

(t)
2 |ψ

(t)
1 )

p(ψ
(t)
2 |ψ

(t+1/L)
1 )

, (2.7)
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Figure 2.8: Autocorrelation functions of ψ2 for (a) an initial MH run of Step 2 of Sampler 2.6 with ψ1

fixed, (b) the Iterated MH Strategy, and (c) the Joint MH Strategy, all under the bivariate normal simulation
described in Section 2.2.1. Panel (a) shows that the initial MH runs deliver essentially independent draws
after 7 iterations, so that Iterated MH Strategy is run with L = 7. Panels (b) and (c) show that the Iterated
MH Strategy outperforms the joint one in terms of its computational efficiency.

where (ψ
(t)
1 , ψ

(t)
2 , ψ

(t+1/L)
1 ) ∼ p(ψ

(t)
1 , ψ

(t)
2 )p(ψ

(t+1/L)
1 ). Because (ψ

(t)
1 , ψ

(t)
2 ) ∼ p(ψ1, ψ2), the

numerator of (2.7) is the conditional density of ψ2 evaluated at ψ
(t)
2 . This is not true

of the denominator because ψ
(t)
2 is independent of ψ

(t+1/L)
1 . Thus, we might expect that

the numerator of (2.7) is typically larger than the denominator, as claimed in (2.6).

Substituting (2.7) into (2.6), and applying Jensen’s inequality, we need only verify that

∫
log [p(ψ2|ψ1)] p(ψ1, ψ2)dψ1dψ2 ≥

∫
log [p(ψ2|ψ1)] p(ψ1)π(ψ2)dψ1dψ2. (2.8)

Expression (2.8) can be verified using a standard property of entropy along with the

Kullback-Leiber (KL) divergence. In particular, because KL is nonnegative,

∫
log [p(ψ2)] p(ψ1)p(ψ2)dψ1dψ2 ≥

∫
log [p(ψ2|ψ1)] p(ψ1)p(ψ2)dψ1dψ2. (2.9)

But a standard property of entropy (e.g., Ebrahimi et al., 1999) is

∫
log [p(ψ2|ψ1)] p(ψ1, ψ2)dψ1dψ2 ≥

∫
log [p(ψ2)] p(ψ1)p(ψ2)dψ1dψ2. (2.10)

Combining (2.9) and (2.10) gives (2.8) and hence the desired result.

We now return to the bivariate Gaussian example of Section 2.2.1 to compare the com-

putational performance of the Iterated and Joint MH strategies. As in Sampler 2.6,
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we sample ψ1 from its marginal distribution and use the same MH jumping rule to

update ψ2 according to its conditional distribution. The Iterated MH Strategy is run

with L = 7, in order to return ψ
(t+1)
2 that is essentially independent of ψ

(t+1)
2 . The value

of L was set using an initial MH run of 5, 000 iterations and inspecting the autocorre-

lation function. The initial MH sampler delivers essentially independent draws after 7

iterations, see Figure 2.8(a). The computational cost per iteration of the Iterated MH

Strategy surely depends on L. With L = 7, each iteration requires eight univariate nor-

mal draws, whereas the Joint MH Strategy requires two. The autocorrelation functions

of ψ2 from both the Iterated and Joint MH Strategies appear in Figure 2.8(b) and (c),

and show the clear computational advantage of the Iterated MH Strategy, which returns

essentially independent draws, whereas the Joint MH Strategy requires almost thirty

full iterations to obtain nearly independent draws.

In practice, it is important to check that the value of L used in Sampler Fragment 3

delivers samples that are essentially independent of the starting value of the Iterated

MH Strategy. Fortunately, the autocorrelation function of ψ
(t)
2 in Sampler Fragment 3

can serve as a simple diagnostic, e.g., Figure 2.8(b). If the lag-1 autocorrelation is not

essentially zero, the run should be repeated with a larger value of L. If ψ2 is updated

elsewhere in the sampler, the efficacy of the Iterated MH Strategy can be measured by

the correlation between the initial input of ψ2 and the final output after L iterations of

the MH update in Step j + 1 of Sampler Fragment 3.

Comparing the samplers with and without blocking

To compare the blocking strategy in Sampler Fragment 7 with Sampler Fragment 6, we

compute its acceptance rate, again suppressing the conditioning on ψ3 for simplicity, as

rblocked =
p(ψprop

1 , ψprop
2 )J1(ψ

(t)
1 |ψ

prop
1 )p(ψ

(t)
2 |ψ

(t)
1 )

p(ψ
(t)
1 , ψ

(t)
2 )J1(ψprop

1 |ψ(t)
1 )p(ψprop

2 |ψprop
1 )

=
p(ψprop

1 )J1(ψ
(t)
1 |ψ

prop
1 )

p(ψ
(t)
1 )J1(ψprop

1 |ψ(t)
1 )

= rnot blocked,

(2.11)
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(a) Parent MH within Gibbs Sampler

1. p(YL|Y, α′, β′, γ′, µ′, φ′)
2. p(α|Y, YL, β′, γ′, µ′, φ′)
3. Mβ|Y,YL,α,γ,µ,φ(β|Y, YL, α, β′, γ′, µ′, φ′)
4. p(γ|Y, YL, α, β, µ′, φ′)
5. Mµ|Y,YL,α,β,γ,φ(µ|Y, YL, α, β, γ, µ′, φ′)
6. Mφ|Y,YL,α,β,γ,µ(φ|Y, YL, α, β, γ, µ, φ′)

(b) Marginalization

1. p(Y ?
L |Y, α′, β′, γ′, µ′, φ′)

2. p(α?, Y ?
L |Y, β′, γ′, µ′, φ′)

3.M?
β,YL,α,φ|Y,γ,µ(β?, Y ?

L , α
?, φ?|Y, β′, γ′, µ′, φ′)

4. p(γ|Y, Y ?
L , α

?, β?, µ′, φ?)

5.M?
µ,YL,α|Y,β,γ,φ(µ, Y ?

L , α
?|Y, β?, γ, µ′, φ?)

6.M?
φ,YL,α,β|Y,γ,µ(φ, YL, α, β|Y, β?, γ, µ, φ?)

(c) Permute

1.M?
µ,YL,α|Y,β,γ,φ(µ, Y ?

L , α
?|Y, β′, γ′, µ′, φ′)

2.M?
φ,YL,α,β|Y,γ,µ(φ?, Y ?

L , α
?, β?|Y, β′, γ′, µ, φ′)

3.M?
β,YL,α,φ|Y,γ,µ(β, Y ?

L , α
?, φ|Y, β?, γ′, µ, φ?)

4. p(α, Y ?
L |Y, β, γ′, µ, φ)

5. p(YL|Y, α, β, γ′, µ, φ)

6. p(γ|Y, YL, α, β, µ, φ)

(d) Trim (Sampler 2.3)

1. Mµ|Y,β,γ,φ(µ|Y, β′, γ′, µ′, φ′)
2. Mβ,φ|Y,γ,µ(β, φ|Y, β′, γ′, µ, φ′)
3. p(α|Y, β, γ′, µ, φ)

4. p(YL|Y, α, β, γ′, µ, φ)

5. p(γ|Y, YL, α, β, µ, φ)

Figure 2.9: The three-stage framework used to derive Sampler 2.3 from its parent MH within Gibbs sampler.
The parent sampler appears in (a). The conditioning in steps 2, 3, 5, and 6 is reduced in (b). The steps are
permuted in (c) to allow redundant draws of Y ?L , α?, β?, and φ? to be trimmed in Steps 1–4. The resulting
proper MH within PCG sampler, i.e., Sampler 2.3, appears in (d).

where rnot blocked is the acceptance probability of Step j in Sampler Fragment 6, where

no blocking occurs. The result in (2.11) means that Sampler Fragments 6 and 7 are

identical in terms of their update of ψ1, but whereas Sampler Fragment 6 updates ψ2

with a new value at every iteration, blocking of Sampler Fragment 7 causes ψ2 to only be

updated if ψ1 is updated. Thus, we expect the blocking strategy of Sampler Fragment 7

to reduce the efficiency of the sampler, and contrary to general advice regarding blocking

(e.g., Liu et al., 1994), the blocking strategy of Sampler Fragment 7 should be avoided.

Together, the results in Section 2.2.3 discourage the combining of an MH update and

a direct draw from a conditional distribution into a single MH update. This advice

applies equally to ordinary Gibbs samplers with simple generalization.
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Figure 2.10: The sampling results of Samplers 2.1 and 2.3. The left two columns are the time-series and
autocorrelation plots for the posterior draws of α, β, and φ respectively from Sampler 2.1, whereas the right
two columns are those from Sampler 2.3. Sampler 2.3 performs significantly better than Sampler 2.1.

2.3 Illustration Examples

2.3.1 Spectral analysis in high-energy astrophysics

As pointed out in Section 2.1, the standard Gibbs sampler for fitting the spectral model

breaks down. To solve this problem, we construct three proper MH within PCG sam-

plers, i.e., Samplers 2.1–2.3 in Figure 2.1. The three samplers have the common parent

Gibbs sampler (see top-left panel of Figure 2.3 or 2.9), but different degrees of partial

collapsing. Sampler 2.1 has the least partial collapsing, while Sampler 2.3 has the most.

We present using the three-stage framework to derive Sampler 2.3 from its parent sam-

pler in Figure 2.9. (The derivation of Sampler 2.2 appears in Figure 2.3 and that of

Sampler 2.1 is omitted to save space.)

Section 2.2.2 uses a simulation study of the spectral model in (2.1) to illustrate a po-

tential problem with the blocking strategy in Sampler Fragment 7. Here we use the
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same simulation study and starting value settings to illustrate the improved conver-

gence properties of Samplers 2.1–2.3 relative to their parent Gibbs sampler. The only

difference is that for each sampler here, a chain of 20,000 iterations is run with a burnin

of 10,000 iterations.

The convergence properties of α, β, and φ using Samplers 2.1 and 2.3 are compared

in Figure 2.10; γ and µ converge well for all three samplers. As noted in Section 2.1,

all three MH within PCG samplers outperform the parent MH Gibbs sampler, since

the latter does not converge to the target. Sampler 2.3 performs much better than

Sampler 2.1 in terms of the mixing and autocorrelations of α, β, and φ. The performance

of Sampler 2.2 is better than Sampler 2.1, but not as good as Sampler 2.3. (The

results of Sampler 2.2 are omitted in Figure 2.10.) To further compare the convergence

by accounting for computational time, we estimate the ESS/sec of α, β, and φ in

Table 2.1. For each parameter, both Samplers 2.2 and 3.3 produce larger ESS/sec

than Sampler 2.1, and Sampler 2.3 has the largest value among the three samplers. As

stated in Section 1.3 of Chapter 1, the larger the ESS per second, the more efficient

is the sampler. By this measurement, we confirm that Sampler 2.3 is most efficient

in improving convergence properties. These results show that proper MH within PCG

samplers outperform their parent Gibbs sampler in computational efficiency and a higher

degree of partial collapsing can improve the convergence even further.

2.3.2 Gaussian hierarchical model in supernova cosmology

We now consider the Gaussian hierarchical model for supernova cosmology mentioned

in Chapter 1. We assume the absolute magnitudes of Type Ia SNe follow a Gaussian

population distribution, that is,

M o
i

iid∼ N(M0, σ
2
0), for i = 1, . . . , n. (2.12)

Since the absolute magnitudes are similar, σ0 is relatively small, but still too large to use

Type Ia SNe as distance indicators without further adjustment. This intrinsic variability
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α β φ

Sampler 2.1 0.066 0.080 0.067

Sampler 2.2 0.096 0.101 0.098

Sampler 2.3 0.535 0.579 0.517

Table 2.1: The ESS per second of α, β, and φ for Samplers 2.1–2.3. Sampler 2.3 has the largest values
for all the three parameters.

in the absolute magnitudes is due to variations in the properties of the progenitor star

(e.g., mass and composition) and/or its environment. Fortunately, we can adjust for

two covariates, the stretch parameter, xi, and the color correction parameter, ci, to

reduce this scatter; these empirical adjustments are known as “Phillips corrections”,

see Phillips (1993) and Phillips et al. (1999) for details. Specifically,

M o
i = Mi − αxi + βci, for i = 1, . . . , n, (2.13)

with Mi
iid∼ N(M0, σ

2
res),where Mi is the adjusted absolute magnitude and σ2

res � σ2
0.

(Because of their similar adjusted absolute magnitudes, Type Ia SNe are called “stan-

dardizable candles”.)

For Type Ia SN i (i = 1, . . . , n), four quantities are observed with error, the apparent

magnitude m̂Bi, the observed stretch and color correction parameters, x̂i and ĉi, and

the redshift zi
∗. That is,

ĉi

x̂i

m̂Bi

 ind∼ N




ci

xi

mBi

 , Ĉi

 , for i = 1, . . . , n. (2.14)

Because its measurement error is very small, in this article, we assume zi is known. For

∗The raw data are time-series observations of the evolving SN explosion in each of several color
bands. These observations are summarized into the apparent magnitude, stretch parameter and color
parameter using the SALT-II method (Guy et al., 2007). The apparent magnitude is the peak magni-
tude in the B-band.
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MH within Gibbs (Sampler 2.7)

1. p(ξ,X|Y,C ′, α′, β′,Σ′P )

2. MC |Y,ξ,X,α,β,ΣP (C |Y, ξ,X,C ′, α′, β′,Σ′P )

3. p(α, β|Y, ξ,X,C ,Σ′P )

4. p(ΣP |Y, ξ,X,C , α, β)

MH within PCG (Sampler 2.8)

1. MC |Y,α,β,ΣP (C |Y,C ′, α′, β′,Σ′P )

2. Mα,β|Y,C ,ΣP (α, β|Y,C , α′, β′,Σ′P )

3. p(ξ,X|Y,C , α, β,Σ′P )

4. p(ΣP |Y, ξ,X,C , α, β)

Figure 2.11: Samplers 2.7 and 2.8. The left and right panels show the steps of the MH within Gibbs
sampler (Sampler 2.7) and the proper MH within PCG sampler (Sampler 2.8) for fitting the cosmological
hierarchical model.

illustration, we ignore the small correlations among the observed quantities and take

the matrix Ĉi to be diagonal, i.e., Ĉi = Diag
(
σ̂2
ci
, σ̂2

xi
, σ̂2

mBi

)
. The distance modulus is

defined to be µi = mBi −M o
i , so that (2.13) can be written as

mBi = µi +Mi − αxi + βci, for i = 1, . . . , n. (2.15)

This forms the first level of our hierarchical model and because of (2.14), it can be

viewed as an errors-in-variables regression model (Carroll et al., 2006). The second

level of the hierarchical model describes the population distribution of the SNe,

Mi
iid∼ N(M0, σ

2
res), xi

iid∼ N(x0, R
2
x), ci

iid∼ N(c0, R
2
c), for i = 1, . . . , n. (2.16)

In a Friedman-Robertson-Walker cosmology, the distance modulus, µi, is predicted

as a deterministic function of the redshift z and the cosmological parameter C =

(Ωm,ΩΛ or w,Ωκ, H0), where Ωm is the total matter density, ΩΛ is the dark energy

density, w is the dark energy equation of state, and H0 is the Hubble constant. Specif-

ically,

µi = µi(zi,C ) = 25 + 5log10

[
c

H0

dL(zi,C )

]
, (2.17)

where the speed of light c = 3× 105 km/s, and

dL(zi,C ) =
(1 + zi)√
|Ωκ|

sinn

{√
|Ωκ|

∫ zi

0

[
(1 + z′)

3
Ωm + ΩDE(z′) + (1 + z′)

2
Ωκ

]−1/2

dz′
}
, (2.18)

where Ωκ is the curvature parameter; sinn(x) = x, sinn(x) = sin(x), or sinn(x) = sinh(x)
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(a) parent MH within Gibbs (Sampler 2.7)

1.p(ξ,X|Y,C ′, α′, β′,Σ′P )

2.MC |Y,ξ,X,α,β,ΣP (C |Y, ξ,X,C ′, α′, β′,Σ′P )

3.p(α, β|Y, ξ,X,C ,Σ′P )

4.p(ΣP |Y, ξ,X,C , α, β)

(b) Marginalization

1.p(ξ?, X?|Y,C ′, α′, β′,Σ′P )

2.M?
C ,ξ,X|Y,α,β,ΣP (C , ξ?, X?|Y,C ′, α′, β′,Σ′P )

3.M?
α,β,ξ,X|Y,C ,ΣP (α, β, ξ,X|Y,C , α′, β′,Σ′P )

4.p(ΣP |Y, ξ,X,C , α, β)

(c) Permute

1.M?
C ,ξ,X|Y,α,β,ΣP (C , ξ?, X?|Y,C ′, α′, β′,Σ′P )

2.M?
α,β,ξ,X|Y,C ,ΣP (α, β, ξ?, X?|Y,C , α′, β′,Σ′P )

3.p(ξ,X|Y,C , α, β,Σ′P )

4.p(ΣP |Y, ξ,X,C , α, β)

(d) Trim (Sampler 2.8)

1.MC |Y,α,β,ΣP (C |Y,C ′, α′, β′,Σ′P )

2.Mα,β|Y,C ,ΣP (α, β|Y,C , α′, β′,Σ′P )

3.p(ξ,X|Y,C , α, β,Σ′P )

4.p(ΣP |Y, ξ,X,C , α, β)

Figure 2.12: The three-stage framework used to derive Sampler 2.8 from its parent MH within Gibbs
sampler, i.e., Sampler 2.7. The parent sampler appears in (a) with Step 2 requiring MH. Steps 2 and 3 are
marginalized in (b). The steps are permuted in (c) to allow redundant draws of (ξ,X) to be trimmed in
Steps 1–2. The resulting proper MH within PCG sampler, that is, Sampler 2.8, appears in (d).

for Ωκ = 0, Ωκ < 0, and Ωκ > 0, respectively. For a general dark energy equation of

state as a function of redshift, w(z), we express

ΩDE(z) = ΩΛ exp

[
3

∫ z

0

1 + w(z′)

1 + z′
dz′
]
. (2.19)

In our analyses, we either assume a flat Universe with w(z) equal to a constant other

than −1 (Ωκ = 0, the wCDM model) or a curved Universe with a cosmological constant

w(z) = −1 (the ΛCDM model). In either case, w(z) = w becomes a time-independent

constant, and thus Ωκ is completely determined by ΩΛ and Ωm via Ωκ = 1−Ωm−ΩΛ. We

assume the ΛCDM model all through this manuscript. In addition, because the Hubble

constant H0 is completely degenerate with M0, we fix it at the value determined by

other measurements.

Finally, we specify weakly informative prior distributions for model parameters,

M0 ∼ N(Mm, σ
2
M0

), x0 ∼ N(0, σ2
x0

), c0 ∼ N(0, σ2
c0

), (2.20)
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where Mm = −19.3, σM0 = 2, σx0 = 10, and σc0 = 1. According to March et al. (2011),

these variances are large enough to make the priors for M0, x0 and c0 sufficiently diffuse.

They also find that the choice of mean and variance in the prior distribution of M0 has

little influence on numerical results. Furthermore, we specify log(σres) ∼ Unif(−5, 2),

log(Rx) ∼ Unif(−5, 2), log(Rc) ∼ Unif(−5, 2), α ∼ Unif(0, 1), β ∼ Unif(0, 4), Ωm ∼

Unif(0, 1), ΩΛ ∼ Unif(0, 2), and w ∼ Unif(−2, 0). We choose ranges of these uniform

priors following March et al. (2011), which stated that they generously cover all plausible

values of the parameters.

To simplify notation, we let Y denote the (3n × 1) vector of observed quantities, i.e.,

Y = (ĉ1, x̂1, m̂B1, . . . , ĉn, x̂n, m̂Bn), ξ denote the (3× 1) mean vector of the distribution

in the second level of the hierarchical model, i.e., ξ = (c0, x0,M0), X denote the (3n×1)

vector of latent variables, i.e., X = (c1, x1,M1, . . . , cn, xn,Mn), ΣC denote the (3n×3n)

observed variance-covariance matrix of Y , i.e., ΣC = Diag(Ĉ1, . . . , Ĉn), and ΣP denote

the (3n× 3n) population variance-covariance matrix of the latent quantities in X, i.e.,

ΣP = Diag(S, . . . , S), where S = Diag(R2
c , R

2
x, σ

2
res).

To sample from the posterior distribution of the hierarchical model, we start with a

standard MH within Gibbs sampler, i.e., Sampler 2.7, where each (sometimes multi-

variate) component is updated from its complete conditional distribution. We list the

steps of Sampler 2.7 in the left panel of Figure 2.11. We sample C with the help of

MH because its conditional is not a standard distribution. (It is evaluated numerically.)

Unfortunately, both C and (α, β) exhibit poor convergence in this sampler. Because

these two parameters are highly correlated with (ξ,X) a posteri, we derive a proper

MH within PCG sampler, i.e., Sampler 2.8, to break this correlation and thus improve

convergence. Sampler 2.8 updates both C and (α, β) without conditioning on (ξ,X)

and its steps are listed in the right panel of Figure 2.11. Details of Samplers 2.7 and 2.8

appear in Appendix A. We verify the propriety of Sampler 2.8 using the three-stage

framework in Figure 2.12.

To illustrate the relative efficiencies of Samplers 2.7 and 2.8, we use a data set consisting

of 288 Type Ia SN observations compiled by Kessler et al. (2009). We run each of these
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Figure 2.13: The sampling results of Samplers 2.7 and 2.8. The left two columns are the time-series and
autocorrelation plots for the posterior draws of Ωm, ΩΛ, α and β respectively from Sampler 2.7, while the
right two columns are those from Sampler 2.8. Sampler 2.8 converges much faster than Sampler 2.7.

two samplers for a chain of 11,000 iteration with a burn-in of 1,000, starting from the

same sets of initial values.

In Figure 2.13, we display the time-series and autocorrelation plots for Ωm, ΩΛ, α, and

β from both Sampler 2.7 (left two columns) and Sampler 2.8 (right two columns). For

all four parameters, Sampler 2.8 produce chains with much faster mixing and lower

autocorrelation than Sampler 2.7. We present the ESS/sec of the four parameters in

Table 2.2. For each parameter, Samplers 2.8 has larger ESS/sec than Sampler 2.7. We

conclude from these results that the MH within PCG sampler is efficient in improving

the convergence of its parent Gibbs sampler.
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Ωm ΩΛ α β

Sampler 2.7 0.002 0.001 0.008 0.010

Sampler 2.8 0.037 0.023 0.051 0.029

Table 2.2: The ESS per second of Ωm, ΩΛ, α, and β for Samplers 2.7 and 2.8. Sampler 2.8 has larger
values for all the four parameters than Sampler 2.7.

2.3.3 Factor analysis model

Consider the following factor-analysis model:

Yi
ind∼ Np [βZi,Σ] , for i = 1, . . . , n, (2.21)

where Yi is a (p× 1) vector of observation; Zi is a (q× 1) vector with Zi
iid∼ Nq(0, I); β is

the (p × q) factor-loading matrix; and Σ = Diag(σ2
1, . . . , σ

2
p) is the variance-covariance

matrix. We set Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn). To identify the model, following

Geweke and Zhou (1996), we specify that the first q rows of β as a lower-triangular

(q × q) matrix with positive diagonal elements, that is, βkj = 0 and βkk > 0, for

j = (k + 1, . . . , q) and k = 1, . . . , q. The marginal distribution of Yi is Np(0, S), where

S = ββT + Σ is the variance-covariance matrix. There are p(p + 1)/2 free parameters

in a (p× p) variance-covariance matrix, but a total of l = p(q+ 1)− q(q− 1)/2 different

parameters in S. Thus we choose q to ensure that l ≤ p(p+ 1)/2. We specify conjugate

prior distributions for (β,Σ), specifically, p(β) ∝ 1 and σ2
j

ind∼ Inv-Gamma(0.01, 0.01),

for j = 1, . . . , p. The parameters Z, β, and Σ are unknown and we wish to sample from

their joint posterior distribution.

We simulate a dataset for this factor analysis model. Particularly, we set p = 6, q = 2,

and n = 100; σ2
j (j = 1, . . . , 6) are generated from Inv-Gamma(1, 0.5), and βjk (j =

1, . . . , 6, k = 1, 2, and j ≥ k) from N(0, 32), subject to the constraint that β11 and β22

are positive.

To sample from the posterior distribution of factor analysis model (2.21) based on

the simulated dataset above, we start with a three-step Gibbs sampler, which updates
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Gibbs (Sampler 2.9)

1. p(Zi|Y, β′,Σ′), for i = 1, . . . , 100

2. p(σ2
j |Y,Z, β′), for j = 1, . . . , 6

3. p(βj |Y,Z,Σ), for j = 1, . . . , 6,

where βj is the jth row of β

MH within PCG (Sampler 2.10)

j. Mσ2
j |Y,σ2

−j ,β
(σ2
j |Y,Σ′, β′), for j = 1, . . . , 4

5. p(Zi|Y, β′,Σ′), for i = 1, . . . , 100

6. p(σ2
j |Y,Z, β′), for j = 5, 6

7. p(βj |Y,Z,Σ), for j = 1, . . . , 6

Note that when updating σ2
j (j = 1, . . . , 4),

σ2
−j = (σ2

1 , . . . , σ
2
j−1, σ

2
j+1, . . . , σ

2
6) and Σ′ =

Diag(σ2
1 , . . . , σ

2
j−1, σ

2
j
′
, σ2′

j+1, . . . , σ
2
6
′
); when up-

dating Z, Σ′ = Diag(σ2
1 , . . . , σ

2
4 , σ

2
5
′
, σ2

6
′
).

Figure 2.14: Samplers 2.9 and 2.10. The left and right panels show the steps of the Gibbs sampler
(Sampler 2.9) and the proper MH within PCG sampler (Sampler 2.10) for fitting the factor analysis model.

each of Z, Σ, and β from its complete conditional distribution, i.e., Sampler 2.9 in

the left panel of Figure 2.14. Unfortunately, both β and Σ exhibit poor convergence

with this sampler. Because Σ and Z are highly correlated a posteri, we design a PCG

sampler, i.e., Sampler 2.10 in the right panel of Figure 2.14, to break the correlation

and boost the efficiency of convergence. In particular, Sampler 2.10 updates σ2
1–σ2

4

without conditioning on Z; these reduced updates require MH steps. Because σ2
5 and

σ2
6 converge well with Sampler 2.9, we do not alter their updates in Sampler 2.10. We

derive Sampler 2.10 from its parent Gibbs sampler, i.e., Sampler 2.9, strictly following

the three-stage framework, see Figure 2.15. Thus Sampler 2.10 is a proper MH within

PCG sampler.

We run 50,000 iterations for each of Samplers 2.9 and 2.10 with a burnin of 10,000 using

the same starting values. Figure 2.16 compares Samplers 2.9 and 2.10 in terms of mixing

and autocorrelation of log(σ2
1)–log(σ2

4); the left two columns correspond to Sampler 2.9

and the right two columns correspond to Sampler 2.10. The computational advantage

of Sampler 2.10 is evident. Furthermore, we display the ESS/sec of log(σ2
1)–log(σ2

4) in

Table 2.3. For each parameter, Samplers 2.10 has larger ESS/sec than Sampler 2.9.

Thus the proper MH within PCG sampler outperforms its parent Gibbs sampler in

computational efficiency. While highly effective for Σ, PCG samplers do not appreciably
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(a) Parent MH within Gibbs Sampler

1. p(Zi|Y, β′,Σ′), for i = 1, . . . , 100

2. p(σ2
j |Y, Z, β′), for j = 1, . . . , 6

3. p(βj |Y,Z,Σ), for j = 1, . . . , 6,

where βj is the jth row of β

(b) Marginalization

1. p(Z?i |Y, β′,Σ′), for i = 1, . . . , 100

j + 1. M?
Z,σ2

j |Y,σ2
−j ,β

(Z?, σ2
j |Y,Σ′, β′),

for j = 1, 2, 3

5. M?
Z,σ2

4 |Y,σ2
−4,β

(Z, σ2
4|Y,Σ′, β′)

6. p(σ2
j |Y, Z, β′), for j = 5, 6

7. p(βj |Y,Z,Σ), for j = 1, . . . , 6

(c) Permute

j. MZ,σ2
j |Y,σ2

−j ,β
(Z?, σ2

j |Y,Σ′, β′),

for j = 1, . . . , 4

5. p(Zi|Y, β′,Σ′), for i = 1, . . . , 100

6. p(σ2
j |Y,Z, β′), for j = 5, 6

7. p(βj |Y,Z,Σ), for j = 1, . . . , 6

(d) Trim

j. Mσ2
j |Y,σ2

−j ,β
(σ2
j |Y,Σ′, β′), for j = 1, . . . , 4

5. p(Zi|Y, β′,Σ′), for i = 1, . . . , 100

6. p(σ2
j |Y, Z, β′), for j = 5, 6

7. p(βj |Y, Z,Σ), for j = 1, . . . , 6

Figure 2.15: The three-phase framework to derive Sampler 2.10 from its parent Gibbs sampler, i.e.,
Sampler 2.9. The parent Gibbs sampler is in (a); Steps 2–5 are marginalized in (b); and the steps are
permuted in (c) to allow redundant draws of Z? to be trimmed in Steps 1–4 The resulting Sampler 2.10
appears in (d).

improve the convergence of β. We will address this problem in Chapter 3.

2.4 Discussion

Since introduced in 2008, the PCG sampler has been deployed to improve the conver-

gence properties of numerous Gibbs-type samplers in a variety of applied settings. As

with ordinary Gibbs samplers, MH updates are sometimes required within PCG sam-

plers. However, unlike an ordinary Gibbs samplers, embedding MH steps into a PCG

sampler may upset its stationary distribution. This has led to a number of improper

samplers in the literature. This chapter illustrates the subtleties of introducing MH

updates into PCG samplers, offers a strategy for guaranteeing the propriety of such

samplers, and provides advice on the choice between alternative implementations of

MH within PCG samplers. Some of the advice is contrary to what is commonly un-
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Figure 2.16: The sampling results of Samplers 2.9 and 2.10. The left two columns are the time-series and
autocorrelation plots for the posterior draws of σ2

1–σ2
4 from Sampler 2.9, while the right two columns are

those from Sampler 2.10. Sampler 2.10 is efficient in improving the convergence of Σ.

derstood. For example, blocking steps within a Gibbs-type sampler should improve its

convergence. We find, however, that this may not be true if MH is involved.

Marginalization in one or more steps of a Gibbs sampler can only improve the con-

vergence (van Dyk and Park, 2008). When MH is required to implement the reduced

steps, however, the overall performance of the PCG sampler may decay, especially if the

choice for the MH jumping rule is poor. Thus, there is a natural trade-off between the

computational complexity of MH and the improved efficiency offered by partial collaps-

ing. Generally speaking, some trial and error may be needed to negotiate this trade-off.

In practice, it is ideal if we can start with an MH within Gibbs sampler, which already

involves MH and can be improved by partial collapsing without any added complexity.

As implied by numerical examples in this chapter, however, there also exist a variety of
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log(σ2
1) log(σ2

2) log(σ2
3) log(σ2

4)

Sampler 2.9 0.129 0.142 0.958 0.372

Sampler 2.10 0.931 1.777 1.686 1.578

Table 2.3: The ESS per second of log(σ2
1)–log(σ2

4) for Samplers 2.9 and 2.10. Sampler 2.10 has larger
values for all the four parameters than Sampler 2.9.

cases where the reduced correlation afforded by partial collapsing makes up the lost ef-

ficiency caused by more MH updates. The expectation is that our strategies can extend

the application of PCG samplers in practice and provide researchers with additional

tools to improve the convergence of Gibbs-type samplers.

Embedding the MH algorithm into PCG samplers can be regarded as a specific example

of the combining strategy, which encompasses more flexibility and power to facilitate

the implementation and boost the efficiency of Gibbs-type samplers by integrating two

or more strategies into one coherent proper sampler. We will elucidate the combining

strategy in the next chapter, i.e., Chapter 3.
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3
Combining Strategies for

Improving the Convergence of

Gibbs-type Samplers

To simplify the implementation and improve the efficiency of Gibbs-type samplers, we

combine different strategies into one sampler. For example, in Chapter 1, we combine

PCG and MH. In this chapter, we construct a general framework to combine different

algorithms into a coherent sampler. We use both theoretical arguments and numerical

examples to illustrate that the combined samplers maintain their target stationary dis-

tributions and can only improve the convergence properties of their parent Gibbs-type

samplers. In Section 3.1, we use the factor analysis model described in Section 2.3.3 of

Chapter 2 as the motivating example to show the benefit of combining different accel-

eration strategies into a single sampler. In Section 3.2, we construct the framework of

combining acceleration strategies and provide theoretical arguments to prove that under
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our construction, the combined sampler i) maintains the target stationary distribution

and ii) is more efficient than any of its component algorithms. In Section 3.3, we use

the factor analysis model, the hierarchical model in supernova cosmology, a hierarchi-

cal t model, and a hierarchical probit model to illustrate the construction of combined

samplers and show their computational advantages. In Section 3.4, we summarize the

combining strategy and point out that combining different acceleration strategies into

a single sampler is a specific application of the surrogate distribution framework, which

is the topic of Chapter 4.

3.1 Motivating Example

Here we outline our computational strategy for sampling from the posterior distribu-

tion of the factor analysis model introduced in Section 2.3.3 of Chapter 2, in order to

motivate the advantage of combining several strategies in a single sampler. Recall that

in Section 2.3.3 of Chapter 2, to sample from the posterior distribution of the factor

analysis model, we first implement a three-step Gibbs sampler, by updating each of Z,

Σ and β from their complete conditional distributions. Unfortunately, both β and Σ

exhibit poor convergence in this sampler. Thus we design a PCG sampler which updates

some (diagonal) components of Σ without conditioning on Z. Although this strategy

is highly effective for Σ, PCG does not appreciably improve the convergence of β. To

address this, we consider implementing ASIS. Because the distribution Zi
iid∼ Nq(0, I)

does not depend on β or Σ, Z is an ancillary augmentation for both β and Σ. It is more

difficult to derive a sufficient augmentation for β and Σ. However, conditioning on Σ,

we can easily find a sufficient augmentation for β; letting W = βZ, Yi|Wi
ind∼ N(Wi,Σ)

is free of β and W is a (conditional) sufficient augmentation. Thus we implement an

ASIS algorithm for β conditioning on Σ, see Sampler 3.1 in the left panel of Figure 3.1.

(Details of Sampler 3.1 and other samplers in this chapter appear in Appendix B.) This

involves i) updating Z and Σ from their complete conditional distributions; ii) sampling

β conditioning on Z and Σ, and transforming from Z to W ; iii) updating β again but

conditioning on W and Σ, and finally transforming W back to Z. Numerically we find

60



ASIS (Sampler 3.1)

1. p(Z?i |Y, β′,Σ′), for i = 1, . . . , 100

2. p(σ2
j |Y,Z?, β′), for j = 1, . . . , 6

3. p(β?j |Y,Z?,Σ), for j = 1, . . . , 6;

set Wi = β?Z?i , for i = 1, . . . , 100;

denote the (2× 2) sub-matrix of β? con-
sisting of the first two rows of β? by β̃

4. p(β|Y,W,Σ), consisting of

• p(β̃Tβ̃|Y,W,Σ);

set β̃ to the Cholesky factor of β̃Tβ̃,

• p(βj |Y,W, β̃,Σ), for j = 3, . . . , 6;

set Zi = β̃−1W̃i, for i = 1, . . . , 100,
where W̃i is a (2 × 1) vector consisting
of the first two components of Wi

MH within PCG+ASIS (Sampler 2.10)

j. Mσ2
j |Y,σ2

−j ,β
(σ2
j |Y,Σ′, β′), for j = 1, . . . , 4

5. p(Zi|Y, β′,Σ′), for i = 1, . . . , 100

6. p(σ2
j |Y, Z, β′), for j = 5, 6

7. p(βj |Y,Z,Σ), for j = 1, . . . , 6;

set Wi = β?Z?i , for i = 1, . . . , 100

8. p(β|Y,W,Σ), consisting of

• p(β̃Tβ̃|Y,W,Σ);

set β̃ to the Cholesky factor of β̃Tβ̃,

• p(βj |Y,W, β̃,Σ), for j = 3, . . . , 6;

set Zi = β̃−1W̃i, for i = 1, . . . , 100

Figure 3.1: Samplers 3.1 and 3.2. The left and right panels show the steps of the ASIS sampler (Sam-
pler 3.1) and the sampler combining PCG and ASIS (Sampler 3.2) for fitting the factor analysis model.

that this conditional ASIS algorithm is remarkable in improving the convergence of β,

but has little effect on Σ. (This kind of conditional ASIS algorithm is called as partial

component-wise interweaving strategy in Yu and Meng (2011).)

Since PCG and ASIS have none-overlapping effects in improving the convergence of β

and Σ, we naturally consider combining these two algorithms into one single sampler to

improve the convergence of both parameters simultaneously. That is, conditional on β,

we update Σ parameters with PCG, and then conditional on Σ, we sample β via ASIS.

This results in Sampler 3.2 in the right panel of Figure 3.1. We find that this combined

strategy indeed simultaneously improves the convergence of β and Σ with a fairly small

extra computational cost.

Motivated by this example, we consider obtaining more capacity to improve the conver-

gence of Gibbs-type samplers by combining several acceleration strategies into a single

coherent sampler. We construct a general framework to achieve this goal and guaran-

tee that under our framework, the combined sampler maintains the target stationary

61



Gibbs Sampler

1. p(ψ1|ψ′2, ψ′3)

2. p(ψ2|ψ1, ψ
′
3)

3. p(ψ3|ψ1, ψ2)

PCG Sampler

1. p(ψ1|ψ′2)

2. p(ψ3|ψ1, ψ
′
2)

3. p(ψ2|ψ1, ψ3)

MDA Sampler

1. p̃(α?, ψ̃1|ψ′2, ψ′3)

2. p̃(α,ψ2|ψ̃1, ψ
′
3);

set ψ1 = G−1
α (ψ̃1)

3.p(ψ3|ψ1, ψ2)

Haar PX-DA

1.p(ψ?1|ψ′2, ψ′3)

2. p̃(α?|ψ?1, ψ′3);

set ψ1 = G−1
α? (ψ?1)

3.p(ψ2|ψ1, ψ
′
3)

4.p(ψ3|ψ1, ψ2)

ASIS Sampler

1.p(ψ?1|ψ′2, ψ′3)

2.p(ψ?2|ψ?1, ψ′3);

set ψ̃1 = Hψ?2 (ψ?1)

3.p(ψ2|ψ̃1, ψ
′
3);

set ψ1 = H−1
ψ2

(ψ̃1)

4.p(ψ3|ψ1, ψ2)

Figure 3.2: Five samplers for updating from the distribution p(ψ1, ψ2, ψ3). They are the parent Gibbs
sampler (first panel), PCG sampler (second panel), MDA sampler (third panel) with a proper working prior,
Haar PX-DA sampler (fourth panel), and ASIS sampler (last panel), respectively.

distribution, and can only improve the convergence of the parent Gibbs sampler.

3.2 Combining Two or More Acceleration Strategies into One Sampler

3.2.1 Transition kernels for PCG, MDA (Haar PX-DA), and ASIS

Suppose we wish to sample from p(ψ) with ψ = {ψ1, . . . , ψN}. As introduced in

Section 1.1.2 of Chapter 1, the transition kernel of the standard Gibbs sampler for

updating p(ψ) is a product of N component transition kernels, that is, K(ψ|ψ′) =∏N
j=1Kj[ψj|;Fj(ψ, ψ′)], where Fj(ψ, ψ′) = (ψ1, . . . , ψj−1, ψ

′
j+1, . . . , ψ

′
N). The stationary

distribution of each Kj is the corresponding complete conditional of the target distribu-

tion, i.e., p(ψj|ψ−j). By implementing acceleration strategies on the Gibbs sampler, we

equivalently replace Kj[ψj|;Fj(ψ, ψ′)] with a new kernel, K′j[ψj|;F ′j(ψ, ψ′)], for some j.

The stationary distribution of K′j can be different from p(ψj|ψ−j) so long as the overall

stationary distribution of the sampler is maintained. We focus on three acceleration

algorithms, that is, PCG, MDA (Haar PX-DA), and ASIS, and provide the explicit

forms of their transition kernels.

Without loss of generality, we set N = 3, that is, ψ = (ψ1, ψ2, ψ3). The steps of the

standard Gibbs sampler for updating p(ψ1, ψ2, ψ3) are presented in the first panel of
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Figure 3.2. The transition kernel of the Gibbs sampler is

K(ψ|ψ′) = p(ψ1|ψ′2, ψ′3)p(ψ2|ψ1, ψ
′
3)p(ψ3|ψ1, ψ2). (3.1)

To improve convergence properties of the parent Gibbs sampler, we consider another

four samplers, which are a PCG sampler, an MDA sampler with a proper working prior,

a Haar PX-DA sampler, and an ASIS sampler, respectively.

Transition kernel of PCG

Implementing PCG is equivalent to replacing some component transition kernels in (3.1)

by kernels with reduced conditioning. For example, the PCG sampler in the sec-

ond panel of Figure 3.2, which updates ψ1 without conditioning on ψ3, in fact re-

places the component kernel K1[ψ1|; (ψ′2, ψ
′
3)] = p(ψ1|ψ′2, ψ′3) in (3.1) with a new kernel,

K′1(ψ1|;ψ′2) = p(ψ1|ψ′2). The stationary distribution of K′1(ψ1|;ψ′2) is p(ψ1|ψ′2), whereas

that of K1[ψ1|; (ψ′2, ψ
′
3)] is p(ψ1|ψ′2, ψ′3).

Transition kernel of MDA and Haar PX-DA

Suppose conditioning on ψ′3, ψ1 is the augmented data for ψ2. Thus Steps 1 and 2 of the

Gibbs sampler in Figure 3.2 can be regarded as a DA algorithm conditioning on ψ′3. We

introduce a working parameter α into the model via a one-to-one mapping ψ̃1 = Gα(ψ1).

First, we implement MDA on Steps 1 and 2 of the Gibbs sampler specifying a proper

prior p(α) on α, see the third panel of Figure 3.2. With a proper working prior, im-

plementing the MDA algorithm is equivalent to replacing first two component kernels

in (3.1), K1[ψ1|; (ψ′2, ψ
′
3)] = p(ψ1|ψ′2, ψ′3) and K2[ψ2|; (ψ1, ψ

′
3)] = p(ψ2|ψ1, ψ

′
3), with
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K′1,2(ψ1, ψ2|ψ′2;ψ′3)

=
∫ ∫ ∫

p̃(α?, ψ̃1|ψ′2, ψ′3)p̃(α, ψ1, ψ2|ψ̃1, ψ
′
3)dαdα?dψ̃1

=
∫ ∫

p̃(α?,Gα(ψ1)|ψ′2, ψ′3)p̃(α, ψ2|Gα(ψ1), ψ′3)|J(ψ1|α)|dαdα?

=
∫
p(α?)

∫
p̃(Gα(ψ1)|α?, ψ′2, ψ′3)p̃(α, ψ2|Gα(ψ1), ψ′3)|J(ψ1|α)|dαdα?,

(3.2)

where J(ψ1|α) is the Jacobian matrix of the transformation ψ1 = G−1
α (ψ̃1) conditioning

on α. Updating (α, ψ1, ψ2) from p̃(α, ψ1, ψ2|ψ̃1, ψ
′
3), shown in the second row of (3.2), is

equivalent to Step 2 of the MDA sampler in Figure 3.2, because sampling (α, ψ1, ψ2) from

p̃(α, ψ1, ψ2|ψ̃1, ψ
′
3) consists of sampling (α, ψ2) from p̃(α, ψ2|ψ̃1, ψ

′
3) and then updating

ψ1 from p̃(ψ1|α, ψ2, ψ̃1, ψ
′
3), which is simply the transformation from ψ̃1 to ψ1. The

stationary distribution of the new kernel K′1,2(ψ1, ψ2|ψ′2;ψ′3) is p(ψ1, ψ2|ψ′3) since

∫
K′1,2(ψ1, ψ2|ψ′2;ψ′3)p(ψ′1, ψ

′
2|ψ′3)dψ′1dψ′2 = p(ψ1, ψ2|ψ′3). (3.3)

Then suppose Conditions LW-1 and LW-2 described in Section 1.2.1 of Chapter 1 hold.

(For all of the numerical examples related with MDA in this dissertation, the validity of

these two conditions can be easily verified.) We specify the Haar piror to α and use Haar

PX-DA to update (ψ1, ψ2) conditioning on ψ′3, see the fourth panel of Figure 3.2. The

Haar PX-DA algorithm replaces the component kernel K1[ψ1|; (ψ′2, ψ
′
3)] = p(ψ1|ψ′2, ψ′3)

in (3.1) with the new kernel,

K′1[ψ1|; (ψ′2, ψ
′
3)] =

∫ ∫
p(ψ?1|ψ′2, ψ′3)p̃(α?, ψ1|ψ?1, ψ′3)dα?dψ?1

=
∫
p(Gα?(ψ1)|ψ′2, ψ′3)p̃(α?|Gα?(ψ1), ψ′3)|J(ψ1|α?)|dα?.

(3.4)

Like the equivalence of updating (α, ψ1, ψ2) from p̃(α, ψ1, ψ2|ψ̃1, ψ
′
3)to Step 2 of the

MDA sampler, updating (α, ψ1) from p̃(α, ψ1|ψ?1, ψ′3), shown in the first row of (3.4), is

equivalent to Step 2 of the Haar PX-DA sampler in Figure 3.2. As stated in Section 1.2.1,

Liu and Wu (1999) verified that Step 2 of the standard Haar PX-DA sampler, i.e.,

Sampler 1.2l, is proper. The proof can be applied directly to show the propriety of

Step 2 of the conditional Haar PX-DA sampler in Figure 3.2. Thus, K′1[ψ1|; (ψ′2, ψ
′
3)]
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in (3.4) maintains the stationary distribution of K1(ψ1|;ψ′2, ψ′3), that is, p(ψ1|ψ′2, ψ′3).

Transition kernel of ASIS

Suppose conditioning on ψ′3, ψ1 is a sufficient augmentation for ψ2, and let ψ̃1 = Hψ2(ψ1)

be the corresponding ancillary augmentation. Then we replace Steps 1 and 2 of the

parent Gibbs sampler with ASIS updates (last panel in Figure 3.2), which is equivalent

to replacing first two component kernels in (3.1), K1[ψ1|; (ψ′2, ψ
′
3)] = p(ψ1|ψ′2, ψ′3) and

K2[ψ2|; (ψ1, ψ
′
3)] = p(ψ2|ψ1, ψ

′
3), with the following new kernel,

K′1,2(ψ1, ψ2|ψ′2;ψ′3)

=
∫ ∫ ∫

p(ψ?1|ψ′2, ψ′3)p(ψ?2, ψ̃1|ψ?1, ψ′3)p(ψ1, ψ2|ψ̃1, ψ
′
3)dψ?1dψ?2dψ̃1

=
∫ ∫

p(ψ?1|ψ′2, ψ′3)p(ψ?2,Hψ2(ψ1)|ψ?1, ψ′3)p(ψ2|Hψ2(ψ1), ψ′3)|J(ψ1|ψ2)dψ?1dψ?2,

(3.5)

where J(ψ1|ψ2) is the Jacobian matrix of the transformation ψ1 = H−1
ψ2

(ψ̃1) condition-

ing on ψ2. Sampling (ψ1, ψ2) from p(ψ1, ψ2|ψ̃1, ψ
′
3) shown in the second row of (3.5)

is equivalent to Step 3 of the ASIS sampler in Figure 3.2 because updating ψ1 from

p(ψ1|ψ̃1, ψ2, ψ
′
3) is simply a transformation from ψ̃1 to ψ1. The stationary distribution

of the ASIS kernel K′1,2(ψ1, ψ2|ψ′2;ψ′3) is p(ψ1, ψ2|ψ′3) since it is easy to verify that

∫
K′1,2(ψ1, ψ2|ψ′2;ψ′3)p(ψ′1, ψ

′
2|ψ′3)dψ′1dψ′2 = p(ψ1, ψ2|ψ′3). (3.6)

Note that when one step of a sampler requires MH, the corresponding component kernel

also depends on the current iteration of the parameter to be updated. For example, if

Step 1 of the Gibbs sampler in Figure 3.2 requires MH update, its transition kernel K1

has the form K1[ψ1|ψ′1; (ψ′2, ψ
′
3)], see Section 1.1.2 of Chapter 1.

3.2.2 Identifying stationary distributions of combined samplers

To construct a sampler combining two or more acceleration strategies, we replace some

component transition kernels of the parent Gibbs sampler with the kernels for the
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strategies we tend to use. As shown in Section 3.2.1, new component kernels may

not have the target stationary distribution. Thus we must take care to guarantee that

the stationary distribution of the overall combined sampler is the target.

Generally, we can directly verify the stationary distribution of a sampler by finding π(ψ)

such that

π(ψ) =

∫
K(ψ|ψ′)π(ψ′)dψ. (3.7)

In addition, we provide two conditions which are sufficient to ensure that the combined

sampler maintains the target stationary distribution, that is,

i) if ψ′ ∼ p(ψ), then the input to each component kernel of the sampler follows the

target distribution. For example, suppose the current iteration of the parameter

ψ′ is a draw from the target distribution p(ψ). If the jth component kernel is

K′j(ψj|;F ′j(ψ, ψ′)), then F ′j(ψ, ψ′) must follow the target distribution p(F ′j(ψ, ψ′)).

If K′j has the form K′j(ψj|ψ′j;F ′j(ψ, ψ′)), the joint distribution of ψ′j and F ′j(ψ, ψ′)

should be the target;

ii) the last step of the sampler is a draw from the complete conditional of the target

joint distribution.

These two conditions ensure that the last component kernel produces a draw from

p(ψ) if the input to the first component kernel follows the target distribution. Us-

ing Conditions i) and ii) to verify the stationary distribution is simpler than directly

applying (3.7).

Sometimes we need to permute the component kernels to guarantee that the two con-

ditions hold. For instance, after replacing the component kernel K1[ψ1|; (ψ′2, ψ
′
3)] =

p(ψ1|ψ′2, ψ′3) of the Gibbs sampler in Figure 3.2 with the PCG kernel, K′1(ψ1|;ψ′2) =

p(ψ1|ψ′2), Condition i) above does not hold, because sampling ψ1 from p(ψ1|ψ′2) leads

to the conditional independence of ψ′3 and ψ1 in Step 2 and the input to Step 2 does

not follow the target distribution. Thus we change the order of Steps 2 and 3, that is,

sampling ψ3 immediately after ψ1, and obtain the PCG sampler in Figure 3.2. Now

both Conditions i) and ii) hold and the PCG sampler maintains the target stationary
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distribution.

3.2.3 Convergence rate of combined samplers

In this section, we establish the computational advantage of the samplers combining

acceleration strategies. The acceleration strategies we consider are PCG, MDA (Haar

PX-DA), and ASIS. Thus to prove the combined sampler outperforms the parent Gibbs

sampler in efficiency, we simply need to show that replacing a component kernel of the

parent Gibbs sampler with one of the PCG, MDA (Haar PX-DA), and ASIS transition

kernels can only improve the rate of convergence. Without loss of generality, we just

verify that the PCG, MDA, Haar PX-DA, and ASIS samplers in Figure 3.2 all have

better convergence properties than the parent Gibbs sampler in Figure 3.2. We use the

cyclic-permutation bound introduced in Section 1.3 of Chapter 1 to compare computa-

tional efficiency of different samplers, since it is easier to handle than the spectral radius

of a sampler. Recall that smaller cyclic-permutation bound indicates faster convergence.

Sampling more components of ψ in any set of steps of a Gibbs sampler can only reduce

the cyclic-permutation bound, see Theorem 1 of van Dyk and Park (2008). Thus the

PCG sampler in Figure 3.2 reduces the cyclic-permutation bound of its parent Gibbs

sampler.

To compare the relative efficiencies of the Gibbs sampler and the MDA sampler with a

proper working prior in Figure 3.2, we consider another sampler, which proceeds by

1. p̃(α, ψ̃1|ψ′2, ψ′3)

2. p̃(ψ2|α, ψ̃1, ψ
′
3); set ψ1 = G−1

α (ψ̃1)

3. p(ψ3|ψ1, ψ2).

We name this sampler by Gibbs Sampler 2. The stationary distribution of Gibbs Sampler-

2 is p(α)p(ψ1, ψ2, ψ3). More interestingly, the cyclic-permutation bound of Gibbs Sam-

pler 2 equals to that of the Gibbs sampler in Figure 3.2. We present the corresponding

proof in Appendix B. The MDA sampler in Figure 3.2 differs from Gibbs Sampler 2 only
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in that the MDA sampler updates α in Step 2, whereas Gibbs Sampler 2 conditions on

it. Then the MDA sampler has smaller cyclic-permutation bound than Gibbs Sampler 2,

because sampling more components in one step of a Gibbs-type sampler can only reduce

the cyclic-permutation bound. Thus the MDA sampler reduces the cyclic-permutation

bound of its parent Gibbs sampler, which owns the same cyclic-permutation bound as

Gibbs Sampler 2.

Under Conditions LW-1 and LW-2, Liu and Wu (1999) verified the optimality of a

standard Haar PX-DA sampler, i.e., Sampler 1.2l in Section 1.2.1 of Chapter 1, among

a class of such algorithms. Specifically, with these two condition, each Ymis ∈ Z can

be represented by its orbit r ∈ Q and its position β ∈ A on the orbit. Thus we can

parameterize the original augmented model as

p(Ymis, θ|Yobs)dYmisdθ = p(β, r, θ|Yobs)drdθH(dβ), (3.8)

and the expanded augmented model as

p̃(α, Ymis, θ|Yobs)dYmisdθH(dα) = p(α · β, r, θ|Yobs)p(α)drdθH(dα)H(dβ). (3.9)

Liu and Wu (1999) showed that the DA sampler is equivalent to iterating between β, r|θ

and θ|β, r based on (3.8), the MDA sampler with the working prior p(α), i.e., Sampler 1.1

in Section 1.2.1, also induces the iteration between β, r|θ and θ|β, r, but based on (3.9),

whereas the Haar PX-DA sampler, i.e., Sampler 1.2l in Section 1.2.1, iterates between

r|θ and θ|r, based on (3.9) with p(α) = 1. Henceforth, updating θ without conditioning

on β, the Haar PX-DA sampler outperforms the parent DA sampler and any MDA

sampler with a proper working prior under Conditions LW-1 and LW-2. The arguments

above can be directly applied to prove that the Haar PX-DA sampler in Figure 3.2 has

smaller cyclic-permutation bound than both its parent Gibbs sampler and the MDA

sampler in Figure 3.2.

Yu and Meng (2011) proved that under Conditions YM-1 and YM-2 below, the ASIS

sampler, i.e., Sampler 1.3 in Section 1.2.2 of Chapter 1 is identical to the optimal Haar
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PX-DA sampler for the expanded model p̃(α, Ỹmis,S, θ|Yobs), where α is introduced into

the model via the transformation Ỹmis,S = Hα(Ymis,S) (recall that Ymis,A = Hθ(Ymis,S)),

see Theorem 4 of Yu and Meng (2011).

YM-1: The state space of θ, Θ, forms a group (induced by Hθ) with a unimodular

Haar measure;

YM-2: The prior distribution for θ, p∞(θ), with respect to the Haar measure satisfies

that p∞(θ · θ′) ∝ p∞(θ)p∞(θ′).

Considering the ASIS sampler in Figure 3.2, we replace θ with ψ2, and Ymis,S with ψ1.

Then suppose that Conditions YM-1 and YM-2 hold. We can directly use the proof for

Theorem 4 of Yu and Meng (2011) to show that the ASIS update induced by Steps 1

and 2 of the sampler in the last panel Figure 3.2 is identical to a Haar PX-DA algorithm

conditioning on ψ′3. Thus we conclude that under Conditions YM-1 and YM-2, the ASIS

sampler reduces the cyclic-permutation bound of its parent Gibbs sampler. Although

Conditions YM-1 and YM-2 seem relatively restrictive, they are satisfied in all of the

numerical examples related with ASIS in this Chapter.

In general, replacing a component kernel of the parent Gibbs sampler with one of the

PCG, MDA (Haar PX-DA), and ASIS transition kernels can only reduce the cyclic-

permutation bound. Thus the samplers combining two or more of these acceleration

strategies improve the convergence rate of their parent Gibbs samplers.

3.3 Illustration Examples

3.3.1 Factor analysis model

In Section 3.1, we use the factor analysis model described in Section 2.3.3 of Chapter 2

to motivate combining several acceleration strategies into one sampler. In this section,

we use the same simulation study as in Section 2.3.3 to show numerically the efficiency

of the combined sampler relative to the samplers that use only one strategy. Specifically,

we start with the parent Gibbs sampler, i.e., Sampler 2.9, design an MH within PCG
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Figure 3.3: Comparing four samplers for the factor analysis model. The left two columns are the time-
series and autocorrelation plots for the posterior draws of β21, while the right two columns are those for
log(σ2

2). The four rows from top to bottom correspond to the Gibbs, PCG, ASIS, and combined samplers,
respectively. The combined sampler outperforms other three in efficiency.

sampler (Sampler 2.10) and an ASIS sampler (Sampler 3.1), and demonstrate how they

can be combined to a proper MH within PCG + ASIS sampler.

Recall that the PCG sampler updates σ2
1–σ2

4 without conditioning on Z, which requires

the help of MH. Since we derive Sampler 2.10 from its parent Gibbs sampler by following

the three-stage framework, see Figure 2.15, Sampler 2.10 maintains the target stationary

distribution. It is easy to verify that the ASIS sampler also has the correct stationary

distribution. Suppose (Z ′,Σ′, β′) is a sample from p(Z,Σ, β|Y ). Because the first three

steps of Sampler 3.2 all update the complete conditionals of the target, they maintain the

target distribution. After the transformation at the end of Step 3, we have (W,Σ, β?) ∼

p(W,Σ, β|Y ), which is equivalent to p(Z,Σ, β|Y ). After updating β from p(β|Y,W,Σ)

in Step 4, (W,Σ, β) follows the distribution p(W,Σ, β|Y ). Finally, the transformation

at the end of Step 4 makes (Z,Σ, β) a new sample from the target distribution. By
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Gibbs MH within PCG ASIS MH within PCG+ASIS

β21 0.023 0.062 8.165 9.388

log (σ2
2) 0.142 1.777 0.137 1.502

Table 3.1: The ESS per second of β21 and σ2
2 for Samplers 2.9, 2.10, 3.1, and 3.2. The combined sampler,

i.e., Sampler 3.2, outperforms the other three.

combining the arguments for the MH within PCG and ASIS samplers, we ensure the

MH within PCG + ASIS sampler also has the target stationary distribution.

We run 50,000 iterations with a burnin of 10,000 and use the same starting values

for each sampler. Figure 3.3 compares the four samplers in terms of the mixing and

autocorrelation of β21 and log(σ2
2); the left two columns correspond to results for β21,

and the right two columns for log(σ2
2). The other β components behave similarly to β21,

and log(σ2
1), log(σ2

3), and log(σ2
4) behave similarly to log(σ2

2), while log(σ2
5) and log(σ2

6)

converge well for all four samplers. We find the MH within PCG sampler is efficient in

improving the convergence of Σ, but has little effect on β. ASIS has the opposite effect.

By combining MH within PCG and ASIS, we improve the convergence of both Σ and

β simultaneously.

Because it has more steps, the combined sampler is computationally more expensive

than the other three. To check whether its improved efficiency compensates for the

additional computational cost, we estimate the ESS per second. We present the ESS

per second of β21 and log(σ2
2) for the four samplers in Table 3.1. By this measure, we

find the sampler combining MH within ASIS and PCG substantially outperforms the

other three in efficiency with a fairly small extra computational cost. (Although the

MH within PCG sampler is slightly better than the combined sampler for log(σ2
2), it

takes around 150 times longer to obtain the same ESS for β21.)

3.3.2 Cosmological hierarchical model

Recall the cosmological hierarchical model described in Section 2.3.2 of Chapter 2. In

Section 2.3.2, to sample from the posterior distribution of this model, we start with
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ASIS (Sampler 3.3)

1. p(ξ,X?|Y,C ′, α′, β′,Σ′P )

2.MC |Y,ξ,X,α,β,ΣP (C ?|Y, ξ,X?,C ′, α′, β′,Σ′P );

use C ? to construct L?

3. p(α?, β?|Y, ξ,X?,C ?,Σ′P );

use (α?, β?) to construct A?;

set X̄ = A?X? + L?

4.MC |Y,ξ,X̄,α,β,ΣP (C |Y, ξ, X̄,C ?, α?, β?,Σ′P );

use C to construct L

5. p(α, β|Y, ξ, X̄,C ,Σ′P );

use (α, β) to construct A;

set X = A−1(X̄ − L)

6. p(ΣP |Y, ξ,X,C , α, β)

MH within PCG+ASIS (Sampler 3.4)

1.MC |Y,α,β,ΣP (C |Y,C ′, α′, β′,Σ′P );

use C to construct L

2. p(ξ,X?|Y,C , α′, β′,Σ′P )

3. p(α?, β?|Y, ξ,X?,C ,Σ′P );

use (α?, β?) to construct A?;

set X̄ = A?X? + L

4. p(α, β|Y, ξ, X̄,C ,Σ′P );

use (α, β) to construct A;

set X = A−1(X̄ − L)

5. p(ΣP |Y, ξ,X,C , α, β)

Figure 3.4: Samplers 3.3 and 3.4. The left and right panels show the steps of the ASIS sampler (Sam-
pler 3.3) and the sampler combining MH within PCG and ASIS (Sampler 3.4) for fitting the cosmological
hierarchical model.

the parent MH within Gibbs sampler, i.e., Sampler 2.7 in Figure 2.11, where both

C = (Ωm,ΩΛ) and (α, β) exhibit poor convergence. In order to improve the convergence

of these two parameters, we use three other samplers. First we consider the MH within

PCG sampler, Sampler 2.8, introduced in Section 2.3.2, which uses MH to update C and

(α, β) without conditioning on ξ or X. We derive Sampler 2.8 from Sampler 2.7 using

the three-stage framework described in Section 2.2.2 of Chapter 2, see Figure 2.12.

This guarantees that the MH within PCG sampler is proper. Next we construct an

ASIS sampler. We derive the sufficient and ancillary augmentations for C and (α, β)

conditioning on the other parameters ξ and ΣP . The distribution of X conditioning on

C and (α, β) is

X|C , α, β ∼ N(Jξ,ΣP ), (3.10)

where J(3n×3) = (I, . . . , I)T with I = Diag(1, 1, 1). Because this distribution is free of

C and (α, β), X is an ancillary augmentation for both of them. To derive a sufficient

augmentation, we set X̄ = AX + L, where A(3n×3n) = Diag(T, . . . , T ) with T(3×3) =
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1 0 0

0 1 0

β −α 1

, and let L denote the (3n × 1) vector (0, 0, µ1, . . . , 0, 0, µn), which is a

deterministic function of C . The distribution of observed quantities Y conditioning on

X̄, C and (α, β) is

Y |X̄,C , α, β ∼ N(X̃,ΣC), (3.11)

where ΣC (3n×3n) = Diag(Ĉ1, . . . , Ĉn). Because this distribution is free of C and (α, β),

X̄ is a sufficient augmentation for both parameters. Sampler 3.3 in the left panel of

Figure 3.4 is the ASIS sampler corresponding to this pair of sufficient and ancillary

augmentations. Specifically, in Sampler 3.3, we implement ASIS conditioning on ξ and

ΣP : (i) (ξ,X) is sampled from its complete conditional distribution; (ii) C and (α, β) are

updated conditioning on X, and X is transformed to X̄ conditioning on C and (α, β);

and (iii) C and (α, β) are updated again but conditioning on X̄. Both of the updates

of C require MH. Sampler 3.4 combines MH within PCG and ASIS. In particular,

conditioning on (α, β), we update C with MH within PCG, and then conditioning on

C , we update (α, β) with ASIS, see the right panel of Figure 3.4 for its steps.

It is easy to verify that Sampler 3.4 is proper. Suppose (ξ′, X ′,C ′, α′, β′,Σ′P ) is a draw

from the target distribution. Although in Step 1 of Sampler 3.4, we sample C without

conditioning on (ξ,X), the marginal distribution of (C , α′, β′,Σ′P ) is still that of the

target. After updating (ξ,X) from its complete conditional distribution in Step 2,

(ξ,X,C , α′, β′,C ′) follows the target distribution. Since the distribution of (X,α, β) is

equivalent to that of (X̄, α, β) conditioning on the other parameters, when we transform

back to (X,α, β) at the end of Step 4, (ξ,X,C , α, β,Σ′P ) follows the target distribution.

Finally, the step that updates ΣP is a standard Gibbs step which preserves the target

stationary distribution. Thus, Sampler 3.4 is proper.

We run each of the MH within Gibbs, MH within PCG, ASIS, and MH within PCG +

ASIS samplers for 11,000 iterations with a burn-in of 1,000 using the same data set and

initial values as in Section 2.3.2.
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Sampler 3.4 
 (MH within PCG + ASIS)

Figure 3.5: The sampling results of Samplers 3.3 and 3.4. The left two columns are the time-series and
autocorrelation plots for the posterior draws of Ωm, ΩΛ, α, and β respectively from Sampler 3.3, while the
right two columns are those from Sampler 3.4. The combined sampler, Sampler 3.4, converges better than
the other three.

The sampling results of the MH within Gibbs and MH within PCG samplers are shown

in Figure 2.13 of Section 2.3.2. Figure 3.5 shows the convergence properties of the ASIS

and combined samplers. For each sampler, we display the time-series (left column) and

autocorrelation plots (right column) for Ωm, ΩΛ, α, and β. For all of the four parameters,

the MH within PCG, ASIS, and MH within PCG + ASIS samplers produce chains with

much faster mixing and lower autocorrelation than the parent MH within Gibbs sampler.

We display the ESS per second of Ωm, ΩΛ, α, and β in Table 3.2 and conclude that

the MH within PCG, ASIS, and MH within PCG + ASIS samplers all substantially

improve the convergence properties of the MH within Gibbs sampler. Thus we confirm
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MH within Gibbs MH within PCG ASIS MH within PCG + ASIS

Ωm 0.002 0.037 0.010 0.041

ΩΛ 0.001 0.023 0.006 0.027

α 0.008 0.051 0.076 0.073

β 0.010 0.029 0.064 0.074

Table 3.2: The ESS per second of Ωm, ΩΛ, α, and β for Samplers 2.7, 2.8, 3.3, and 3.4. The combined
sampler, i.e., Sampler 3.4, outperforms the other three samplers.

that both PCG and ASIS are efficient in improving convergence. More interestingly,

ASIS is less efficient in improving the convergence of C than MH within PCG, while

better in improving the convergence of (α, β). When we combine these two strategies

into Sampler 3.4, the result outperforms both the MH within PCG and ASIS samplers

in terms of ESS per second. (Although the ASIS sampler is slightly better than the

combined sampler for α, it takes around 15% longer to obtain the same ESS for β, and

more than four times longer for C .)

3.3.3 Hierarchical t model

In this section, we use a hierarchical t model to illustrate the further efficiency obtained

by combining Haar PX-DA and ASIS algorithms into one sampler. Specifically, the

observations, Yi (i = 1, . . . , n), follow Gaussian distributions independently conditioning

on all the other parameters, that is,

Yi
ind∼ N

(
βiXi,

σ2

Zi

)
, for i = 1, . . . , n, (3.12)

where Y = (Y1, . . . , Yn) are the observations and X = (X1, . . . , Xn) are known covari-

ates. We specify Gaussian and chi-square distributions to the regression coefficients,

β = (β1, . . . , βn), and variance parameters, Z = (Z1, . . . , Zn), respectively, that is,

βi
iid∼ N(µ, τ 2) and Zi

iid∼ χ2
ν/ν. (3.13)
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Gibbs (Sampler 3.5)

1. p(Z|Y, (σ2)
′
, β′, τ ′, µ′)

2. p(σ2|Y,Z, β′, τ ′, µ′)
3. p(β|Y,Z, σ2, τ ′, µ′)

4. p(τ, µ|Y,Z, σ2, β)

Haar PX-DA (Sampler 3.6)

1. p(Z?|Y, (σ2)
′
, β′, τ ′, µ′)

2. p̃(α|Y, Z?, β′, τ ′, µ′); set Z = Z̃/α

3. p(σ2|Y,Z, β′, τ ′, µ′)
4. p(β|Y,Z, σ2, τ ′, µ′)

5. p(τ, µ|Y,Z, σ2, β)

ASIS (Sampler 3.7)

1. p(Z|Y, (σ2)
′
, β′, τ ′, µ′)

2. p(σ2|Y,Z, β′, τ ′, µ′)
3. p(β?|Y,Z, σ2, τ ′, µ′)

4. p(τ?, µ?|Y, Z, σ2, β?); set β̄ = (β?−µ?)/τ?

5. p(τ, µ|Y,Z, σ2, β̄); set β = τ β̄ + µ

Haar PX-DA+ASIS (Sampler 3.8)

1. p(Z?|Y, (σ2)
′
, β′, τ ′, µ′)

2. p̃(α|Y, Z̃, β′, τ ′, µ′); set Z = Z̃/α

3. p(σ2|Y,Z, β′, τ ′, µ′)
4. p(β?|Y, Z, σ2, τ ′, µ′)

5. p(τ?, µ?|Y,Z, σ2, β?); set β̄ = (β?−µ?)/τ?

6. p(τ, µ|Y,Z, σ2, β̄); set β = τ β̄ + µ

Figure 3.6: Four samplers for fitting the hierarchical t model. The top-left and top-right panels show
the steps of the parent Gibbs sampler (Sampler 3.5) and the Haar PX-DA sampler (Sampler 3.6). The
bottom-left and bottom-right panels display the steps of the ASIS sampler (Sampler 3.7) and the sampler
combining Haar PX-DA and ASIS (Sampler 3.8).

Combining (3.12) and (3.13), Yi is marginally t-distributed. We specify non-informative

prior distributions to unknown parameters (τ, µ, σ) as p(τ, µ, σ) ∝ 1. Here we set

Yi, βi, and Zi as univariate variables, but see van Dyk (2000) for a multivariate ver-

sion of the hierarchical t model. We wish to sample from the posterior distribution,

p(Z, σ2, β, τ, µ|Y ).

To update p(Z, σ2, β, τ, µ|Y ), we start with the standard Gibbs sampler, which updates

Z, σ2, β, and (τ, µ) iteratively from their complete conditional distributions, see Sam-

pler 3.5 in the top-left panel of Figure 3.6. With the Gibbs sampler, both (τ, µ) and σ2

exhibit poor convergence. Thus we consider another three samplers to improve the effi-

ciency of (τ, µ) and σ2. First, we construct an MDA sampler. Specifically, we introduce

the working parameter α into the model via Z̃ = (Z̃1, . . . , Z̃n), that is,

Yi
ind∼ N

(
βiXi,

ασ2

Z̃i

)
, (3.14)
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Figure 3.7: Comparing four samplers for the hierarchical t model. The left two columns are the mixing and
autocorrelation plots for the posterior draws of log(σ2), while the right two columns are those for log(τ2).
The four rows from top to bottom correspond to the Gibbs, Haar PX-DA, ASIS, and combined samplers,
respectively. The combined sampler outperforms other three in efficiency.

where Z̃ = αZ and thus Z̃i|α
iid∼ αχ2

ν/ν. In this example, Conditions LW-1 and LW-2

both hold. Thus we specify the Haar measure prior to α, that is, p∞(α) ∝ 1/α, and

use Haar PX-DA to obtain optimal computational efficiency. Although it is difficult

to derive the Haar PX-DA algorithm for both (τ, µ) and σ2, constructing a Haar PX-

DA sampler for σ2 conditioning on (τ, µ) is simple. Thus we implement Haar PX-DA

conditioning on (τ, µ) and obtain a conditional Haar PX-DA sampler, i.e., Sampler 3.6.

Specifically, Sampler 3.6 proceeds by i) updating σ2 and Z with the Haar PX-DA

algorithm conditioning on β and (τ, µ), and ii) sampling β and (τ, µ) from their complete

conditional distributions; see the top-right panel of Figure 3.6 for steps of Sampler 3.6.

Next we use ASIS to improve the convergence. We derive the sufficient and ancillary

augmentations for (τ, µ) conditioning on Z and σ2. Because the distribution of observed
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Gibbs Haar PX-DA ASIS Haar PX-DA+ASIS

log (σ2) 46.028 64.875 66.972 265.627

log (τ 2) 19.978 21.865 162.177 167.040

Table 3.3: The ESS per second of log(σ2) and log(τ2) for Samplers 3.5–3.8. The combined sampler, i.e.,
Sampler 3.8, outperforms the other three samplers.

quantities Y conditioning on Z, β, and σ2 is

Yi|Z, βi, σ2 ind∼ N

(
βiXi,

σ2

Zi

)
, (3.15)

free of (τ, µ), β is the sufficient augmentation for (τ, µ). β̄ = (β − µ)/τ is the corre-

sponding ancillary augmentation because its distribution, β̄i
iid∼ N(0, 1), is free of (τ, µ).

We construct the ASIS sampler by i) sampling all the parameters from their complete

conditionals, and ii) sampling (τ, µ) again conditioning on β̄, see Sampler 3.7 in the

bottom-left panel of Figure 3.6. Finally, we combine Haar PX-DA and ASIS into one

coherent sampler by updating σ2 with Haar PX-DA conditioning on (τ, µ) and sampling

(τ, µ) with ASIS conditioning on σ2, and obtain Sampler 3.8 in the bottom-right panel

of Figure 3.6.

Now we verify that the combined sampler, i.e., Sampler 3.8, is proper. Suppose (Z ′,

(σ2)
′
, β′, τ ′, µ′) is a draw from the target p(Z, σ2, β, τ, µ|Y ). With ψ1 = Z, ψ2 = σ2,

and ψ3 = (β, τ, µ), Sampler 3.8 as a specific example of the Haar PX-DA sampler in

Figure 3.2. As shown in Section 3.2.1, the transition kernel induced by Steps 1 and 2

of Sampler 3.8 maintains the target stationary distribution. Thus after sampling Z

in Steps 1 and 2, (Z, (σ2)
′
, β′, τ ′, µ′) follows the target distribution. After updating σ2

from its complete conditional distribution in Step 3, the distribution of (Z, σ2, β′, τ ′, µ′)

is p(Z, σ2, β, τ, µ|Y ). Since the distribution of (β, τ, µ) is equivalent to that of (β̄, τ, µ)

conditioning on the other parameters, when we transform back to (β, τ, µ) at the end

of Step 6, (Z, σ2, β, τ, µ) follows the target distribution. Thus, Sampler 3.8 is proper.

We use a simulation study to compare Samplers 3.5–3.8. We set µ = 2, τ = 3, σ = 0.1,

ν = 0.1, n = 10, and draw X from a uniform distribution on [−1, 1]. For each sampler,
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we use the same starting values and run a chain of 50,000 iterations with a burn-

in of 10,000. Figure 3.7 compares the four samplers with regard to the mixing and

autocorrelation of log(σ2) and log(τ 2), the left two columns correspond to results for

log(σ2), and the right two columns for log(τ 2); µ behaves similarly to log(τ 2). The Haar

PX-DA sampler is effective in improving the convergence of σ2, but has little effect on τ .

The ASIS sampler is useful for improving the convergence of both parameters, especially

for τ . By combining Haar PX-DA and ASIS, Sampler 3.8 significantly improves the

convergence of both σ2 and τ 2, and outperforms the samplers using either of the two

methods alone. Furthermore, we account for the computational time and display the

ESS per second of log(σ2) and log(τ 2) from all of the four samplers in Table 3.3. The

combined sampler produces the largest ESS/sec for both parameters, which helps us

confirm that combining Haar PX-DA and ASIS into one sampler is more efficient in

improving convergence than using either strategy alone.

3.3.4 Hierarchical probit model

We use a hierarchical probit model to illustrate the efficiency we can gain by combining

either Haar PX-DA and ASIS algorithms or two ASIS algorithms into one sampler. In

this model, the observation Y = (Y1, . . . , Yn), are the indicators of the values of the

latent variables Z = (Z1, . . . , Zn), that is,

Yi =

 1 if Zi > 0

0 otherwise
, for i = 1, . . . , n, (3.16)

where Zi
ind∼ N(Xiβi, 1). WhereasX = (X1, . . . , Xn) are known covariates, β = (β1, . . . , βn)

are unknown parameters and βi
iid∼ N(µ, τ 2). We specify conjugate priors to µ and τ as

µ ∼ N(0, 10) and p(τ) ∝ 1. See van Dyk (2000) for a multivariate version of this model.

We wish to sample from the posterior distribution p(Z, β, µ, τ |Y ).

We compare the performance of six samplers for fitting the hierarchical probit model.

We start with the Gibbs sampler, which samples each of Z, (µ, β), and τ from its
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Gibbs (Sampler 3.9)

1. p(Z|Y, β′, µ′, τ ′)
2. p(µ, β|Y, Z, τ ′)
3. p(τ |Y, Z, β, µ)

Haar PX-DA (Sampler 3.10)

1. p(Z?|Y, β′, µ′, τ ′)
2. p̃(α|Y, Z?, τ ′); set Z = Z?/α

3. p(µ, β|Y, Z, τ ′)
4. p(τ |Y, Z, β, µ)

ASIS I (Sampler 3.11)

1. p(Z?|Y, µ′, τ ′)
2. p(µ?|Y,Z, τ ′); set Z̄ = Z? −Xµ?

3. p(µ|Y, Z̄, τ ′); set Z = Z̄ +Xµ

4. p(β|Y, Z, µ, τ ′)
5. p(τ |Y,Z, β, µ)

ASIS II (Sampler 3.12)

1. p(Z|Y, β′, µ′, τ ′)
2. p(µ?, β?|Y,Z, τ ′)
3. p(τ?|Y,Z, β?, µ?); set β̄ = (β? − µ?)/τ?

4. p(µ|Y,Z, β̄, τ?)
5. p(τ |Y, Z, β̄, µ); set β = τ β̄ + µ

Haar PX-DA+ASIS II (Sampler 3.13)

1. p(Z?|Y, β′, µ′, τ ′)
2. p̃(α|Y,Z?, τ ′); set Z = Z?/α

3. p(µ?, β?|Y,Z, τ ′)
4. p(τ?|Y,Z, β?, µ?); set β̄ = (β? − µ?)/τ?

5. p(µ|Y, Z, β̄, τ?)
6. p(τ |Y,Z, β̄, µ); set β = τ β̄ + µ

ASIS I+ASIS II (Sampler 3.14)

1. p(Z?|Y, µ′, τ ′)
2. p(µ?|Y,Z, τ ′); set Z̄ = Z? −Xµ?

3. p(µ|Y, Z̄, τ ′); set Z = Z̄ +Xµ

4. p(β?|Y,Z, µ, τ ′)
5. p(τ?|Y,Z, β?, µ); set β̄ = (β? − µ)/τ?

6. p(τ |Y, Z, β̄, µ); set β = τ β̄ + µ

Figure 3.8: Six samplers for fitting the hierarchical probit model. From top to bottom, the left panels
show the steps of the parent Gibbs sampler, the sampler with ASIS I, and the sampler combining Haar
PX-DA and ASIS II, whereas the right panels present the steps of the Haar PX-DA sampler, the sampler
with ASIS II, and the sampler combining ASIS I and ASIS II.

complete conditional distribution, see Sampler 3.9 in the top-left panel of Figure 3.8.

To improve the convergence of the Gibbs sampler, we consider using MDA and ASIS.

First, we construct an MDA sampler. The working parameter α is introduced into the

model by setting Z̃ = αZ. Then

Yi =

 1 if Z̃i > 0

0 otherwise
, for i = 1, . . . , n, (3.17)

where Z̃i
ind∼ N(Xiαβi, α

2). To facilitate the update of α, we also set β̃ = αβ and
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Figure 3.9: The sampling results of three samplers for the hierarchical probit model. The left two columns
are the mixing and autocorrelation plots for the posterior draws of µ, while the right two columns are those
for log(τ2). The three rows from top to bottom correspond to the Gibbs, Haar PX-DA, and ASIS I samplers.
The Haar PX-DA and ASIS I samplers improve the convergence of µ, but have little effect on log(τ2).

µ̃ = αµ. Thus equivalently, Z̃i
ind∼ N(Xiβ̃i, α

2) and β̃i
ind∼ N(µ̃, α2τ 2), and the prior of

µ̃ is µ̃ ∼ N(0, α210). Since Conditions LW-1 and LW-2 hold for this example, we use

the Haar PX-DA algorithm to achieve optimality. We specify the Haar measure prior

to α, that is, p∞(α) ∝ 1, and obtain the Haar PX-DA sampler, i.e., Sampler 3.10,

by i) updating Z and (µ, β) with the Haar PX-DA algorithm conditioning on τ , and

ii) sampling τ from its complete conditional distribution, see the top-right panel of

Figure 3.8. Next, we construct two samplers by using different ASIS schemes. First,

we implement ASIS for µ without conditioning on β. After marginalizing β out, Z is a

sufficient augmentation for µ conditioning on τ , and Z̄ = Z −Xµ is the corresponding

ancillary augmentation. We name this scheme by ASIS I and construct the sampler

using ASIS I, i.e., Sampler 3.11, by i) sampling Z and µ via ASIS conditioning on τ but

not on β, ii) updating β from its complete conditional distribution, and iii) sampling

τ from their complete conditional distributions, see the middle-left panel of Figure 3.8.

Note that this ASIS sampler also utilize PCG. This is equivalent to replacing some
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Figure 3.10: The sampling results of three samplers for the hierarchical probit model. The left two columns
are the mixing and autocorrelation plots for the posterior draws of µ, while the right two columns are those
for log(τ2). The three rows from top to bottom correspond to the ASIS II, the sampler combining Haar
PX-DA and ASIS II, and the sampler combining ASIS I and ASIS II. The sampler combining ASIS I and
ASIS II exhibits the best convergence among all of the six samplers for fitting the hierarchical probit model.

component kernels of the Gibbs sampler with PCG kernels and then swapping the PCG

kernels with an ASIS kernel. The overlapping replacement is applicable as long as

the overall stationary distribution of the sampler is maintained. Sampler 3.12 in the

middle-right panel of Figure 3.8 is another ASIS sampler. Similar as the hierarchical

t model in Section 3.3.3, conditioning on Z, β is a sufficient augmentation for (τ, µ),

and β̄ = (β − µ)/τ is the corresponding ancillary augmentation. We name this scheme

by ASIS II. Sampler 3.12 implements ASIS II by first updating all the parameters from

their complete conditional distributions and sampling (τ, µ) again conditioning on β̄.

Sampler 3.13 combines Haar PX-DA and ASIS II by sampling (µ, β) conditioning on

τ with Haar PX-DA, and updating (τ, µ) with ASIS II conditioning on Z, see the

bottom left panel of Figure 3.8. Finally, Sampler 3.14 combines two ASIS algorithms

by sampling Z and µ via ASIS I, and updating β and τ via ASIS II. (Sampler 3.14 does

not update µ with ASIS II).
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Gibbs Haar PX-DA ASIS I ASIS II

µ 1.636 3.632 8.807 1.770

log (τ 2) 2.198 1.150 1.477 6.162

Haar PX-DA+ASIS II ASIS I+ASIS II

µ 5.514 12.849

log (τ 2) 9.748 11.092

Table 3.4: The ESS per second of µ and log(τ2) for Samplers 3.9–3.14. The sampler combining ASIS I
and ASIS II, i.e., Sampler 3.14, outperforms the other five samplers.

Now we verify the propriety of the two combined samplers, i.e., Samplers 3.13 and 3.14.

Suppose (Z ′, β′, µ′, τ ′) is a draw from the target distribution p(Z, β, µ, τ |Y ). For Sam-

pler 3.13, since the kernel of Haar PX-DA maintains the target stationary distribution,

after Step 2, the distribution of (Z, β?, µ?, τ ′) is the target. Because the distribution of

(Z, β̄, µ, τ) is equivalent to that of (Z, β, µ, τ). After transforming β̄ to β at the end of

Step 5, the distribution of (Z, β, µ, τ) is p(Z, β, µ, τ |Y ). For Sampler 3.14, after Step 3,

(Z, µ) and β′ are conditionally independent because Z and µ are updated without con-

ditioning on β′. Fortunately, the marginal distribution of (Z, µ, τ ′) is still the target and

Step 4 only depends on these three quantities. Thus after Step 4, the distribution of

(Z, β?, µ, τ ′) is again the target. As stated above, after transforming β̄ to β at the end

of Step 6, the distribution of (Z, β, µ, τ) is p(Z, β, µ, τ |Y ). Thus Samplers 3.13 and 3.14

are both proper.

We use a simulation study to compare the relative efficiencies of Samplers 3.9–3.14.

Specifically, we set µ = 2, τ = 0.05, n = 50 and sample X from the uniform distribution

on the interval [−2, 2]. For each sampler, we run a chain of 50,000 iterations with a burn-

in of 10,000 using the same starting values. Figures 3.9 and 3.10 compare Samplers 3.9–

3.14 in terms of the mixing and autocorrelation of µ and log(τ 2). For either of Figures 3.9

and 3.10, the left two columns are the time-series and autocorrelation plots of µ, and

the right two columns are those of log(τ). The Haar PX-DA and ASIS I samplers

improve the convergence of µ, but have little effect on τ . ASIS I behaves slightly better

than Haar PX-DA. ASIS II has the opposite effect to Haar PX-DA and ASIS I. The
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samplers combining ASIS II and Haar PX-DA/ASIS I outperform the samplers using

any of these algorithms alone. The sampler combining ASIS II and ASIS I exhibits the

best convergence properties. Furthermore, we account for the computational time and

compare the ESS per second of µ and log(τ 2) from all of the six samplers in Table 3.4.

The sampler combining ASIS II and ASIS I produces the largest ESS/sec for both

parameters.

3.4 Discussion

Although acceleration strategies like MDA (Haar PX-DA), ASIS, and PCG are effi-

cient in improving convergence, if there are more than one parameter exhibiting poor

convergence, we may not be able to improve the convergence of all the parameters simul-

taneously by using one strategy alone. Numerical examples in this Chapter show that

combining different algorithms into a coherent sampler can effectively break the plight

and further improve computational efficiency. However, we need to implement combined

samplers carefully to guarantee that they maintain the target stationary distribution.

In fact, combining strategies into one sampler is an examples of using surrogate distri-

butions, which is the topic of the next chapter, i.e., Chapter 4.
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4
Surrogate Distribution Strategy

In Section 3.4 of Chapter 3, we mention that a sampler combining several acceleration

strategies is an example of samplers using surrogate distributions. We have provided

the definition of a surrogate distribution in Chapter 1, that is, a joint distribution of all

unknown parameters in the model which shares certain marginal distributions with the

target, but has lower correlations among its components. In this chapter, we propose a

general framework to construct more efficient Gibbs-type samplers by replacing some of

the conditional distributions of the target distribution with conditionals of a surrogate

distribution. Like combining acceleration strategies into one sampler, using surrogate

distributions may lead to incompatible conditional distributions. Thus, we must be

cautious to guarantee that the desired stationary distribution is retained. Both theoret-

ical arguments and numerical examples are deployed to illustrate the implementation of

samplers using surrogate distributions and show the obtained computational efficiency.

In Section 4.1, we use Gaussian models as motivating examples to shed light on the

construction and computational advantage of samplers using surrogate distributions.
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In Section 4.2, we derive the forms of surrogate distributions derived from PCG, Haar

PX-DA, and ASIS algorithms, provide sufficient conditions to guarantee that samplers

using surrogate conditionals maintain the desired stationary distributions, and then

discuss the computational efficiency of the surrogate distribution strategy. Finally, in

Section 4.3, we use univariate and multivariate t models, the spectral analysis model,

and a simple hierarchical Gaussian model to illustrate the derivation of surrogate dis-

tributions from acceleration strategies, demonstrate the construction of samplers using

surrogate distributions, and show their efficiency in improving convergence.

4.1 Motivating Examples

4.1.1 Two-step samplers using surrogate distributions

Suppose we wish to sample from p(ψ1, ψ2). To achieve this goal, we start with a two-step

Gibbs sampler:

Step 1: ψ
(t+1)
1 ∼ p(ψ1|ψ(t)

2 ), (Sampler 4.1)

Step 2: ψ
(t+1)
2 ∼ p(ψ2|ψ(t+1)

1 ).

Besides p(ψ1, ψ2), We have a surrogate distribution of (ψ1, ψ2), ps(ψ1, ψ2), which shares

the same marginal distributions with p(ψ1, ψ2), but has lower correlation between ψ1

and ψ2. we construct Sampler 4.2 by replacing the conditional distribution in Step 1 of

Sampler 4.1 with the conditional of ps(ψ1, ψ2), i.e.,

Step 1: ψ
(t+1)
1 ∼ ps(ψ1|ψ(t)

2 ), (Sampler 4.2)

Step 2: ψ
(t+1)
2 ∼ p(ψ2|ψ(t+1)

1 ).

Furthermore, we replace both conditional distributions of Sampler 4.1 with conditionals

of ps(ψ1, ψ2), and obtain Sampler 4.3,

Step 1: ψ
(t+1)
1 ∼ ps(ψ1|ψ(t)

2 ), (Sampler 4.3)
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Step 2: ψ
(t+1)
2 ∼ ps(ψ2|ψ(t+1)

1 ),

which is in fact the ordinary Gibbs sampler updating ps(ψ1, ψ2). From Sampler 4.1 to

Sampler 4.3, we increase the degree of using conditionals of the surrogate distribution.

We use a simulation study to illustrate the relative efficiencies of Samplers 4.1, 4.2,

and 4.3 by setting p(ψ1, ψ2) to

(ψ1, ψ2) ∼ N2

 0

0

 ,

 1 0.99

0.99 1

 (4.1)

and ps(ψ1, ψ2) to

(ψ1, ψ2) ∼ N2

 0

0

 ,

 1 0.7

0.7 1

 . (4.2)

Figure 4.1 compares 10,000 draws of ψ1 generated by the three samplers in terms of

mixing (first column) and autocorrelation (second column). (The performance of ψ2 is

similar to ψ1.) Sampler 4.2 significantly outperforms Sampler 4.1. Although slightly,

Sampler 4.3 exhibits even better convergence than Sampler 4.2. The results imply that

for a two-step sampler, we can gain more computational efficiency by replacing more

steps with draws from conditionals of a surrogate distribution. We discuss more on this

point in Section 4.2.3.

While the stationary distributions of both Samplers 4.1 and 4.2 are p(ψ1, ψ2), the sta-

tionary distribution of Sampler 4.3 is ps(ψ1, ψ2), which has lower correlation between

ψ1 and ψ2 than p(ψ1, ψ2), see the last column of Figure 4.1. If p(ψ1, ψ2) is aimed to be

maintained, Sampler 4.3 is improper and we can only use Samplers 4.1 and 4.2. If only

marginal distributions of p(ψ1, ψ2) are of interest, Sampler 4.3 can be manipulated to

further improve the convergence. Moreover, permuting steps of Sampler 4.2 changes its

stationary distribution, because the stationary distribution of the sampler ending with

Step 1 after a cyclic permutation of steps of Sampler 4.2 is ps(ψ1, ψ2).
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Figure 4.1: Samplers with different degrees of using the surrogate distribution for bivariate Gaussian
distributions. The left two columns are the time-series and autocorrelation plots for 10,000 draws of ψ1

from Samplers 4.1–4.3. Both Samplers 4.2 and 4.3 significantly outperform Sampler 4.1, and Sampler 4.3
behaves slightly better than Sampler 4.2. The last column displays scatter plots of ψ1 and ψ2 from the
three samplers. The stationary distributions of both Samplers 4.1 and 4.2 are p(ψ1, ψ2), whereas that of
Sampler 4.3 is ps(ψ1, ψ2), with lower correlation between ψ1 and ψ2 than p(ψ1, ψ2).

4.1.2 Three-step samplers using surrogate distributions

In this section we consider using surrogate distributions in N -step (N > 2) samplers.

Without loss of generality, we set N = 3 and the target distribution to p(ψ1, ψ2, ψ3).

The ordinary Gibbs sampler for updating p(ψ1, ψ2, ψ3) is

Step 1: ψ
(t+1)
1 ∼ p(ψ1|ψ(t)

2 , ψ
(t)
3 ), (Sampler 4.4)

Step 2: ψ
(t+1)
2 ∼ p(ψ2|ψ(t+1)

1 , ψ
(t)
3 ),

Step 3: ψ
(t+1)
3 ∼ p(ψ3|ψ(t+1)

1 , ψ
(t+1)
2 ).
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When there are more than two unknown parameters, it can be practically difficult to

derive a joint surrogate distribution for all the variables. Nevertheless, it can be rela-

tively easy to obtain a surrogate distribution for a subset of parameters conditioning on

others. Thus we consider a surrogate distribution, ps(ψ1, ψ2, ψ3) = ps(ψ1, ψ2|ψ3)p(ψ3),

which has the same marginal of ψ3 as the target, but different distribution of (ψ1, ψ2)

conditioning on ψ3. Specifically, ps(ψ1|ψ3) = p(ψ1|ψ3) and ps(ψ2|ψ3) = p(ψ2|ψ3) (equiv-

alently, ps(ψ1, ψ3) = p(ψ1, ψ3) and ps(ψ2, ψ3) = p(ψ2, ψ3)), but the correlation between

ψ1 and ψ2 in ps(ψ1, ψ2|ψ3) is lower than that in p(ψ1, ψ2|ψ3). First, we construct Sam-

pler 4.5 by replacing the first step of Sampler 4.4 with a draw from the conditional

distribution of the surrogate, p(ψ1, ψ2|ψ3), that is,

Step 1: ψ
(t+1)
1 ∼ ps(ψ1|ψ(t)

2 , ψ
(t)
3 ), (Sampler 4.5)

Step 2: ψ
(t+1)
2 ∼ p(ψ2|ψ(t+1)

1 , ψ
(t)
3 ),

Step 3: ψ
(t+1)
3 ∼ p(ψ3|ψ(t+1)

1 , ψ
(t+1)
2 ).

Next we replace Steps 1 and 3 of Sampler 4.4 with updates from conditionals of the

surrogate, change the order of Step 2 and 3, and obtain Sampler 4.6,

Step 1: ψ
(t+1)
1 ∼ ps(ψ1|ψ(t)

2 , ψ
(t)
3 ), (Sampler 4.6)

Step 2: ψ
(t+1)
3 ∼ ps(ψ3|ψ(t+1)

1 , ψ
(t)
2 ),

Step 3: ψ
(t+1)
2 ∼ p(ψ2|ψ(t+1)

1 , ψ
(t+1)
3 ).

Finally, we obtain Sampler 4.7 by replacing all the steps of Sampler 4.4 with draws from

conditionals of ps(ψ1, ψ2, ψ3), that is,

Step 1: ψ
(t+1)
1 ∼ ps(ψ1|ψ(t)

2 , ψ
(t)
3 ), (Sampler 4.7)

Step 2: ψ
(t+1)
2 ∼ ps(ψ2|ψ(t+1)

1 , ψ
(t)
3 ),

Step 3: ψ
(t+1)
3 ∼ ps(ψ3|ψ(t+1)

1 , ψ
(t+1)
2 ).
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Sampler 4.7 is simply the standard three-step Gibbs sampler for updating ps(ψ1, ψ2, ψ3).

From Sampler 4.4 to Sampler 4.7, we increase the degree of using surrogate conditionals.

We also use a simulation study to illustrate the relative efficiencies of Samplers 4.4–4.7.

We set p(ψ1, ψ2, ψ3) to

(ψ1, ψ2, ψ3) ∼ N3




0

0

0

 ,


1 0.95 0.81

0.95 1 0.95

0.81 0.95 1


 , (4.3)

and ps(ψ1, ψ2, ψ3) to

(ψ1, ψ2, ψ3) ∼ N3




0

0

0

 ,


1 0.70 0.81

0.70 1 0.95

0.81 0.95 1


 , (4.4)

which is different from p(ψ1, ψ2, ψ3) only in the correlation between ψ1 and ψ2. We run

a chain of 10,000 iterations using each of Samplers 4.4–4.7. In Figure 4.2, we compare

the four samplers in terms of mixing (first column) and autocorrelation (second column)

of ψ3 (ψ1 and ψ2 behave similarly to ψ3). Samplers 4.5–4.7 all improve the convergence

of Sampler 4.4, Sampler 4.6 is better than Sampler 4.5, and Sampler 4.7 performs the

best among the three. These results also indicate that replacing more steps with draws

from conditionals of a surrogate distribution can lead to better convergence properties.

Note that the stationary distribution of Samplers 4.7 is the surrogate, ps(ψ1, ψ2, ψ3),

whereas the stationary distributions of other three samplers are all the target, p(ψ1, ψ2,

ψ3). The surrogate distribution has lower correlation between ψ1 and ψ2 (see the last

column of Figure 4.2), but has the same marginal distributions as the target for ψ1, ψ2,

ψ3, (ψ1, ψ3), and (ψ2, ψ3). If p(ψ1, ψ2, ψ3) is necessary to be maintained, Sampler 4.7 is

improper and we can only consider using Samplers 4.5 and 4.6 to improve the conver-

gence of Sampler 4.4. Or else the correlation between ψ1 and ψ2 is not of main interest,

Sampler 4.7 can also be considered to further improve the convergence. Like two-step
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Figure 4.2: Samplers with different degrees of using the surrogate distribution for multivariate Gaussian
distributions. The left two columns are the time-series and autocorrelation plots for 10,000 draws of ψ3

from Samplers 4.4–4.7. Samplers 4.5–4.7 all outperform Sampler 4.4, Sampler 4.6 behaves better than
Sampler 4.5, and Sampler 4.7 is the best. The last column displays scatter plots of ψ1 and ψ2 from the four
samplers. The stationary distributions of Samplers 4.4–4.6 are p(ψ1, ψ2, ψ3), whereas that of Sampler 4.7
is ps(ψ1, ψ2, ψ3), with lower correlation between ψ1 and ψ2 than p(ψ1, ψ2, ψ3).

samplers, permuting steps of a three-step sampler using conditionals of surrogate distri-

butions may alter its stationary distribution. For example, the stationary distribution

of the sampler ending with Step 1 after a cyclic permutation of steps of Sampler 4.5

is ps(ψ1, ψ2, ψ3). For Sampler 4.6, a cyclic permutation of the steps ending with either

Step 1 or 2 leads to a sampler that has the surrogate as its stationary distribution.

With non-cyclic permutations, the stationary distributions of Samplers 4.5 and 4.6 can

be unpredictable. One more complication of N -step (N > 2) samplers is that some

combinations of conditionals of the target and surrogate distributions cannot produce

samplers with known stationary distributions. For example, the sampler that updates
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ψ1 and ψ2 from their conditional distributions of the target, and updates ψ3 from its

conditional of the surrogate does not have a known stationary distribution, neither does

the sampler updating ψ1 and ψ2 from their conditional distributions of the surrogate,

and ψ3 from its conditional of the target, no matter how we permute the steps.

Motivated by the examples in this section, we believe that it is promising to improve the

convergence of a Gibbs sampler by replacing some of its steps with draws from condi-

tionals of a surrogate distribution. Moreover, samplers using surrogate distributions to

a higher degree may have better computational efficiency. However, extra care must be

taken to guarantee that the samplers using surrogate distributions maintain the desired

stationary distributions. Thus, we provide general conditions for the samplers using sur-

rogate distributions to preserve the desired stationary distributions. Furthermore, we

use both theoretical arguments and numerical examples to illustrate the computational

advantage of using surrogate distributions in a Gibbs sampler.

4.2 Using Surrogate Distributions in Gibbs-type Samplers

4.2.1 Deriving surrogate distributions via PCG, limiting MDA, and ASIS

In this section, we introduce how to derive surrogate distributions from existing accel-

eration strategies. Specifically, we focus on PCG, Haar PX-DA, and ASIS algorithms.

First, we define the jth (j = 1, . . . , N) intermediate stationary distribution of an N -step

Gibbs-type sampler by the stationary distribution of the sampler ending with Step j

after a cyclic permutation. Intermediate stationary distributions can be either the same

as or different from the target distribution, and those which are different from the target

are crucial for deriving surrogate distributions.

Deriving surrogate distributions via PCG

Recall the PCG sampler in Figure 1.1(d), which samples ψ1 without conditioning on

ψ3. In Section 1.2.3 of Chapter 1, we derive the second intermediate stationary dis-
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tribution of this sampler, that is, p(ψ1, ψ2, ψ4)p(ψ3|ψ2, ψ4), which is different from the

target distribution p(ψ1, ψ2, ψ3, ψ4) only in that conditioning on (ψ2, ψ4), ψ1 and ψ3 are

independent. This intermediate distribution is the surrogate that we can derive from

the PCG sampler, and we denote it by ps(ψ1, ψ2, ψ3, ψ4). Thus we can consider the PCG

sampler in Figure 1.1(d) as a sampler constructed by replacing Step 2 of its parent Gibbs

sampler in Figure 1.1(a) with a draw from the conditional of the surrogate distribution

ps(ψ1, ψ2, ψ3, ψ4) and permuting the steps. Analogously, Step 1 of Sampler 2.1, that is,

the MH within PCG sampler with least partial collapsing for fitting the spectral model

in (2.1), can be regarded as a draw from the conditional of its first intermediate station-

ary distribution, which is displayed in (2.2). Generally, the surrogate distribution we

obtain from a PCG sampler is its intermediate stationary distribution after a reduced

step.

Deriving surrogate distributions via Haar PX-DA

For MDA, we can only derive surrogate distributions from either the limiting MDA

algorithm or Haar PX-DA algorithm. We focus on Haar PX-DA to obtain optimal

efficiency. Suppose Conditions LW-1 and LW-2 described in Section 1.2.1 of Chapter 1

hold. Steps 2 and 3 of the Haar PX-DA sampler, i.e., Sampler 1.2l, are equivalent to

first sampling (α?, θ) from p̃(α, θ|Y ?
mis, Yobs) and then setting Ymis = G−1

α? (Y ?
mis). Thus

we specify the surrogate distribution from Haar PX-DA as the intermediate stationary

distribution after updating p̃(α, θ|Y ?
mis, Yobs), that is,

ps(Ymis, θ|Yobs) =

[∫
p̃(α, θ|Ymis, Yobs)dα

]
p(Ymis|Yobs). (4.5)

This surrogate distribution has the same marginal distribution of Ymis as the target.

As stated in Section 1.2.1, Sampler 1.2l is proper. Thus the surrogate distribution also

shares the same marginal distribution of θ as the target. (Note that the surrogate

distribution derived from the limiting MDA algorithm has the form as (4.5).) With

the surrogate distribution ps(Ymis, θ|Yobs), the sub-chain {θ(t), t = 0, 1, . . . } induced by
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Sampler 1.2l is equivalent to that induced by the following sampler using the surrogate

distribution, that is,

Step 1: Y ?
mis ∼ p(Ymis|θ(t), Yobs), (Sampler 4.8)

Step 2: θ(t+1) ∼ ps(θ|Y ?
mis, Yobs),

which is resulted from replacing the step updating θ of the parent DA sampler with a

draw from the conditional of the surrogate distribution.

Recall that under Conditions LW-1 and LW-2, Ymis can be represented by (β, r), where r

is the orbit and β is the position on r. As stated in Section 3.2.3 of Chapter 3, sampling θ

from p(θ|Ymis, Yobs) is equivalent to updating θ conditioning on (β, r), whereas sampling

θ from p̃(θ|Ymis, Yobs) is equivalent to updating θ conditioning on r alone. Because the

correlation between θ and r is lower than the correlation between θ and (β, r), the

correlation between θ and Ymis in ps(Ymis, θ|Yobs) is lower than that in p(Ymis, θ|Yobs).

Deriving surrogate distributions via ASIS

We can also use ASIS to derive surrogate distributions. Suppose the target distribution

is p(θ, Ymis,S|Yobs). The surrogate distribution we obtain from the ASIS sampler, that

is, Sampler 1.3 in Section 1.2.1 of Chapter 1 is the intermediate stationary distribution

after sampling θ from p(θ|Y (t+1)
mis,A , Yobs) in Step 3. As stated in Section 1.2.2 of Chapter 1,

Step 2 of the ASIS sampler, i.e., Sampler 1.3, is equivalent to sampling Ymis,A from

p(Ymis,A|Y ?
mis,S, Yobs). Thus the surrogate distribution is

ps(Ymis,S, θ|Yobs) =

[∫
p(θ|Ymis,A, Yobs)p(Ymis,A|Ymis,S, Yobs)dYmis,A

]
p(Ymis,S|Yobs). (4.6)

Apparently, this surrogate distribution has the same marginal distribution of Ymis,S as

the target. We verify here that the surrogate distribution shares the same marginal

distribution of θ as the target, that is, ps(θ|Yobs) = p(θ|Yobs):
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Proof.

ps(θ|Yobs) =
∫
ps(θ, Ymis,S|Yobs)dYmis,S =

∫
ps(θ|Ymis,S, Yobs)p(Ymis,S|Yobs)dYmis,S

=
∫ [∫

p(θ|Ymis,A, Yobs)p(Ymis,A|Ymis,S, Yobs)dYmis,A

]
p(Ymis,S|Yobs)dYmis,S

=
∫ [∫

p(θ|Ymis,A, Yobs)
(∫

p(Ymis,A|θ?, Ymis,S, Yobs)

p(θ?|Ymis,S, Yobs)dθ
?) dYmis,A] p(Ymis,S|Yobs)dYmis,S

=
∫ ∫ ∫

p(θ|Ymis,A, Yobs)p(Ymis,A|θ?, Ymis,S, Yobs)

p(θ?|Ymis,S, Yobs)p(Ymis,S|Yobs)dθ
?dYmis,AdYmis,S

= p(θ|Yobs).

(4.7)

The fourth equality holds due to the mathematical equivalence between sampling Ymis,A

from p(Ymis,A|Y ?
mis,S, Yobs) and Step 2 of Sampler 1.3. If the target distribution is p(θ,

Ymis,A|Yobs), we can derive the corresponding surrogate distribution, ps(θ, Ymis,A|Yobs), in

the similar manner. Similar as the Haar PX-DA sampler, i.e., Sampler 1.2l, the sub-

chain of θ induced by Sampler 1.3 is equivalent to that induced by the following sampler

using the surrogate distribution ps(θ, Ymis,S|Yobs), that is,

Step 1: Y ?
mis,S ∼ p(Ymis,S|θ(t), Yobs), (Sampler 4.9)

Step 2: θ(t+1) ∼ ps(θ|Y ?
mis,S, Yobs),

constructed by replacing the step updating θ in the parent DA algorithm for sampling

the target distribution p(θ, Ymis,S|Yobs) with a draw from the conditional of ps(θ, Ymis,S|Yobs).

Yu and Meng (2011) verified that under Conditions YM-1 and YM-2 described in Sec-

tion 3.2.3 of Chapter 3, the ASIS sampler is identical to the Haar PX-DA algorithm

for the expanded model p̃(α, Ỹmis,S, θ|Yobs), where Ỹmis,S = Hα(Ymis,S). Thus, as for the

surrogate distribution in (4.5) derived from the Haar PX-DA, the correlation between

θ and Ymis,S in ps(Ymis,S, θ|Yobs) is lower than that in p(Ymis,S, θ|Yobs).
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4.2.2 Identifying Stationary Distributions of Samplers Using Surro-

gate Distributions

We construct a sampler using surrogate conditional distributions by replacing some

conditionals of the parent Gibbs sampler with the conditionals of surrogate distributions.

The intermediate stationary distributions may be different from the target. Thus, we

must take care to guarantee that the stationary distribution of the overall sampler is

the desired distribution.

Recall Sampler 4.2 in Section 4.1.1, which is a two-step sampler with one step replaced

by a draw from the conditional distribution of the surrogate. One sufficient condition for

Sampler 4.2 to maintain p(ψ1, ψ2) as its stationary distribution is that ps(ψ1) = p(ψ1)

and ps(ψ2) = p(ψ2). Suppose this condition holds and (ψ
(t)
1 , ψ

(t)
2 ) is a sample from

p(ψ1, ψ2). Thus then

∫
p(ψ

(t)
1 , ψ

(t)
2 )ps(ψ

(t+1)
1 |ψ(t)

2 )p(ψ
(t+1)
2 |ψ(t+1)

1 )dψ
(t)
1 dψ

(t)
2

=
∫
p(ψ

(t)
2 )ps(ψ

(t+1)
1 |ψ(t)

2 )p(ψ
(t+1)
2 |ψ(t+1)

1 )dψ
(t)
2

= ps(ψ
(t+1)
1 )p(ψ

(t+1)
2 |ψ(t+1)

1 )

= p(ψ
(t+1)
1 , ψ

(t+1)
2 ).

(4.8)

Samplers 4.5 and 4.6 in Section 4.1.2 are three-step samplers using conditional distri-

butions of the surrogate. One sufficient condition for both samplers to maintain the

target stationary distribution is that ps(ψ2, ψ3) = p(ψ2, ψ3) and ps(ψ1, ψ3) = p(ψ1, ψ3).

We verify its sufficiency for Sampler 4.6 and omit the proof for Sampler 4.5. Suppose

ps(ψ2, ψ3) = p(ψ2, ψ3) and ps(ψ1, ψ3) = p(ψ1, ψ3) hold, and (ψ
(t)
1 , ψ

(t)
2 , ψ

(t)
3 ) is a draw

from p(ψ
(t)
1 , ψ

(t)
2 , ψ

(t)
3 ), then

∫
p(ψ

(t)
1 , ψ

(t)
2 , ψ

(t)
3 )ps(ψ

(t+1)
1 |ψ(t)

2 , ψ
(t)
3 )ps(ψ

(t+1)
3 |ψ(t+1)

1 , ψ
(t)
2 )

p(ψ
(t+1)
2 |ψ(t+1)

1 , ψ
(t+1)
3 )dψ

(t)
1 dψ

(t)
2 dψ

(t)
3

=
∫
ps(ψ

(t+1)
1 , ψ

(t)
2 , ψ

(t)
3 )ps(ψ

(t+1)
3 |ψ(t+1)

1 , ψ
(t)
2 )p(ψ

(t+1)
2 |ψ(t+1)

1 , ψ
(t+1)
3 )dψ

(t)
2 dψ

(t)
3

= p(ψ
(t+1)
1 , ψ

(t+1)
2 , ψ

(t+1)
3 ).

(4.9)
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Generally, the following two conditions are sufficient to ensure that the overall sampler

maintains the target stationary distribution, that is,

i) The input to each conditional distribution of the sampler follows the correct distribu-

tion. Specifically, consider a generic N -step sampler using surrogate distributions,

which updates ψj in Step j (j = 1, . . . , N). If Step j is a draw from the condi-

tional of the target distribution, that is, ψj ∼ p(ψj|Fj(ψ, ψ′)), we must guarantee

Fj(ψ, ψ′) ∼ p(Fj(ψ, ψ′)). If ψj ∼ ps(ψj|Fj(ψ, ψ′)), Fj(ψ, ψ′) must follow the corre-

sponding surrogate distribution, ps(Fj(ψ, ψ′)).

ii) the last step of the sampler is a draw from the complete conditional of the desired

stationary distribution.

These two conditions ensure that the last steps produces a draw from the target if the

input to the first step follows the target distribution.

In order to guarantee the two conditions holding, we sometimes need to permute the

steps of the sampler after replacing some of its updates with draws from conditional

distributions of the surrogate. For example, after replacing Steps 1 and 3 of Sampler 4.4

with updates from conditionals of the surrogate distribution, we change the order of

Steps 2 and 3 to guarantee the two conditions above holding for Sampler 4.6.

If the correlations among parameters are not of main interest, we allow the stationary

distribution of the sampler to be the surrogate, which is different from the target, so

that it is possible to replace more steps with draws from conditionals of the surrogate

distribution and thus obtain more computational efficiency (e.g., Samplers 4.3 and 4.7).

Under this scenario, Conditions i) and ii) are also sufficient to ensure that the stationary

distribution of the overall sampler is the surrogate.

We can construct a proper sampler by replacing conditional distributions of the parent

Gibbs sampler with conditionals from MORE THAN ONE surrogate distribution, so

long as Conditions i) and ii) above hold. The combining strategy introduced in Chap-

ter 3 is an example for this case, because combining different acceleration strategies is

equivalent to replacing some conditionals of the parent sampler with conditionals of the
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surrogate distributions derived from these strategies.

4.2.3 Computational Efficiency Gained by Using Surrogate Distribu-

tions

Comparing two-step samplers using the surrogate distribution to dif-

ferent degrees

In Section 4.1, we investigate three two-step samplers, i.e., Sampler 4.1–4.3. Recall that

Sampler 4.1 is the parent Gibbs sampler for updating the target distribution p(ψ1, ψ2),

Sampler 4.2 replaces Step 1 of Sampler 4.1 with an update from the conditional of the

surrogate distribution ps(ψ1, ψ2), and Sampler 4.3 replaces both steps of Sampler 4.1

with conditionals of the surrogate, resulting in a Gibbs sampler for updating the surro-

gate distribution ps(ψ1, ψ2).

To compare the convergence rates of the three samplers using the surrogate distribution

to different degrees, we start with the special case that both the target and surrogate

distributions are bivariate Gaussian. Specifically, suppose

p(ψ1, ψ2) = N2

 0

0

 ,

 1 rp

rp 1

 and ps(ψ1, ψ2) = N2

 0

0

 ,

 1 rps

rps 1

 .
(4.10)

Under this scenario, we can derive the convergence rate, that is, the spectral radius of

the forward operator induced by each of Samplers 4.1–4.3 analytically. We denote the

forward operators corresponding to Samplers 4.1–4.3 by P1, P2, and P3 respectively. By

Theorem 3.2 of Liu et al. (1994), the spectral radius of P1, r(P1), is ρ2
p, and that of

P3, r(P3), is ρ2
ps , where ρp and ρps are the maximum correlation between ψ1 and ψ2 for

p(ψ1, ψ2) and ps(ψ1, ψ2) respectively. For bivariate Gaussian distributions, the maximal

correlation between ψ1 and ψ2 is the absolute value of their correlation (Lancaster,

1958). Thus r(P1) = r2
p and r(P3) = r2

ps . The spectral radius of P2, r(P2), is equal to

the maximum eigenvalue of the transition matrixM such that E(ψ(t+1)|ψ(t)) = Mψ(t)+v,
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Figure 4.3: Convergence rates of Samplers 4.1–4.3 as functions of the correlation between ψ1 and ψ2

in the surrogate distribution ps(ψ1, ψ2) for bivariate Gaussian target and surrogate. The two samplers
using conditionals of the surrogate distribution, Samplers 4.2 and 4.3, are both efficient in improving the
convergence of the parent Gibbs sampler, i.e., Sampler 4.1. Moreover, Sampler 4.3, the sampler using the
surrogate distribution to the highest degree, performs even better than Sampler 4.2.

where v is a vector of constants. With (4.10), r(P2) = |rprps|. We fix rp at 0.99, and let

rps vary in the range [0, rp]. Figure 4.3 shows the convergence rates of Samplers 4.1–4.3

as a function of rps . Because smaller convergence rate corresponds to faster convergence

(see Section 1.3 of Chapter 1), and r(P1) ≥ r(P2) ≥ r(P3) holds uniformly for rps ∈

[0, rp], we conclude that with bivariate Gaussian target and surrogate distributions, the

two samplers using conditional distributions of the surrogate, Samplers 4.2 and 4.3, both

converge faster than the parent Gibbs sampler, i.e., Sampler 4.1, and Sampler 4.3, the

sampler using the surrogate distribution to the highest degree, has faster convergence

than Sampler 4.2.

For general bivariate target and surrogate distributions, although we can obtain the con-
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vergence rates of the two Gibbs samplers, i.e., Samplers 4.1 and 4.3, via Theorem 3.2

of Liu et al. (1994), we can hardly derive the convergence rate of Sampler 4.2. Thus

we instead compare the three samplers in terms of their cyclic-permutation bounds.

For a standard two-step Gibbs sampler, the norms of the forward operators induced

by the corresponding 0-step-lagged and 1-step-lagged Gibbs samplers are equal. Thus

by definition, the cyclic-permutation bound of a two-step Gibbs sampler is equal to

the norm of the corresponding forward operator, equivalently the maximum correlation

between the two components updated in two steps of the Gibbs sampler (see Theo-

rem 3.2 of Liu et al. (1994)). Henceforth the cyclic-permutation bound of Sampler 4.1

is ||P1|| = ρp and that of Sampler 4.3 is ||P3|| = ρps . The cyclic-permutation bound

of Sampler 4.2 is min{ρp, ρps}. (The proof is displayed in Appendix C.) As long as

ρps < ρp, the two samplers using the surrogate distribution, i.e., Samplers 4.2 and 4.3

have the same cyclic-permutation bound, which is smaller than that of the parent Gibbs

sampler, i.e., Sampler 4.1. This implies that replacing steps of a two-step Gibbs sampler

with updates from conditional distributions of the surrogate has effects on improving

the convergence properties of the sampler. Although the exact relationship of the con-

vergence rate of Sampler 4.2 with those of Samplers 4.1 and 4.3 remains unclear, the

special case of bivariate Gaussian models indicates that for a two-step Gibbs sampler,

using the surrogate distribution to higher degree leads to better convergence.

Comparing three-step samplers using the surrogate distribution to dif-

ferent degrees

Recall Samplers 4.4–4.7 in Section 4.1. Sampler 4.4 is the parent three-step Gibbs

sampler for updating the target distribution p(ψ1, ψ2, ψ3). Samplers 4.5, 4.6, and 4.7

replace one, two, and three steps of Sampler 4.4 with updates from the conditionals of

the surrogate distribution ps(ψ1, ψ2, ψ3), respectively.

If the target and surrogate distributions are both Gaussian, we can derive the spectral

radius of the forward operator induced by each of Samplers 4.4–4.7 analytically via com-

puting the maximum eigenvalue of the transition matrix M such that E(ψ(t+1)|ψ(t)) =
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Figure 4.4: Convergence rates of Samplers 4.4–4.7 as functions of the correlation between ψ1 and ψ2 in
the surrogate distribution ps(ψ1, ψ2, ψ3) for Gaussian target and surrogate. When rps > 0.62, the three
samplers using the surrogate distribution, i.e., Samplers 4.5–4.7, all have smaller convergence rates than
the parent Gibbs sampler, i.e., Sampler 4.4, and using the surrogate distribution to higher degree produces
faster convergence. When rps gets smaller, the three samplers keep converging faster than the parent Gibbs
sampler. However, the samplers using more than one surrogate conditional, i.e., Samplers 4.6 and 4.7,
can perform worse than the sampler using just one surrogate conditional, i.e., Sampler 4.5. When rps gets
close to 0.59, the sampler using surrogate conditionals in two steps even converges slower than the parent
sampler.

Mψ(t) + v. Thus we first compare Samplers 4.4–4.7 for the case that both p(ψ1, ψ2, ψ3)

and ps(ψ1, ψ2, ψ3) are Gaussian distributions. We specify p(ψ1, ψ2, ψ3) as in (4.3), and

set ps(ψ1, ψ2, ψ3) to

(ψ1, ψ2, ψ3) ∼ N3




0

0

0

 ,


1 rps 0.81

rps 1 0.95

0.81 0.95 1


 . (4.11)

Suppose rps ≥ 0, and let rps vary in the range [0.59, 0.95], where 0.59 is the smallest value
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of rps ≥ 0 to make the variance-covariance matrix in (4.11) positive-definite. Figure 4.4

shows the convergence rates of Samplers 4.4–4.7 as a function of rps . With Gaussian

target and surrogate distributions in (4.3) and (4.11) respectively, if rps > 0.62, then

the three samplers using the surrogate distribution all have smaller convergence rates

than the parent Gibbs sampler updating the target distribution, and using the surrogate

distribution to higher degree leads to faster convergence. When rps gets smaller, the

three samplers using the surrogate distributions keep converging faster than the parent

Gibbs sampler. However, the samplers using more than one surrogate conditional can

converge slower than the sampler using just one surrogate conditional. When rps gets

close to 0.59, the sampler using surrogate conditionals in two steps even converges slower

than the parent sampler.

With general target and surrogate distributions, comparing the convergence rates, or

simply the cyclic-permutation bounds of Samplers 4.4–4.7 becomes more complicated.

In practice, we typically derive surrogate distributions from the PCG, Haar PX-DA,

and ASIS algorithms. The efficiency of these acceleration algorithms in improving

convergence properties has been confirmed. Henceforth, if the surrogate distribution

ps(ψ1, ψ2, ψ3) is derived from one of PCG, Haar PX-DA, and ASIS, it is easy to verify

that the sampler using the surrogate conditional in one step, i.e., Sampler 4.5, has

smaller cyclic-permutation bound than the parent Gibbs sampler, i.e., Sampler 4.4.

However, using the surrogate distribution to higher degree does not necessarily leads to

faster convergence. Thus in practice, finding the optimal algorithm from Samplers 4.5–

4.7 to improve the convergence of the parent sampler is on a case-by-case basis. The

results for three-step samplers can be easily generalized to N -step(N ≥ 3) samplers.

In all, replacing steps with draws from conditionals of the surrogate distribution gener-

ally improves the convergence of the parent sampler. For two-step samplers, using sur-

rogate conditional distributions in more steps typically leads to more efficient samplers,

whereas for N -step(N ≥ 3) samplers, this trend does not often hold. Moreover, we can

consider more than one surrogate distribution when constructing a sampler using surro-

gate conditionals, as the combining strategy does. We have proved the computational
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advantage of the combining strategy in Section 3.2.3 of Chapter 3. Thus the samplers

constructed by replacing some steps of the parent Gibbs sampler with updates from

conditionals of the surrogate distributions derived from different acceleration strategies

are expected to be efficient in improving the convergence of the parent sampler.

4.3 Illustration Example

In this section, we use three examples, t-distribution models, the spectral analysis model,

and a simple hierarchical Gaussian model to demonstrate deriving surrogate distribu-

tions from Haar PX-DA, PCG, and ASIS algorithms, and show the computational

efficiency of the samplers using surrogate distributions.

4.3.1 t-distribution model

We first use t-distribution model to illustrate the deriving of a surrogate distribution

from the Haar PX-DA algorithm, and compare the convergence properties of three two-

step samplers, which use the Haar PX-DA surrogate distribution to different degrees.

We consider both univariate and multivariate t-distributions.

Univariate t-distribution

We consider the following univariate t-distribution model:

Yi
iid∼ tν(µ, σ

2), for i = 1, . . . , n, (4.12)

where Y = (Y1, . . . , Yn) are the observations; ν is the known degrees of freedom of the

t-distribution; µ and σ are the unknown location and scale parameters respectively and

we specify non-informative prior distributions to them, that is, p(µ, σ2) ∝ 1/σ2. It is

difficult to sample p(µ, σ2|Y ) directly. To simplify the implementation, we extend the

model in (4.12) with the latent variable q = (q1, . . . , qn) as in Meng and van Dyk (1999),
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DA

(Sampler 4.10)

1. p(q|Y, µ′, σ2′)

2. p(µ, σ2|q, Y )

Haar PX-DA
(Sampler 4.11)

1. p(q?|Y, µ′, σ2′)

2. p̃(α|Y, q?); set q = q?/α

3. p(µ, σ2|Y, q)

Surrogate

(Sampler 4.12)

1. ps(q|Y, µ′, σ2′),

2. ps(µ, σ
2|q, Y ).

Figure 4.5: Three samplers for fitting the univariate t-distribution model in (4.13). The left, middle, and
right panels show the steps of the DA sampler (Sampler 4.10), the Haar PX-DA sampler (Sampler 4.11), and
the two-step Gibbs sampler for updating the surrogate distribution derived from the Haar PX-DA algorithm
(Sampler 4.12).

that is,

Yi
ind∼ N

(
µ,
σ2

qi

)
, for i = 1, . . . , n, (4.13)

where qi
iid∼ χ2

ν/ν.

We compare the efficiencies of three samplers for fitting the univariate t-distribution

model. We start with the standard DA sampler which iteratively updates q and (µ, σ2)

from their conditional distributions of p(q, µ, σ2|Y ), see Sampler 4.10 in the left panel

of Figure 4.5. To improve the convergence of the DA sampler, we construct an MDA

sampler. The working parameter α is introduced into the model by setting

Yi
ind∼ N

(
µ,
ασ2

q̃i

)
, (4.14)

where q̃i|α ∼ αχ2
ν/ν. Since Conditions LW-1 and LW-2 introduced in Section 1.2.1

of Chapter 1 hold for this example, we use the Haar PX-DA algorithm to achieve

optimality. We specify the Haar measure prior to α, that is, p∞(α) ∝ 1, and obtain the

Haar PX-DA sampler, i.e., Sampler 4.11 in the middle panel of Figure 4.5. We derive a

surrogate distribution via the method introduced in Section 4.2.1 from the Haar PX-DA

sampler, that is,

ps(µ, σ
2, q|Y ) =

[∫
p̃(α, µ, σ2|q, Y )dα

]
p(q|Y ). (4.15)

As stated in Section 4.2.1, the sub-chain of (µ, σ2) induced by the Haar PX-DA sampler,

i.e., Sampler 4.11, is equivalent to that induced by the sampler which updates from
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Figure 4.6: The sampling results of σ2 for Samplers 4.10–4.12. The first, second, and third columns
correspond to the trace plots, autocorrelation plots, and histograms of log(σ2). Both samplers using the
surrogate distribution, i.e., Samplers 4.11 and 4.12, are efficient in improving the convergence of σ2, and
the sampler using the surrogate distribution to a higher degree, i.e., Sampler 4.12, performs slightly better.

p(q|Y, µ′, σ2′) and ps(µ, σ
2|q, Y ) iteratively. Thus the Haar PX-DA sampler can be

considered as a two-step sampler which replaces one step of the parent DA sampler

with a draw from the conditional of the surrogate distribution ps(µ, σ
2, q|Y ). Because

in this example, our main interest focuses on the marginal distribution of (µ, σ2), we also

consider the two-step Gibbs sampler for updating ps(µ, σ
2, q|Y ), that is, Sampler 4.12

in the right panel of Figure 4.5. The construction of Sampler 4.12 can be considered as

replacing both steps of the parent DA sampler with draws from the conditionals of the

surrogate distribution. Henceforth, Samplers 4.10–4.12 are an example for Samplers 4.1–

4.3, which are three two-step samplers using the surrogate distribution to different

degrees. Details of Samplers 4.10–4.12 and other samplers in this chapter appear in

Appendix C.
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We use a simulation study to compare the relative efficiencies of Samplers 4.10–4.12. We

set n = 6, ν = 0.1, µ = 0, and σ = 1. For each sampler, we run a chain of 10,000 with

a burn-in of 1,000, starting from the same initial values. Figure 4.6 shows the mixing,

autocorrelation, and posterior density estimation of log(σ2) for Samplers 4.10–4.12. The

three samplers behave similarly on µ and we omit the corresponding results here. Both

samplers using the surrogate distribution, i.e., Samplers 4.11 and 4.12 are efficient in

improving the convergence of σ2, and the sampler using the surrogate distribution to a

higher degree, i.e., Sampler 4.12, performs slightly better.

Multivariate t-distribution

Generalizing the data augmentation scheme in (4.13) to the multivariate version is

straightforward. We write

Yi
ind∼ Nd

(
µ,

Σ

qi

)
, for i = 1, . . . , n, (4.16)

where Y = (Y1, . . . , Yn) are the observation and each Yi is a (d× d) vector, marginally

following a multivariate location-scale t-distribution with ν degrees of freedom (ν is

known); qi
iid∼ χ2

ν/ν; µ and Σ are the unknown (d × 1) location vector and (d × d)

scale matrix. We also give the non-informative prior distribution to (µ,Σ), that is,

p(µ,Σ) ∝ |Σ|−(d+1)/2. Generalizing the marginal augmentation scheme in (4.14) to the

multivariate case, we obtain

Yi
ind∼ N

(
µ,
αΣ

q̃i

)
, (4.17)

where q̃i|α ∼ αχ2
ν/ν. We also specify the Haar measure prior to α, that is, p∞(α) ∝ 1.

The algorithms we consider for fitting the multivariate are also the standard DA sam-

pler, Haar PX-DA sampler, and the two-step Gibbs sampler for updating the surrogate

distribution derived from the PX-DA sampler. The steps of these samplers are almost

the same as those corresponding to the univariate t-distribution, which are listed in

Figure 4.5. The only modification is that σ2 is replaced by Σ. We omit the plot display-
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Figure 4.7: The sampling results of σ2
11 for the three samplers for fitting the multivariate t-distribution

model. The first, second, and third columns correspond to the trace plots, autocorrelation plots, and
histograms of log(σ2

11). Both samplers using the surrogate distribution, i.e., the Haar PX-DA sampler and
the Gibbs sampler for updating the surrogate distribution, are efficient in improving the convergence of σ2

11,
and the sampler using the surrogate distribution to a higher degree, i.e., the Gibbs sampler for updating the
surrogate distribution, performs slightly better.

ing the samplers for fitting the multivariate t-distribution model. The deriving of the

surrogate distribution from the Haar PX-DA sampler for the multivariate t-distribution

model is also a copy of that for the univariate t-distribution model as in (4.15), except

replacing σ2 with Σ.

We use a simulation study to compare the three samplers for fitting the multivari-

ate t-distribution model. We set n = 10, d = 2, ν = 0.1, µ = (0, 0), and Σ = 0.1 0.7×
√

0.1×
√

5

0.7×
√

0.1×
√

5 5

. For each sampler, we run a chain of 10,000

with a burn-in of 1,000, starting from the same initial values. Figure 4.7 presents the

mixing, autocorrelation, and posterior density estimation of the logarithm of the first

diagonal component of the scale matrix Σ, that is, log(σ2
11) for the three samplers. Both
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samplers using the surrogate distribution, i.e., the Haar PX-DA sampler and the Gibbs

sampler for updating the surrogate distribution, are efficient in improving the conver-

gence of σ2
11, and the sampler using the surrogate distribution to a higher degree, i.e.,

the Gibbs sampler for updating the surrogate, performs slightly better. The three sam-

plers perform similarly on µ and the correlation parameter of the scale matrix r12, with

the Gibbs sampler for updating the surrogate slightly more efficient, log(σ2
22) behaves

similarly to log(σ2
11), and we omit the results for µ, r, and log(σ2

22) here.

This results of the univariate and multivariate t-distribution model confirm our on two-

step samplers using the surrogate distribution, that is, replacing more steps with draws

from conditionals of the surrogate distribution leads to more efficient samplers.

4.3.2 Spectral Analysis in X-ray Astrophysics

Recall the spectral analysis model introduced in Section 2.1 of Chapter 2. In this section

we use an extension of this model to illustrate the deriving of a surrogate distribution

from the PCG algorithm, and compare the convergence properties of two three-step

samplers, which use the PCG surrogate distribution to different degrees.

The model we use here is similar to that in (2.1). The only difference is that we specify

the emission line part as a sum of K lines, instead of just one line, that is,

Yi
ind∼ Pois

(
α(E−βi +

K∑
k=1

γkI{i = µk})e−φ/Ei
)
, for i = 1, . . . , n, (4.18)

where Y = (Y1, . . . , Yn) are the recorded photon counts and E = (E1, . . . , En) are the

known energies in n bins. For simplicity, we fix the value of γ = (γ1, . . . , γK) in this

example. Thus α, β, µ1, . . . , µK , and φ are the unknown parameters. We assume these

parameters are a priori independent, each of µ = (µ1, . . . , µK) is a priori uniform on

{1, . . . , n}, and α, β, and φ are a priori uniform on the positive real line R+.

We compare the performance of two three-step samplers for fitting the model in (4.18).

The first sampler we consider is an MH within PCG sampler, which updates µ and (β, φ)
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MH within PCG (Sampler 4.13)

1. p(µ|β′, φ′, Y )

2. p(β, φ|µ, Y )

3. p(α|β, µ, φ, Y )

Surrogate (Sampler 4.14)

1. p(µ|β′, φ′, Y )

2. p(β, φ|µ, Y )

3. p(α|β, φ, Y )

Figure 4.8: Two samplers for fitting the spectral analysis model in (4.18). The left and right panels
show the steps of the MH within PCG sampler (Sampler 4.13), which uses the conditional of the surrogate
distribution ps(α, β, µ, φ|Y ) in one step, and the three-step sampler using the surrogate conditionals in two
steps (Sampler 4.14).

without conditioning on α, see Sampler 4.13 in the first panel of Figure 4.8. Steps 1 and 2

require MH updates. We derive a surrogate distribution via the method introduced in

Section 4.2.1 from the PCG sampler. Specifically, the surrogate distribution is the

intermediate stationary distribution after the reduced Step 1 of Sampler 4.13, that is,

ps(α, β, µ, φ|Y ) =
∫
p(µ|β, φ, Y )p(α, β, µ′, φ|Y )dµ′

= p(β, µ, φ, Y )p(α|β, φ, Y ),
(4.19)

which breaks the correlation between α and µ conditioning on (β, φ). Then Sampler 4.13

can be considered as a sampler using the conditional of the surrogate distribution

ps(α, β, µ, φ|Y ) in Step 1. We replace Step 3 of Sampler 4.13 with a draw from the

conditional of the surrogate distribution, i.e., ps(α|β, µ, φ, Y ) = p(α|β, φ, Y ), and ob-

tain Sampler 4.14 in the second panel of Figure 4.8. Steps 1 and 2 of Samplers 4.13

and 4.14 also require MH. Thus both Samplers 4.13 and 4.14 use the surrogate distribu-

tion in (4.19), with Sampler 4.14 to a higher degree. Note that the stationary distribu-

tion of Sampler 4.14 is ps(α, β, µ, φ|Y ), not p(α, β, µ, φ|Y ). In fact, both samplers use

conditionals from two surrogate distributions, because p(β, φ|µ, Y ) is the conditional

distribution of p(β, φ, µ|Y )p(α|µ, Y ), which is a surrogate distribution different from

ps(α, β, µ, φ|Y ).

We use a simulation study to compare Samplers 4.13 and 4.14. We specify n = 100,

E1 = 0.5 and the bin width as 0.03, α = 30, β = 1, K = 2, γ1 = 1, γ2 = 0.3, µ1 = 50,
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Figure 4.9: A dataset simulated under the spectral model in (4.18) and used in the simulation study for
comparing Samplers 4.13 and 4.14.

µ2 = 80, and φ = 0.2, see Figure 4.9. For either of the two samplers, we run one chain

of 35,000 with the same starting values. Figure 4.10 compares Samplers 4.13 and 4.14

in terms of the mixing and autocorrelation of α, β, and φ. Sampler 4.14 performs better

than Sampler 4.13 in convergence, which is a signal that using the surrogate conditionals

in more steps of a sampler leads to better convergence properties. However, one plight

we encounter in this example is that Step 3 of Sampler 4.14 (updating a mixture of nK

Gamma distributions, see Appendix C) is computationally demanding, which diminishes

the power of this example for verifying the efficiency of using surrogate distributions to

higher degrees.
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Figure 4.10: The sampling results of Samplers 4.13 and 4.14. The left two columns are the time-series
and autocorrelation plots for the posterior draws of α, β, and φ respectively from Sampler 4.13, whereas
the right two columns are those from Sampler 4.14. Sampler 4.14 performs better than Sampler 4.13.

4.3.3 Hierarchical Gaussian Model

Finally, we use a simple Gaussian hierarchical model to demonstrate deriving surrogate

distributions from ASIS. This example is not convincing enough to prove the com-

putational advantage of samplers using the surrogate distribution to a higher degree.

However, it sheds light on the possible equivalence of PCG, MDA, and ASIS under the

framework of surrogate distributions.

Suppose there is a single observation Y , and

Y ∼ N(X, 1) and X ∼ N(ψ, V ), (4.20)

where V is the known latent variance; X and ψ are unknown parameters. We specify

the non-informative prior distribution to ψ, that is, p(ψ) ∝ 1.
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DA

(Sampler 4.15)

1. p(X|ψ′, Y )

2. p(ψ|X, Y )

ASIS

(Sampler 4.16)

1. p(X?|ψ′, Y )

2. p(ψ?|X?, Y );

set X̄ = X? − ψ?

3. p(ψ|X̄, Y );

set X = X̄ + ψ

Surrogate

(Sampler 4.17)

1. ps(ψ|X ′, Y )

2. ps(X|ψ, Y )

Figure 4.11: Three samplers for fitting the simple hierarchical Gaussian model in (4.20). The left, middle,
and right panels show the steps of the DA sampler (Sampler 4.15), the ASIS sampler (Sampler 4.16),
and the two-step Gibbs sampler for updating the surrogate distribution derived from the ASIS algorithm
(Sampler 4.17).

We consider three samplers for fitting the hierarchical Gaussian model. The first is the

standard DA sampler which updates X and ψ iteratively from their conditional distri-

butions of p(ψ,X|Y ), see Sampler 4.15 in the left panel of Figure 4.11. To improve the

convergence of Sampler 4.15, we then consider using ASIS. The latent X is the suffi-

cient augmentation for ψ and X̄ = X −ψ is the corresponding ancillary augmentation.

We construct the ASIS sampler, i.e., Sampler 4.16, based on this pair of augmentation

schemes, see the middle panel of Figure 4.11. We derive a surrogate distribution via

the method introduced in Section 4.2.1 from the ASIS sampler, that is,

ps(ψ,X|Y ) =
[∫ (∫

p(ψ?|X, Y )p(X̄|ψ?, X, Y )dψ?
)
p(ψ|X̄, Y )dX̃

]
p(X|Y )

= p(ψ|Y )p(X|Y ),
(4.21)

where sampling X̄ from p(X̄|ψ,X, Y ) is equivalent to the transformation at the end

of Step 2 of the ASIS sampler. As stated in Section 4.2.1, the sub-chain of ψ induced

by the ASIS sampler, i.e., Sampler 4.16, is equivalent to that induced by the sampler

which updates from p(X|ψ′, Y ) and ps(ψ|X, Y ) iteratively. Thus the ASIS sampler

can be considered as a two-step sampler which replaces one step of the parent DA

sampler with a draw from the conditional of the surrogate distribution ps(ψ,X|Y ).

Since for this example, ψ is the parameter of main interest, we also consider the two-

step Gibbs sampler for updating ps(ψ,X|Y ), that is, Sampler 4.17 in the right panel
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Figure 4.12: The sampling results of ψ for Samplers 4.15–4.17. The first, second, and third columns
correspond to the trace plots, autocorrelation plots, and histograms of ψ. Both samplers using the surrogate
distribution, i.e., Samplers 4.16 and 4.17, are efficient in improving the convergence of ψ, and the two
samplers perform similarly.

of Figure 4.11. The construction of Sampler 4.17 can be considered as replacing both

steps of the parent DA sampler with draws from the conditionals of the surrogate

distribution. Henceforth, Samplers 4.15–4.17 are another example for Samplers 4.1–4.3,

the three two-step samplers using the surrogate distribution to different degrees.

We use a simulation study to compare Samplers 4.15–4.17. We set V = 0.01 and ψ = 1.

For each sampler, we run a chain of 10,000 with the same initial values. Figure 4.12

presents the mixing, autocorrelation, and posterior density estimation of ψ for Sam-

plers 4.15–4.17. Both samplers using the surrogate distribution, i.e., Samplers 4.16

and 4.17 are efficient in improving the convergence of ψ, and the two samplers perform

similarly, although they use the surrogate distribution to different degrees.

One interesting result of this example is that, for this simple hierarchical Gaussian
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model, the surrogate distributions derived from three different samplers are all the

same. The three samplers are the ASIS sampler, i.e., Sampler 4.16, the PCG sampler

1. p(ψ|Y )

2. p(X|ψ, Y ),

and the Haar PX-DA sampler, where the working parameter α is introduced into the

model via X̃ = X − α and the working prior is the Haar measure prior p(α) ∝ 1. Thus

the surrogate distribution strategy unveils the possible equivalence of the PCG, Haar

PX-DA, and ASIS algorithms, and we unify different acceleration strategies under the

general framework of surrogate distributions.

4.4 Conclusion

With surrogate distributions, we are able to unify different acceleration algorithms and

also the combining strategy introduced in Chapter 3 under one general framework, be-

cause all the algorithms can be constructed by replacing some steps of the parent Gibbs

sampler with draws from the conditionals of surrogate distributions. We use both theo-

retical arguments and numerical examples to illustrate the flexibility and strength of the

surrogate distribution strategy in improving convergence properties of Gibbs-type sam-

plers. Especially, for an N -step(N ≥ 3) sampler, there typically exist numerous choices

of using surrogate distributions. However, the sampler with the optimal efficiency often

need to be selected on a case-by-case basis.
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5
Applied Work in Supernova

Cosmology

Recall the Gaussian hierarchical model (2.14)–(2.16) in Section 2.3.2 of Chapter 2, which

is designed for analysing supernova cosmology. In this section, we discuss the advantage

of the hierarchical structure in this model, and introduce several extensions of the model

that are of physical interests. We begin in Section 5.1 with describing the shrinkage

effects of the Gaussian hierarchical model. In Section 5.2, we explore the influence of

adding systematical errors onto the variance-covariance matrix in the first level of the

model, i.e., (2.14). In Section 5.3, we specify the residual distance modulus as a cubic

spline function to check the propriety of the hierarchical model. Then we investigate two

generalizations of the Phillips corrections to further reduce the residual scatter around

the Hubble diagram. In Section 5.5, we let the color correction parameter β vary with

redshift and In Section 5.4, we add the host galaxy mass as a covariate in the regression

model. Final discussion appears in Section 5.6.
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5.1 Shrinkage Effects

We illustrate the shrinkage effects of the hierarchical model by plotting the posterior

expectation and standard deviation of the absolute magnitude Mi conditioning on the

other unknown parameters (but integrating out ci and xi), as the function of the pop-

ulation standard deviation σres, for thirty Type Ia SNe, in Figures 5.1 and 5.2. The

thirty SNe are selected for having large difference between the likelihood and posterior

estimates of Mi relative to the other SNe. As the population standard deviation σres

gets close to zero, the conditional expectations of the absolute magnitudes for different

SNe are shunk to the population mean M0, and the conditional standard deviations are

shrunk to zero. The larger σres becomes, the more variation appears in the population

of absolute magnitudes. The shaded areas in the plots correspond to the 95% posterior

credible interval of σres. The posterior estimate of σres under the hierarchical model

is so small that the conditional expectations of the absolute magnitudes for different

SNe are similar and the conditional standard deviations are small. In fact, the hier-

archical model accounts for the uncertainty in the observed values of ci, xi, and mBi,

and adjusts their estimates (i.e., their posterior distributions) by “shrinking” them to-

wards their estimated population means and the fitted regression line. By “borrowing

strength” across the SNe, the hierarchical regression structure of the model reduces the

residual scatter around the regression plane. Recall that Type Ia SNe are supposed

to be “standardizable candles” with similar absolute magnitudes (see Chapter 1 and

Section 2.3.2 of Chapter 2). The hierarchical model reflects this assumption properly

with shrinkage.

In the remainder of the chapter, we consider the sampling results of applying the hi-

erarchical model to another data set, which consists of 740 spectroscopically confirmed

Type Ia SNe obtained by the SDSS-II and SNLS collaboration from the “Joint Light-

curve Analysis” (JLA) (Betoule et al., 2014). This data set contains Type Ia SNe ob-

served with SNLS (Canada-France-Hawaii Telescope), Hubble Space Telescope (HST),

SDSS, and several other telescopes for low-z SNe. For the JLA data set, we specify an
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Figure 5.1: The posterior standard deviation of the absolute magnitude Mi conditioning on the other
unknown parameters (but integrating out ci and xi), as the function of the population standard deviation
σres, for thirty Type Ia SNe. The thirty SNe are selected for having larger difference between the likelihood
and posterior estimates of Mi. The shaded area corresponds to the 95% posterior credible interval of σres.

inverse-Gamma prior distribution to σ2
res, that is, σ2

res ∼ Inv-Gamma(u, v), instead of a

log-uniform prior, which might lead to difficulties in interpreting the posterior distribu-

tion. We perform a sensitivity analysis for the choice of scale for this inverse-Gamma

distribution, to test the robustness of our posterior inference on σ2
res with respect to its

prior specification. Specifically, we compare the posterior distributions of σ2
res obtained

under three different inverse-Gamma priors, with parameters u = v = 0.003, 0.03, and

0.1 respectively. The resulting posterior distributions (along with the priors) are shown

in Figure 5.3. Despite the widely differing priors, the posterior distributions are nearly

identical, verifying the prior-independence of our results. Posterior distributions of all

the other parameters are similarly insensitive to the choice of prior for σ2
res. In the rest

of this section, we use σ2
res ∼ Inv-Gamma(0.003, 0.003).
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Figure 5.2: the posterior expectation of the absolute magnitude Mi conditioning on the other unknown
parameters (but integrating out ci and xi), as the function of the population standard deviation σres, for
thirty Type Ia SNe. The thirty SNe are selected for having larger difference between the likelihood and
posterior estimates of Mi. The shaded area in the plots corresponds to the 95% posterior credible interval
of σres.

5.2 Influence of the Systematical Covariance Matrix

In Section 2.3.2 of Chapter 2, we assume that the observations of c, x, and mB for

each SN are conditionally independent (given their means and variances, see (2.14)),

i.e., the (3n × 3n) variance-covariance matrix ΣC = Cstat ≡ Diag(Ĉ1, . . . , Ĉn) is block

diagonal. Betoule et al. (2014) derived a systematical variance-covariance matrix, Csyst,

with correlations among the SNe, see Figure 5.4 for the systematical correlation matrix,

where the blocks correspond to different surveys, that is, SNLS, HST, SDSS, and low-

z. The systematical covariance matrix includes contributions from calibration, model

uncertainty, bias correction, host, dust, peculiar velocities, and contamination. We

account for these systematical error by replacing the matrix ΣC = Cstat with ΣC =

Cstat + Csyst in the full posterior distribution.
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Figure 5.3: Robustness of the posterior distribution for σ2
res (solid lines) with respect to three dif-

ferent prior specifications (dashed lines). The black, blue, and red correspond to the prior σ2
res ∼

Inv-Gamma(0.003, 0.003), σ2
res ∼ Inv-Gamma(0.03, 0.03), and σ2

res ∼ Inv-Gamma(0.1, 0.1). Since the three
posterior distributions are similar, we conclude that the posterior distribution of σres is largely insensitive to
its prior specification.

To assess the relative importance of the statistical and systematical variance-covariance

matrices, we use an MH within PCG sampler similar to Sampler 2.8 in Section 2.3.2

of Chapter 2 to fit the hierarchical models with ΣC = Cstat and ΣC = Cstat + Csyst

respectively. The only difference between this MH within PCG sampler and Sampler 2.8

rests in the sampling of σ2
res, since we change the prior of σ2

res for the JLA data set. (See

Appendix D for details.)

Figure 5.5 shows the 68% and 95% contours of the joint posterior distributions of

(Ωm,ΩΛ), where blue represents including only statistical errors in the Level 1 variance-

covariance matrix, and black including both statistical and systematical errors. Adding

the systematical covariance matrix not only enlarges the size of the contours—as expected—

but also significantly shifts the mean value of the posterior distribution of Ωm to larger

values, which leads to a smaller ΩΛ. Thus we conclude that the shift in cosmology is
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Figure 5.4: the systematical correlation matrix for the JLA data set. The blocks correspond to different
surveys, that is, SNLS, HST, SDSS, and low-z.

driven by some aspect of the systematical errors in JLA.

As stated above, the systematical covariance matrix contains contributions from dif-

ferent sources. Analysing each source individually, we conclude that the main driver

shifting the posterior estimate of Ωm to larger values is the calibration uncertainty.

In order to further investigate the origin of the observed shift in the fitted cosmological

parameters obtained by add the systematical errors, we compute the percent increase in

the standard deviation of ĉ, x̂, and m̂B when adding the systematical covariance matrix

onto the statistical covariance matrix, i.e.,

Fy =
1

n

n∑
i=1

σ2,syst
y,i

σ2,stat
y,i

(5.1)

where y = ĉ, x̂, or m̂B. The quantity F
1/2
y is the average percent increase in the standard
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Figure 5.5: Comparing the 68% and 95% contours of the joint posterior distributions of (Ωm,ΩΛ) for
including only statistical errors in the Level 1 variance-covariance matrix (blue) to those for including both
statistical and systematical errors (black). Purple contours correspond to statistics covariance matrix with
diagonal errors on mB inflated by the average mB variance resulted from the systematical covariance matrix.

deviation for SN i when the systematics covariance matrix is added to the statistical co-

variance matrix (considering diagonal elements only). We find F
1/2
ĉ = 0.36, F

1/2
x̂ = 0.16,

and F
1/2
m̂B

= 2.66, which shows that the increased error on m̂B is by far the dominant

contribution from the systematical covariance matrix. This is because the dominant

source of systematical error in the JLA data is the flux calibration (Betoule et al.,

2014). To check whether the increase in the m̂B variance is responsible for the shift in

the cosmological parameter estimates, we multiply the variance of m̂B in the statistical

covariance matrix by (1 + Fm̂B), and refit (without adding the systematical covariance

matrix) the Gaussian hierarchical model. The resulting cosmological constraints are

shown as purple contours in Figure 5.5. Comparing with the results obtained from in-

cluding both statistical and systematical errors in the variance-covariance matrix (black

contours), it is clear that most of the shift in the fitted cosmological parameter is due

to the large systematic variance of m̂B. If the model were Gaussian and linear, inflating
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the errors would only enlarge the uncertainty on the parameters, but would not shift

the mean of the posterior distribution. Hence we conclude that the cosmology shift is

a reflection of the non-Gaussian and non-linear nature of our model.

In the remainder of this chapter, we always set the observed variance-covariance matrix

to ΣC = Cstat + Csyst, and name the Gaussian hierarchical model (2.14)–(2.16) with

ΣC = Cstat +Csyst by the “Baseline Model”. The following models are all extensions of

the Baseline Model.

5.3 Model checking

To check whether the Baseline Model reflects the underlying physical truth of supernova

cosmology properly, we quantify the residual scatter around the Hubble diagram as,

t(zi) = µ̃i − µi, (5.2)

where t(z) is a function of the red shift z, µ̃i is the distance modulus specified by the

Baseline Model, i.e., µ̃i = mBi − Mi + αxi − βci, and µi is the theoretical distance

modulus, i.e., µi = µi(zi,C ) as displayed in (2.17). Here we specify t(zi) as a cubic

spline function, that is,

t(zi) = b1zi + b2z
2
i + b3z

3
i +

K∑
k=1

bk+3(zi − z0
k)

3

+, (5.3)

where (z0
1 , . . . , z

0
K) are known knots and b = (b1, . . . , bK+3) are unknown parameters.

Then we replace the regression model in (2.15) with

mBi = µi +Mi − αxi + βci + t(zi), for i = 1, . . . , n, (5.4)

specify the non-informative flat prior to b, that is, p(b) ∼ 1, and obtain a new hierarchical

model, which is named by the “Cubic Residual Model”.
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Figure 5.6: The posterior estimate of the cubic spline function t(z) in (5.4). The red line is its posterior
mean and the gray band is its point-wise 95% credible region. The black dots are estimates of the residual
distance moduli based on the observations, that is, ∆µ = m̂Bi −M0 + αx̂i − βĉi − µi, where M0, α, and
β are imputed with their posterior means obtained from fitting the hierarchical model (2.14)–(2.16).

We fix the values of C = (Ωm,ΩΛ) at their posterior means obtained from fitting the

Baseline Model, and then use an MH within PCG sampler to fit the Cubic Residual

Model. Specifically, we sample (α, β) without conditioning on (X, ξ) and b. Details of

this sampler and other samplers in this Chapter are given in Appendix D.

We plot the posterior estimate of the cubic spline function t(z) in Figure 5.6. The

red line represents its posterior mean and the gray band represents its point-wise 95%

credible region. The black dots are estimates of the residual distance moduli based on

the observations, that is,

∆µi = m̂Bi −M0 + αx̂i − βĉi − µi, (5.5)

where M0, α, and β are replaced by their posterior means obtained from fitting the

Baseline Model. Since the posterior estimate of the residual distance modulus t(z)
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is close to zero, we conclude that the Baseline Model performs well in reflecting the

underlying physical truth of supernova cosmology.

The Phillips corrections are expected to reduce the residual variance in (2.15) and thus

increase the precision in the estimates of C , see Section 2.3.2 of Chapter 2. Introducing

additional covariates may further improve precision. Thus in the following two sections,

we generalize the Phillips corrections by adding more covariates into the regression

model.

5.4 Dependency on Host Galaxy Mass

There is strong evidence that the adjusted absolute magnitude of Type Ia SN correlates

with host galaxy mass (e.g., Sullivan et al., 2006). Current results indicate that more

massive galaxies (log10(M/M�) > 10) host brighter SNe, with their average absolute

magnitude being of order ∼ 0.1mag smaller than that in less massive hosts (e.g., Sullivan

et al., 2010). This could be a reflection of dust, age, and/or metallicity of the progenitor

systems (Childress et al., 2013).

5.4.1 Models incorporating host galaxy mass

We investigate three models that incorporate host galaxy mass as a covariate in (2.15)

and study how they affect the inference of C . In particular, we consider the models that

(i) divide the SNe into two populations using a hard host galaxy mass threshold (“Hard

Classification Model”), (ii) divide the SNe into two populations using soft probabilistic

classification (“Soft Classification Model”), and (iii) adjust for host galaxy mass as a

covariate in the regression, analogously to the stretch and color corrections (“Covariate

Adjustment Model”). Specifically, we model the observed host galaxy masses (on the

log10 scale) as

M̂g i
ind∼ N

(
Mg i, σ

2
g i

)
, for i = 1, . . . , n, (5.6)

124



where Mg i is the (true) host galaxy mass of SN i (in log10 solar mass) and σg i is the

observed standard deviation of M̂g i.

In the “Hard Classification Model”, we divide the SNe into two classes using the observed

mass: high host galaxy mass class if M̂g i ≥ 10 and low host galaxy mass class if

M̂g i < 10. (Thus in this model, we ignore measurement errors in M̂g i.) We fix the host

galaxy mass classification at 1010 solar masses, analogous to the location of the step

function used for the host galaxy mass by Betoule et al. (2014). The two classes are

allowed to have their own population-level values for the mean absolute SN magnitude

and residual standard deviation, i.e., (Mhi
0 , σ

hi
res) for high mass hosts and (M lo

0 , σ
lo
res) for

low mass hosts. Common values are used for α and β (and of course for C ) for both

classes. We do not assume a redshift dependency for the color correction parameter.

The prior distributions we specify to the new population-level parameters are Mhi
0 ∼

N(−19.3, 22), M lo
0 ∼ N(−19.3, 22),

(
σhi

res

)2 ∼ Inv-Gamma(0.003, 0.003), and
(
σlo

res

)2 ∼

Inv-Gamma(0.003, 0.003).

The “Soft Classification Model” is identical to the Hard Classification Model except

that measurement errors in the observed masses are accounted for by probabilistically

classifying each SNe; these errors can be quite significant. Specifically, we let Zi be an

indicator variable that equals one for an SN with high host galaxy mass and equals zero

for an SN with low host galaxy mass, that is,

Zi =

 0, if Mg i < 10

1, if Mg i ≥ 10.
(5.7)

We treat Z = (Z1, . . . , Zn) as a vector of unknown latent variables that are estimated

along with the other model parameters and latent variables via Bayesian model fitting.

This requires specification of a prior distribution on each Mg i. We choose a flat prior

so that Mg i|M̂g i
ind∼ N(M̂g i, σ

2
g i), see Appendix D for details.

The “Covariate Adjustment Model” introduces Mg i as a covariate in the regression

model (2.15) rather than classifying the SNe by host galaxy masses. Specifically, we
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replace (2.15) with

mBi = µi +Mi − αxi + βci + γMg i, (5.8)

expand the observed quantities ĉi, x̂i, and m̂Bi in (2.14) to include the observed host

galaxy masses in (5.6), and also expand the population model for the latent variables,

ci, xi, and Mi, given in (2.16) to include host galaxy mass, that is,

Mg i
iid∼ N(Mg?, R

2
g), (5.9)

where Mg? and Rg are hyperparameters analogous e.g., to x0 and Rx. The prior distri-

butions we specify to the added parameters are γUnif(−4, 4), Mg? ∼ N(10, 1002), and

log(Rg) ∼ Unif(−5, 2).

5.4.2 Results under the models including host galaxy mass

We fit all of the Hard Classification Soft Classification and Covariate Adjustment Mod-

els using MH within PCG samplers, which update C and (α, β) (for the Hard Classifi-

cation and Soft Classification Models, or (α, β, γ) for the Covariate Adjustment Model)

without conditioning on (X, ξ). We compare the sampling results under the three mod-

els with those under the Baseline Model.

W detect significant difference (with 95% probability) between the mean absolute mag-

nitudes of SNe in low-mass and high-mass classes. Specifically, we define

∆M0 = Mhi
0 −M lo

0 (5.10)

as the difference of mean absolute magnitude between the two classes. The 95% equal-

tail posterior credible interval for ∆M0 is

− 0.10 < ∆F0 < 0.00, (5.11)

with ∆M0 = 0 excluded. Figure 5.7 shows the posterior distribution of ∆M0, where the
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Figure 5.7: Posterior distributions of ∆M0, the difference of mean absolute magnitudes for SNe in high-
mass (Mg i > 10) and low-mass classes (Mg i < 10). Blue and green correspond to the Hard Classification
and Soft Classification Models, respectively. Under both models, the posterior probability that ∆M0 < 0 is
greater than 95%, implying that SNe in more massive hosts are most intrinsically brighter.

result for the Hard Classification Model is compared with that the for Soft Classification

Model. There is not an appreciable difference in ∆M0 between the Hard Classification

Model and the Soft Classification Model. We find that SNe in more massive host galaxies

are intrinsically brighter, with our posterior estimate of the magnitude difference under

the as ∆M0 = −0.055± 0.022. The SNe residing in more massive galaxies have smaller

residual standard deviation, for σhi
res = 0.097± 0.007 and σlo

res = 0.110± 0.009.

Figure 5.8 shows the posterior estimates of the empirically corrected SNe’s absolute

magnitudes, Mi, as a function of the measured host galaxy mass. Histograms on either

side of the plot show the posterior distributions of the mean absolute magnitudes for

the two classes. The average measurement error of the host galaxy mass is fairly large,

especially for low-mass host galaxies. Therefore, the SNe whose host galaxy masses are

close to the cut-off, i.e., Mg i = 10, are of uncertain classification, once the measurement

errors are taken into account. This could influence the estimate of ∆M0 and the ensuing
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Figure 5.8: Posterior means and standard deviations for the empirically corrected absolute magnitudes
versus measured host galaxy mass. The SNe are divided into two populations, with Mg i smaller (larger)
than 10, colored in blue (red). A hollow square represents the SN whose measurement error of Mg i is
equal to or larger than 5. The population means of the absolute magnitudes are M lo

0 = −19.114 ± 0.023
and Mhi

0 = −19.169± 0.022 (horizontal dashed lines) respectively for the low-mass and high-mass classes.
The blue and red vertical errorbars represent the average posterior standard deviations of the absolute
magnitudes in the low-mass and high-mass classes, respectively. The horizontal errorbars represent the
average measurement errors of Mg i in the two classes. These average values exclude the SNe represented
by hollow squares. The slope of the purple regression line is the posterior mean of γ under the Covariate
Adjustment Model, and the purple shaded area represents the 1σ credible region for γ.

cosmological constraints.

To investigate the importance of the measurement errors in host galaxy masses, we

fit the Soft Classification Model which includes an indicator variable Zi for each SN;

recall that Zi is one if SN i belongs to the high-mass class and zero if it does not.

Treating Zi as an unknown variable allows us to compute the posterior probability that

each SN belongs to the high-mass class. Figure 5.9 presents the posterior mean and

standard deviation for each Zi. The posterior mean of Zi is the posterior probability

that SN i belongs to the high-mass class. Although the measurement errors in host

galaxy masses are suppressed for clarity in Figure 5.9, they are fully accounted by the

Soft Classification Model.
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Figure 5.9: The posterior mean and standard deviation of each Zi, the indicator variable for SN i belonging
to the high-mass class (Zi = 1, red) versus measured host galaxy mass. If Zi = 0 (blue), SN i belongs to
the low-mass class. The posterior mean of Zi is the posterior probability that SN i belongs to the high-mass
class. Although the errorbars are suppressed for clarity, the Soft Classification Model fully accounts for the
measurement errors in host galaxy masses.

Under either the Hard Classification or Soft Classification Model, the posterior distri-

butions of the cosmological parameters, C , hardly change compared with the Baseline

Model.

Finally, under the Covariate Adjustment Model, we express the fitted regression line

with respect to Mg i as m̂Bi−µi = intercept+ γ̄ M̂g i, where γ̄ is the posterior mean of γ

and the intercept is (M0−αx+βc) with M0, α, and β replaced by their posterior means,

i.e., M̄0, ᾱ, and β̄, x replaced by 1
n

∑n
i=1 x̂i, and c replaced by 1

n

∑n
i=1 ĉi. The regression

line is plotted as a solid purple line in Figure 5.8. The shaded purple area corresponds

to the 68% posterior credible interval of γ (with the intercept fixed as described above).

Figure 5.10 shows the posterior distribution of the regression coefficient γ. The posterior

probability that γ < 0 is 99%. The 68% posterior credible interval for γ is−0.030±0.010.
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Figure 5.10: The marginal posterior distribution of γ, the regression coefficient for Mg i in the Covariate
Adjustment Model. The posterior probability that γ is less than zero is 99%.

Despite the fact that the posterior probability that γ < 0 is 99%, there is not a signif-

icant shift in the cosmological parameters, C , or the residual standard deviation, σres,

compared with the Baseline Model. Although the intuition stemming from the stan-

dard linear regression suggests that adding a significant covariate should reduce residual

variance, the situation is more complicated in (5.8) owing to the measurement errors in

both the independent and dependent variables. While the variances of the left and right

sides of (5.8) must be equal, there are numerous random quantities whose variances and

covariances can be altered because of adding a covariate to the model.

5.5 Redshift Evolution of the Color Correction Parameter

It is possible that the color correction varies with redshift, as a consequence of evolution

of the progenitor and/or changes in the environment, for example, variation in the dust

composition with galactic evolution (Childress et al., 2013). This is not captured by the
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SALT-II fits, since they use a training sample that is distributed over a large redshift

range (0.002 ≤ z . 1) (Guy et al., 2007) and thus the training sample color correction is

averaged across redshift. It is therefore important to check for a redshift dependence in

the color correction by allowing β, which controls the amplitude of the linear correction

to the absolute magnitude, to vary with z.

5.5.1 Models with z-dependent color correction parameter

We consider two phenomenological models that allow the color correction to depend on

z. In the first model, the dependence is linear. Specifically, we replace the constant β

in (2.15) with the z-dependent β0 + β1ẑi, which leads to

mBi = µi +Mi − αxi + β0ci + β1zici. (5.12)

We specify uniform prior distributions to β0 and β1, that is, β0 ∼ Unif(0, 4) and β1 ∼

Unif(−4, 4). We refer to this model as the “z-Linear color Correction Model”.

The second model allows for a sharp transition from a high-z to a low-z regime. Specif-

ically, we replace the constant β in (2.15) with β0 + ∆β
[

1
2

+ 1
π

arctan
(
ẑi−zt
0.01

)]
, where

β0, ∆β, and zt are unknown parameters. This can be viewed as a smoothed step func-

tion which approaches β0 as z → 0 and approaches β0 + ∆β as z →∞, with a smooth

monotone local transition centered at z = zt. Substituting this into (2.15), we obtain

mBi = µi +Mi − αxi + β0ci + ∆β

[
1

2
+

1

π
arctan

(
zi − zt
0.01

)]
ci, (5.13)

where the covariate associated with ∆β depends nonlinearly on zt. The priors we

specify to β0, ∆β, and zt are uniform distributions, that is, β0 ∼ Unif(0, 4), ∆β ∼

Unif(−1.5, 1.5), and zt ∼ Unif(0.2, 1). We refer to this model as the “z-Jump color

Correction Model”.
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5.5.2 Results under the models with z-dependent color correction

We fit both the z-Linear color Correction and z-Jump color Correction Models with MH

within PCG + ASIS samplers. Under the z-Linear color Correction Model, we sample

C without conditioning on (X, ξ), which requires the MH update, and sample (α, β0, β1)

via ASIS conditioning on other parameters. Under the z-Jump color Correction Model,

we sample zt and C without conditioning on (X, ξ), which require the MH updates,

and sample (α, β0,∆β) via ASIS conditioning on other parameters. We compare the

sampling results under these two models with those under the Baseline Model.

When evolution with the redshift is linear (as in the z-Linear color Correction Model),

a non-zero, negative linear term β1 is preferred with ∼ 95% probability, β1 = −0.622±

0.342. Because the standard deviation of ĉi is of order ∼ 0.1, high-z SNe (at z ∼ 1)

are typically ∼ 0.06 mag brighter than those nearby. When the evolution is a sharp

transition with redshift (as in the z-Jump color Correction Model), there is strong

evidence for a significant drop in β at zt = 0.66 ± 0.06. At zt, β drops from its

low-z value, β0 = 3.14 ± 0.09 by ∆β = −1.12 ± 0.24, with a nominal significance

of approximately 4.6σ. This represents a correction of typically ∼ 0.11mag for SNe at

z > zt. The posterior mean and 1σ credible region of the sharply transited β(z) are

shown in Figure 5.11.

Despite significant evidence for redshift evolution of the color correction parameter, the

cosmological parameters estimated from the z-Linear color Correctionand z-Jump color

Correction Models are only mildly affected compared with the Baseline Model. The

posterior distribution of the residual intrinsic scatter also remains unchanged.

To quantify the residual scatter around the Hubble diagram, we use ∆µi in (5.5) of

Section 5.3, that is, the difference between the estimated distance modulus based on

the observations and the theoretical distance modulus. The sample variance of ∆µi is

σ2
∆µ =

1

n− 1

n∑
i=1

(∆µi −∆µ̄)2, (5.14)

132



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

z

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

β

Figure 5.11: Redshift evolution of the color correction parameter β, assuming the z-Jump color Correction
Model. The green line is the posterior mean, and the shaded area represents the 1σ credible region.

where ∆µ̄ = 1
n

∑n
i=1 ∆µi. Note that both ∆µi and σ2

∆µ are functions of the unknown

parameters, and thus have posterior distributions.

We compare the Hubble diagram residuals, ∆µi, for the Baseline Model, with those for

the z-Jump color Correction Model in Figure 5.12. The unknown parameters in ∆µi

are replaced with their posterior means. We only present SNe with z > 0.6, because

the β values from the two models are similar for low-z SNe and thus the residual

distance moduli are similar for z > 0.6. The left panel of Figure 5.12 shows the Hubble

residuals under the Baseline Model; the central panel shows those under the z-Jump

color Correction Model; the right panel compares the two models by plotting residuals

under the Baseline Model versus those under the z-Jump color Correction Model. The

scatter under the z-Jump color Correction Model is closer to zero than that under the

Baseline Model. This indicates that allowing for a sharp transition in β(z) improves

the standardization of Type Ia SNe.
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Figure 5.12: Hubble residuals of the Baseline Model (left, β = constant with z), z-Jump color Correction
model (centre), and comparison of the two models (right). In the left and central panels, only SNe with
z > 0.6 are plotted to highlight the difference between the two models. Errorbars represent the posterior
standard deviations of ∆µi. In the right panel, SNe with z ≤ 0.6 are plotted in red. This panel shows that
the z-Jump color Correction Model reduces the scatter around the Hubble diagram noticeably for z > 0.6,
while its Hubble residuals are similar to the Baseline Model for z ≤ 0.6.

We define the cumulative (i.e., summed over z) Hubble residual as

si =
∑
zj≤zi

|∆µj| (1 ≤ i ≤ n). (5.15)

In Figure 5.13, we use the cumulative residual to highlight the difference between the

fits under the Baseline, z-Linear color Correction and z-Jump color Correction Models.

Figure 5.13 shows the cumulative residual as a function of redshift, where at each redshift

the Baseline Model residual has been subtracted to facilitate comparison. For z . 0.7,

the Baseline Model offers a slightly better fit than either of the β(z) models. But for

z ≥ 0.8 both the z-Linear color Correction and especially the z-Jump color Correction

Model provide improved residuals with respect to the Baseline Model. This is shown by

the negative values of their relative cumulative residuals with respect to the Baseline

Model. In other words, Figure 5.13 shows that both β(z) models improve the fit for

high-z SNe. Formal model comparison should be deployed to weigh the evidence for

the evolving color correction models relative to the Baseline model.

It is conceivable that the evidence for a step in the evolution of β(z) is a spurious

consequence of the mass-step correction, which is not included in the above analysis.

Since more massive (Mg i > 10) host galaxies are preferentially found at low redshift,
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Figure 5.13: Cumulative Hubble residuals for the two β(z) models relative to the Baseline Model. For z &
0.8, both z-dependent models improve the fit with respect to the Baseline Model, which has β = constant.
The z-Jump color Correction Model shows the largest improvement.

and SNe in those galaxies are brighter (see Section 5.4), it is possible that such galaxies

require on average a smaller color correction than SNe in galaxies at high redshift (which

are on average less luminous). However, if such a color-mass-redshift interaction were

to exist, it could be identified by fitting a model that allows for both a host galaxy mass

correction and evolution in the color correction. To investigate this possibility, we fit a

model that includes both a mass-step correction (as in the Hard Classification Model)

and a sharp transition in β(z) (as in the z-Jump color Correction Model). The posterior

distributions of all the model parameters from this fit change negligibly compared with

those from the fit of the z-Jump color Correction Model without mass-step correction.

The top panel in Figure 11 of Betoule et al. (2014) suggested that un-modelled selection

effects on the color correction at z & 0.6 might lead to our detection of a drop in the

value of β(z) in that range. To test this possibility, we artificially correct the trend to

negative colors (as shown in Figure 11 of Betoule et al. (2014)) for z > zt, and re-fit the
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z-Jump color Correction Model. This correction alters the posterior distributions of the

cosmological parameters significantly, while leaving the strong detection of a jump in

the value of β(z) largely unchanged. This argues against the existence of un-modelled

color correction selection effects causing the observed jump in β(z) in the z-Jump color

Correction Model. By the same token, it is unlikely that our result is driven by the

redshift evolution of the color (or stretch) correction, as a consequence of selection

effects.

In all of our models above, the population mean and variance of the color correction

and stretch parameters are assumed to be redshift-independent. However, the observed

color corrections drift towards the blue near the magnitude limit of a survey (i.e., to

larger z). This happens because intrinsically brighter SNe (which are more likely to

be observed) are bluer in color. This selection effect leads to a z-dependency of the

observed color correction, even if the underlying color does not change with redshift.

We allow the population mean and variance of the color corrections to differ for low-

z (z < 0.66) and high-z (z ≥ 0.66) SNe. (The threshold of z = 0.66 is chosen as

the posterior mean of the jump location in the z-Jump color Correction Model.) The

we re-fit both the Baseline Model and the z-Jump color Correction Model. The joint

posterior distribution of (Ωm,ΩΛ) shifts appreciably towards lower matter and lower

cosmological constant values, while the evidence for a drop in β remains. This shows

that the results of the hierarchical model are sensitive to the detailed modelling of a

potential redshift-dependency (induced by selection effects, or otherwise) of the color

correction parameter. However, the model for the redshift dependence of color is not

what is driving the shift in the posterior distribution of Ωm toward higher values.

5.6 Conclusion

In this section, we focus on the Gaussian hierarchical model in supernova cosmology

and investigate several extensions of the model. We find that the hierarchical regres-

sion structure of the model reduces the residual scatter around the regression plane by
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“borrowing strength” across SNe, and this hierarchical model properly reflects the un-

derlying physical assumptions. Moreover, for the JLA data set, the systematical errors

can significantly shift the cosmological constraint estimates and the contribution from

calibration is the main driver of the shift. To further reduce the residual scatter around

the Hubble diagram, we generalize the Philip correction to explore the influence of host

galaxy mass and redshift-dependent color correction parameter. We confirm (at the

95% probability level) the existence of two sub-populations segregated by host galaxy

mass, at log10(M/M�) = 10, differing in mean absolute magnitude by 0.055±0.022mag.

Cosmological parameter constraints are however unaffected by inclusion of host galaxy

mass corrections. We also find ∼ 4σ evidence for a sharp drop in the value of the color

correction parameter, β(z), at a redshift zt = 0.662± 0.055. We rule out some possible

explanations for this behaviour, which remains unexplained.
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6
Corrections to Algorithms for

Fitting the MNP Models in Imai

and van Dyk (2005)

The multinomial probit (MNP) model is a useful tool for describing discrete-choice data

in social sciences and transportation studies. There are a variety of methods for fitting

the model, see Chapter 1. Among them, the algorithms provided by Imai and van

Dyk (2005), based on Marginal Data Augmentation, are widely used, because they are

efficient in convergence and allow the prior distribution to be specified directly on iden-

tifiable parameters. Burgette and Nordheim (2012) modified a model and algorithm of

Imai and van Dyk (2005) to avoid an arbitrary choice that is often made to establish

identifiability. However, there are errors in the algorithms of Imai and van Dyk (2005),

which affect both their algorithms and that of Burgette and Nordheim (2012). These

errors can alter the stationary distribution and the resulting fitted parameters as well
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as the efficiency of these algorithms. We propose corrections and use both a simula-

tion study and real-data analyses to illustrate the difference between the original and

corrected algorithms, both in terms of their estimated posterior distributions and their

convergence properties. In some cases, the effect on the stationary distribution can be

substantial.

6.1 Multinomial Probit Model

We consider a (p + 1)-class multinomial model. Each observation is a binary (p + 1)-

vector, di = (di1, . . . , di,(p+1)). We model di by conditioning on a latent multivariate

normal variable, Ui =
(
Ui1, . . . , Ui,(p+1)

)
; dij is one if Uij is larger than all the other

components of Ui. Specifically,

Ui ∼ Np+1

(
X0
i β,Σ

0
)

and dij =

 1 if Uij = max{Ui1, . . . , Ui,(p+1)}

0 otherwise
, for i = 1, . . . , n,

(6.1)

where X0
i is a ((p + 1) × q) matrix of known covariates, β is a q-vector of unknown

parameters, and Σ0 is a ((p+ 1)× (p+ 1)) unknown variance-covariance matrix.

Model (6.1) is unidentifiable because shifting Ui by any constant or rescaling Ui by any

positive constant, does not alter the distribution of di. To avoid this, IvD and BN

both followed McCulloch and Rossi (1994), by expressing each Uij relative to a base

category (e.g., Ui,(p+1)), and obtained the new latent variable, Wi = (Wi1, . . . ,Wip),

where Wij = Uij − Ui,(p+1). The distribution of Wi is still multivariate normal, i.e.,

Wi ∼ Np(Xiβ,Σ), (6.2)

where Xi = PX0
i and Σ = PΣ0PT with P = [Ip,−J ], with Ip a (p× p) identity matrix

and J a column p-vector of ones. For simplicity, we collapse di into Yi, which is an

integer in {0, . . . , p}, defined as
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Yi =

 0 if max{Wi1, . . . ,Wip}< 0

k if Wik = max{0,Wi1, . . . ,Wip}
, for i = 1, . . . , n. (6.3)

To ensure identifiability, we must also set the scale. IvD adopted the standard solution of

McCulloch and Rossi (1994); they set the first diagonal element of Σ to one, i.e., σ2
11 = 1.

BN proposed a different solution; they fixed the trace of the variance-covariance matrix,

i.e., trace(Σ) = p. BN argued that the trace restriction is better because the resulting

posterior distributions do not depend on the choice of category with unit variance and

are easier to interpret.

To overcome difficulties stemming from the constraint, σ2
11 = 1, on the variance-

covariance matrix, motivated by McCulloch and Rossi (1994), IvD set W̃i = αWi,

for i = 1, . . . , n, where α > 0. Then W̃i ∼ Np(Xiβ̃, Σ̃), where β̃ = αβ and Σ̃ = α2Σ.

Because Σ̃ can be any positive-definite matrix, IvD specified an inverse-Wishart prior

distribution, Σ̃ ∼ Inv-Wishart(ν, S̃). After transforming to α2 = σ̃2
11 and Σ = Σ̃/σ̃2

11,

the implied prior distribution on (α2,Σ) is

α2|Σ ∼ α2
0trace(SΣ−1)/χ2

νp, and p(Σ) ∝ |Σ|−(ν+p+1)/2[trace(SΣ−1)]
−νp/2

I{σ2
11 = 1},

(6.4)

where α0 is a positive constant, S = S̃/α2
0, and the first diagonal element of S is

one; I is an indicator function which equals one when the condition in the brackets

is satisfied, and zero otherwise. They also specified a normal prior distribution for β,

β ∼ Nq(β0, A). For simplicity, we set β0 = 0. BN adopted the same strategy for setting

their prior distribution in the context of the constraint, trace(Σ) = p. In particular,

their implied prior distribution for (α2,Σ) is almost the same as IvD except that

p(Σ) ∝ |Σ|−(ν+p+1)/2[trace(SΣ−1)]
−νp/2

I{trace(Σ) = p}, (6.5)

where trace(S) = p. They use the same prior distribution as IvD for β, i.e., β ∼

Nq(0, A). As IvD stated, this choice of prior distribution allows both informative and

diffuse priors for the unknown parameters while maintaining simplicity and efficiency
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of the algorithms.

6.2 Errors in Algorithms and the Corrections

We refer to Algorithms 1 and 2 of IvD as Algorithms IvD-1 and IvD-2, and to the

algorithm of BN as Algorithm BN. We denote the corrected versions of these algorithms

as Algorithms IvD-1c, IvD-2c, and BNc, respectively. Algorithm IvD-1c is displayed here

and Algorithms IvD-2c and BNc in Appendix E. Except for the two boxed expressions,

Algorithm IvD-1 is identical to Algorithm IvD-1c.∗

To obtain posterior samples under the MNP model, Algorithm IvD-1 proceeds by

sampling iteratively from p(α2, W̃ |Y, β,Σ), p(α2, β|Y, W̃ ,Σ) and p(α2,Σ|Y, Z̃, β), where

Z̃ = W̃ −αXβ.† In the first of these draws, W̃ is obtained via a sequence of conditional

draws; this is identical to Step 1(b) of Algorithm IvD-1c. Note that this algorithm

marginalizes α out in each step. Algorithm IvD-2 proceeds by sampling iteratively

from p(α2, W̃ |Y, β,Σ), p(α2,Σ|Y, Z̃, β) and p(β|Y,W,Σ), again using a sequence of con-

ditional draws for updating W̃ . Algorithm IvD-2 does not marginalize α out when

sampling β. Algorithm BN is an adaptation of Algorithm IvD-1. The only difference

occurs in Step 3 when sampling (α2,Σ). In Algorithm IvD-1, α2 is set to the first el-

ement of Σ̃ in Step 3(b), while it is set to trace(Σ̃)/p in Step 3(b) of Algorithm BN.

Details of Algorithms IvD-2 and BN appear in Appendix E.

Unfortunately, there are two errors in these algorithms, which may severely alter their

stationary distributions, fitted values, and convergence properties. In Algorithm IvD-1,

both errors occur in Step 3. The corrections to these errors are the boxed expres-

sions in Algorithm IvD-1c. Correction 1 is rather simple. The transformation from

(Z̃, β(t+1), α(t+1), Σ̃?) to the original variables (W (t+1), β(t+1), α(t+1),Σ(t+1)) should

∗In Algorithm IvD-1, the constraint in the first box of Algorithm IvD-1c is ignored and the expression
in the second box is replaced by W (t+1) = W̃ ?/α(t+1).
†In the original version of the paper, we denoted (W̃ − αXβ) by Z. However, there exist two

transformed variables, one in the original model, i.e., (W −Xβ), and the other in the expanded model,
i.e., (W̃ −Xβ̃). Thus here we denote (W −Xβ) by Z and (W̃ −Xβ̃) by Z̃, with Z̃ = αZ.
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Algorithm IvD-1c (with corrections in boxes)

Step 0: Initialize parameters t = 0, β(0), α(0), Σ(0), and W (0).

while t < T do

Step 1: Update
(

(α2)
?
, W̃ ?

)
via p(α2, W̃ |Y, β(t),Σ(t)) by

(a) sampling (α2)
?

from p(α2|Σ(t)): (α2)
? ∼ α2

0trace
(
SΣ(t)−1

)
/χ2

νp; setting α? =
√

(α2)
?
;

(b) sampling W̃ ? from p(W̃ |Y, α?, β(t),Σ(t)):

for i := 1, . . . , n do
for k := 1, . . . , p do

sampling W ?
ik from p(Wik|Yi,W ?

i,−k, β
(t),Σ(t)): W ?

ik ∼ TN(µik, τ
2
ik), see Appendix E.3 for

details;
end for
setting W̃ ?

i = α?W ?
i .

end for

Step 2: Update
(
(α2)

?
, β(t+1)

)
via p(α2, β|Y, W̃ ?,Σ(t)) by

(a) sampling (α2)
?

from p(α2|Y, W̃ ?,Σ(t)):

(α2)
? ∼

∑n
i=1 (W̃ ?

i −Xiβ̂)
T

Σ(t)−1
(W̃ ?

i −Xiβ̂) + β̂TA−1β̂ + trace
(
S̃Σ(t)−1

)
χ2

(n+ν)p

,

where β̂ =
(∑n

i=1X
T
i Σ(t)−1

Xi +A−1
)−1 (∑n

i=1X
T
i Σ(t)−1

W̃ ?
i

)
;

(b) sampling β̃? from p(β̃|Y, W̃ ?, (α2)
?
,Σ(t)):

β̃? ∼ Nq

β̂, (α2)
?

(
n∑
i=1

XT
i Σ(t)−1

Xi +A−1

)−1
 ;

setting α? =
√

(α2)
?

and β(t+1) = β̃?/α?.

Step 3: Update
(

(α2)
(t+1)

,Σ(t+1)
)

via p(α2,Σ|Y, W̃ ?, β(t+1)) by

(a) sampling Σ̃? from p(Σ̃|Y, Z̃, β(t+1)):

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

Z̃iZ̃
T
i + S̃

)
, subject to the constraint in (6.7) ,

where Z̃i = W̃ ?
i − α?Xiβ

(t+1);

(b) setting α(t+1) = σ̃?11, Σ(t+1) = Σ̃?/
(
α(t+1)

)2
, and W

(t+1)
i = (Z̃i + α(t+1)Xiβ

(t+1))/α(t+1) .

return β(t+1), Σ(t+1) and W (t+1)

t+ 1← t
end while
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involve setting

W
(t+1)
i =

(
Z̃i + α(t+1)Xiβ

(t+1)
)
/α(t+1), for i = 1, . . . , n, (6.6)

see Step 3(b) of Algorithm IvD-1c, instead of W
(t+1)
i = W̃ ?

i /α
(t+1), as in Algorithm IvD-

1. The correct inverse transformation is necessary to guarantee that the joint stationary

distribution of (W (t+1), β(t+1), α(t+1),Σ(t+1)) is the target posterior distribution.

Correction 2 is more subtle. When sampling Σ̃? while conditioning on Y , Z̃, and β(t+1),

Algorithm IvD-1 uses Inv-Wishart(n + ν,
∑n

i=1 Z̃iZ̃
T
i + S̃). IvD, however, ignored a

constraint on Σ̃? imposed by Y and the current values of Z̃ and β. This constraint

is on the first diagonal element of Σ̃?, i.e., (σ̃?11)2. In particular, if we set ξ̃i (σ̃
?
11) =

Z̃i + (σ̃?11)Xiβ
(t+1), for i = 1, . . . , n, the updated value of σ̃?11 must satisfy

 max
{
ξ̃i1 (σ̃?11) , . . . , ξ̃ip (σ̃?11)

}
< 0 if Yi = 0

max
{

0, ξ̃i1 (σ̃?11) , . . . , ξ̃ip (σ̃?11)
}

= ξ̃ik (σ̃?11) if Yi = k
, for i = 1, . . . , n. (6.7)

Thus, the conditional distribution of Σ̃? given Y , Z̃, and β(t+1) in Step 3(a) of Al-

gorithm IvD-1c is a constrained inverse-Wishart distribution, whereas that of Algo-

rithm IvD-1 is unconstrained. The constrained sample in Algorithm IvD-1c is obtained

via rejection sampling; we iteratively sample from the unconstrained inverse-Wishart

distribution until (6.7) is satisfied.

Algorithms IvD-2 and BN are adaptations of Algorithm IvD-1. Thus, both corrections

affect these algorithms as well. See Appendix E for details.

6.3 Simulation Study

We use a simulation study to illustrate the differences of Algorithms IvD-1 and IvD-1c,

Algorithms IvD-2 and IvD-2c, and Algorithms BN and BNc. We set n = 50, p = 2,

q = 2, β = (−
√

2, 1), and Σ =

 1 0.5

0.5 1

. For Xi =

 Xi1,1 Xi1,2

Xi2,1 Xi2,2

, we sample
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Figure 6.1: The posterior samples of W7, W8, and W34 from Algorithm IvD-1 with only Correction 1
implemented and Algorithm IvD-1 with both corrections implemented (i.e., Algorithm IvD-1c) appear in the
first and second rows, respectively. The draws from the sampler without Correction 2 not adhering to the
constraint (6.7) are in red.

Xij,1 (j = 1, 2) from a uniform distribution on (−0.5, 0.5) for i = 1, . . . , 25, on (0.4, 1.5)

for i = 26, . . . , 50, and sample Xij,2 (j = 1, 2) from a uniform distribution on (−1, 1)

for i = 1, . . . , 25, on (0.8, 3) for i = 26, . . . , 50. We specify the prior distribution for

Σ and α2 as in Section 6.1, with ν = p, α2
0 = ν, and S = Diag(1, 1), and for β, as

β ∼ Nq[0,Diag(100, 100)]. For each algorithm, we run a chain of 15,000 and discard the

first 5,000 draws.

Figure 6.1 presents the posterior samples of W7, W8, and W34 obtained with Algo-

rithm IvD-1 with Correction 1 implemented, but not Correction 2 (row 1), and with

Algorithm IvD-1c, i.e., with both corrections (row 2). The draws from the sampler

without Correction 2 that do not adhere to the constraint (6.7) are colored red, which

illustrates the second problem of Algorithm IvD-1 described in Section 6.2. These draws

are rejected in Step 3(a) of Algorithm IvD-1c.

Unfortunately, Algorithms IvD-1, IvD-2, and BN do not return draws from the target
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Figure 6.2: Quantile-quantile plots comparing the posterior draws from different algorithms in the simula-

tion study. The columns correspond to five parameters, i.e., β1, β2, log
(

1+ρ12
1−ρ12

)
, log(σ2

22), and log(σ2
11).

The first row compares draws from Algorithms IvD-1 and IvD-1c, the second row compares draws from Al-
gorithms IvD-2 and IvD-2c, and the last row compares draws from Algorithms BN and BNc. The algorithms
of IvD fix σ2

11 = 1 and thus no comparisons are included for these algorithms in Column 5.

posterior distribution. Figure 6.2 shows quantile-quantile plots that compare the sta-

tionary distributions of original and corrected algorithms. The first row of Figure 6.2

compares Algorithms IvD-1 and IvD-1c. The distributions of β differ slightly for the

two algorithms, while the distributions of Σ differ significantly, especially the correlation

parameter, ρ12 = σ12/(σ11σ22). The second row shows the quantile-quantile plots that

compare Algorithms IvD-2 and IvD-2c. The distributions of both β and Σ differ slightly

for the two algorithms. The last row of Figure 6.2 compares Algorithms BN and BNc.

The distributions of β are similar for the two algorithms, while the distributions of Σ

are different, particularly ρ12 and σ2
22.

Trace plots of the parameters obtained with Algorithms IvD-1c, IvD-2c, and BNc exhibit

better convergence than the corresponding plots obtained with Algorithms IvD-1, IvD-2,

and BN. These plots are omitted to save space.
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Figure 6.3: Comparison of algorithms in the margarine-purchase data analysis. The first three columns

compare posterior distributions of β2, log(σ2
22), and log

(
1+ρ23
1−ρ23

)
obtained with Algorithms IvD-1c and IvD-

1, Algorithms IvD-2c and IvD-2, and Algorithms BNc and BN respectively. Blue solid line represents the
corrected algorithms, and red dashed line represents the original algorithms. The last column compares
posterior distributions of the three parameters from two corrected algorithms, Algorithms IvD-1c (blue solid
line) and IvD-2c (red dashed line).

6.4 Data Analysis

For a further comparison of the algorithms, we consider three real-data analyses. First,

we fit the MNP model to a data set describing margarine purchases which is avail-

able in the bayesm R package. Following BN, we limit analysis to purchases of six

brands: “Parkay stick”, “Blue Bonnet stick”, “Fleischmanns stick”, “House brand

stick”, “Generic stick”, and “Shedd Spread tub”, and only consider the first purchase of

one of these brands for each household. This results in a data set consisting of n = 507

observations.

We set “Parkay stick” as the base category, and p = 5. Again following BN, we set up
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Figure 6.4: Comparison of lag-100 autocorrelations of all the model parameters sampled with Algo-
rithm IvD-1c and the samplers of McCulloch and Rossi (1994), Nobile (1998), and McCulloch et al. (2000) in
the Dutch election example. Circles, triangles, and rectangles represent coefficient, variance, and correlation
parameters respectively.

a model that only includes intercept terms for the other five categories and a coefficient

for log prices. Thus q = 6, and Xi = [Ip, gi], where Ip is an identity matrix and gi is

the p-vector of differences in log prices between each category and the base. We again

specify the prior distribution for Σ and α2 as in Section 6.1, with ν = p, α2
0 = ν, and

S = Diag(1, . . . , 1), and for β, as β ∼ Nq[0,Diag(100, . . . , 100)]. When implementing

Algorithms IvD-1, IvD-1c, IvD-2, and IvD-2c, we set the variance corresponding to

“Blue Bonnet stick” to one. For each algorithm, we run a chain of length 300,000,

discard the first 100,000 draws, and thin the remaining draws by 10. In this way we

obtain 20,000 draws from each algorithm.

The first three columns of Figure 6.3 compare the posterior distributions of β2, log(σ2
22),

and log
(

1+ρ23
1−ρ23

)
sampled with Algorithms IvD-1 and IvD-1c (column 1), Algorithms IvD-

2 and IvD-2c (column 2), and Algorithms BN and BNc (column 3). The three parame-

ters are selected because their stationary distributions show relatively obvious difference

for all three pairs of original and corrected algorithms. Algorithms IvD-1, IvD-2, and BN

all fail to deliver draws from the target posterior distributions. The situation is most

substantial for Algorithm IvD-1. The last column of Figure 6.3 compares two corrected

algorithms, Algorithms IvD-1c and IvD-2c, and shows that the posterior distributions of

β2, log(σ2
22), and log

(
1+ρ23
1−ρ23

)
obtained with Algorithms IvD-1c and IvD-2c are identical.

(The corresponding distributions of the other parameters are also identical.) We do not
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compare Algorithm BNc with Algorithms IvD-1c or IvD-2c because the difference in its

model specification means its posterior distribution will differ.

IvD compared the convergence properties of Algorithm IvD-1c with those of the sam-

plers of McCulloch and Rossi (1994), Nobile (1998), and McCulloch et al. (2000), using

a series of numerical examples. Here we replicate these comparisons in order to verify

that Algorithm IvD-1c maintains the advantages of Algorithm IvD relative to the other

samplers. Thus we redo both real-data analyses in IvD, replacing Algorithm IvD-1 with

Algorithm IvD-1c. The first example considers a data set describing the voter choice in

Dutch parliamentary elections. Using the same model setting, prior specification, and

starting values as IvD, we run a chain of length 50,000 with Algorithm IvD-1c. Following

IvD, we compare Algorithm IvD-1c with the samplers of McCulloch and Rossi (1994),

Nobile (1998), and McCulloch et al. (2000) in terms of lag-100 autocorrelations of all the

model parameters, see Figure 6.4. With smaller autocorrelations for all the parameters,

Algorithm IvD-1c exhibits better convergence than the other three algorithms.

The second data set in IvD is on purchases of liquid laundry detergent. We specify the

same model and prior distributions as IvD, and run Algorithm IvD-1c to obtain three

chains of length 10,000 with the same three sets of starting values used by IvD. Trace

plots of the price coefficient, log(σ2
55), and log

(
1+ρ45
1−ρ45

)
obtained with Algorithm IvD-1c

are similar to the corresponding plots from Algorithm IvD-1 (presented in the top left

panel of Fig. 8 in IvD). Thus Algorithm IvD-1c is less sensitive to the choice of starting

values than are the other samplers. (The trace plots from these three samplers are

also displayed in Fig. 8 of IvD.) Unfortunately, in this example, however, the rejection

sampling of Σ̃ is rather time-consuming for the two chains which are initialized far from

regions of high posterior density. To solve this problem, we start running the chains

without Correction 2, that is, by sampling Σ̃ from the unconstrained inverse-Wishart

distribution. After an initial run (1,000 iterations in this example), when the chain

approaches the high-density region of the target distribution, we deploy Correction 2

and discard the initial run.
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6.5 Discussion

The algorithms of IvD and BN are implemented in the popular R package MNP and

are widely used for fitting MNP models. We point out errors in these algorithms and

propose corrections. Using both a simulation study and real-data analyses, we illustrate

the differences between the original and corrected algorithms. From these analyses, we

find that the errors can significantly affect the final results, especially in that they alter

the stationary distributions and hence the fitted parameters. Considering the popularity

of these algorithms, it is important that these errors are corrected. We have done so

here and also in the MNP package. The corrected algorithms require somewhat more

computational time due to the additional rejection sampling steps. Like other MCMC

samplers for the MNP model, computational time increases with both the sample size

n and the number of alternatives p, and like other samplers, is roughly proportional to

np. For most of the examples considered in the paper, the extra computational time is

fairly small and at least in some cases it is made up by the improved autocorrelation

of the corrected algorithms. When the initial values are far from the high-density

region of the posterior distribution, the rejection sampling of Σ̃ can be computationally

expensive. In this case, we propose doing an initial run without Correction 2 and

initializing Correction 2 when the chain reaches high-density regions.

Moreover, to further improve the convergence of Algorithm IvD-1c, we have tried com-

bining MDA and ASIS. The ASIS algorithm is constructed conditioning on β. Because

the distribution of observed quantities Y conditioning on W̃ , β, and Σ̃ is free of Σ̃; W̃ is

the sufficient augmentation for Σ̃; W̄ = Σ−1/2(W̃ −αXβ) is the corresponding ancillary

augmentation because its distribution, W̄i
iid∼ Np(0, I), is free of Σ̃. The first three steps

of the combined sampler are the same as the steps of Algorithm IvD-1c. After Step 3,

the combined sampler transforms W̃ to W̄ , samples some components of Σ̃ conditioning

on W̄ , β, and the rest Σ̃ components, and finally transforms (W̄ , Σ̃) back to (W,Σ, α).

However, this combined sampler does not show significantly more efficiency than Algo-

rithm IvD-1c, either in simulation studies or real-data analyses. One important reason
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can be that it is difficult to sample Σ̃ conditioning on W̄ . We solve this problem by

only updating some components of Σ̃ conditioning on others. However, this solution

is not sufficiently effective. We are exploring more useful methods to circumvent the

intractability of sampling Σ̃ conditioning on W̄ , which may help the combined sampler

work better.
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7
Conclusion and Future Work

7.1 Conclusion

Gibbs-type samplers are widely used tools for obtaining Monte Carlo samples from

posterior distributions under complicated Bayesian models. Standard Gibbs samplers

update component quantities of the parameter by sequentially sampling their condi-

tional distributions from the target joint distribution. However, this strategy can be

slow to converge if the components are highly correlated. In this manuscript, we make

efforts to formalize a general strategy to construct more efficient samplers by using sur-

rogate distributions, which are designed to share certain marginal distributions with

the target, but with lower correlations among its components. Specifically, we replace

some of the conditional distributions in a Gibbs sampler with conditionals of a surrogate

distribution. Although not necessarily recognized when they were introduced, a number

of existing strategies for improving Gibbs can be formulated in this way (e.g., Marginal

Data Augmentation, Partially Collapsed Gibbs sampling, Ancillarity-Sufficiency Inter-

weaving Strategy, etc.). Under particular settings, these existing strategies are even
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equivalent in terms of surrogate distributions. However, the use of surrogate distribu-

tions in Gibbs-type samplers may lead to incompatible conditional distributions and

thus sensitivity to the order of the component draws. Thus we propose a framework

to combine different strategies involving surrogate distributions into a single coherent

sampler that maintains the target stationary distribution and outperforms any of its

component algorithms in terms of convergence. This combining strategy, as a special

case of implementing the surrogate distribution strategy, greatly amplifies our power

to improve the convergence of Gibbs-type samplers. A problem in supernova cosmol-

ogy has motivated our work and serves as a realistic testing ground for our methods.

Our new algorithms are efficient in fitting the Gaussian hierarchical model in supernova

cosmology and several extensions of this model.

7.2 Future Work

In the future, our main task is to refine the theory of our framework and generalize our

algorithms for applications in wider field. At this stage, we are exploring the following

three problems. First, the combining strategy developed in Chapter 3 can be extended

by considering more algorithms. That is, the algorithms to be combined do not need

to be restricted within PCG, MDA, ASIS, and MH strategies. Now we are exploring

the possibility of combining pseudo marginal Monte Carlo methods and PCG to facili-

tate implementation and boost efficiency. Second, so far, we have not found convincing

numerical examples to illustrate the computational advantage of using surrogate condi-

tionals in a Gibbs-type sampler, especially a sampler with more than two steps. Thus we

need to keep searching for such examples that we can verify the power of our surrogate

distribution strategy numerically. Furthermore, we should improve the theory for the

surrogate distribution strategy, because so far we cannot provide clear guidance on the

usage of surrogate conditional distributions in a Gibbs-type (particularly multi-step)

sampler, which guarantees an improvement of the convergence properties.
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A
Details of Steps of the

Gibbs-type Samplers in Chapter 2

A.1 Details of the MH within Gibbs and MH within PCG samplers for

fitting the spectral model in (2.1)

With noninformative uniform prior distributions for all of the parameters, the posterior

distribution of α, β, γ, µ, and φ under the spectral model (2.1) is

p(α, β, γ, µ, φ|Y ) ∝
n∏
i=1

[
α(Ei

−β + γI{i = µ})e−φ/Ei
]Yi

exp

{
−α

n∑
i=1

(Ei
−β + γI{i = µ})e−φ/Ei

}
.

(A.1)

The joint posterior distribution of α, β, γ, µ, φ, and the augmented data YL is

p(YL, α, β, γ, µ, φ|Y ) ∝ α
∑n
i=1 Yie−φ

∑n
i=1(Yi/Ei)

[
n∏
i=1

E
−β(Yi−YiL)
i

(Yi − YiL)!YiL!

]
γ
∑n
i=1 YiL

×

{
n∏
i=1

[I{i = µ}]YiL
}

exp

{
−α

n∑
i=1

(Ei
−β + γI{i = µ})e−φ/Ei

}
.

(A.2)

Thus the steps of the parent MH within Gibbs sampler in Figure 2.3(a) or 2.9(a) are
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Step 1: Sample YiL from Binomial
{
Yi,

γ′I{i=µ′}
Ei
−β′+γ′I{i=µ′}

}
, for i = 1, . . . , n,

Step 2: Sample α from Gamma
{∑n

i=1 Yi + 1,
∑n

i=1(Ei
−β′ + γ′I{i = µ′})e−φ′/Ei

}
,

Step 3: Use MH to sample β from p(β|Y, YL, α, γ′, µ′, φ′) ∝ p(YL, α, β, γ
′, µ′, φ′|Y ),

Step 4: Sample γ from Gamma
{∑n

i=1 YiL + 1, α
∑n

i=1 I{i = µ′}e−φ′/Ei
}

,

Step 5: Use MH to sample µ from p(µ|Y, YL, α, β, γ, φ′) ∝ p(YL, α, β, γ, µ, φ
′|Y ),

Step 6: Use MH to sample φ from p(φ|Y, YL, α, β, γ, µ) ∝ p(YL, α, β, γ, µ, φ|Y ).

The steps of the MH within PCG sampler with lowest degree of partial collapsing, i.e.,

Sampler 2.1, are

Step 1: Use MH to sample µ from p(µ|Y, α′, β′, γ′, φ′) ∝ p(α′, β′, γ′, µ, φ′|Y ),

Step 2: Sample YiL from Binomial
{
Yi,

γ′I{i=µ}
Ei
−β′+γ′I{i=µ}

}
, for i = 1, . . . , n,

Step 3: Sample α from Gamma
{∑n

i=1 Yi + 1,
∑n

i=1(Ei
−β′ + γ′I{i = µ})e−φ′/Ei

}
,

Step 4: Use MH to sample β from p(β|Y, YL, α, γ′, µ, φ′) ∝ p(YL, α, β, γ
′, µ, φ′|Y ),

Step 5: Sample γ from Gamma
{∑n

i=1 YiL + 1, α
∑n

i=1 I{i = µ}e−φ′/Ei
}

,

Step 6: Use MH to sample φ from p(φ|Y, YL, α, β, γ, µ) ∝ p(YL, α, β, γ, µ, φ|Y ).

Integrating (A.1) over α, we have,

p(β, γ, µ, φ|Y ) ∝
n∏
i=1

[
(Ei
−β + γI{i = µ})e−φ/Ei

]Yi×[
n∑
i=1

(Ei
−β + γI{i = µ})e−φ/Ei

]−(
∑n
i=1 Yi+1)

.

(A.3)

Hence, the steps of the MH within PCG sampler with medium degree of partial collaps-

ing, i.e., Sampler 2.2, are

Step 1: Use MH to sample µ from p(µ|Y, β′, γ′, φ′) ∝ p(β′, γ′, µ, φ′|Y ),

Step 2: Use MH to sample φ from p(φ|Y, β′, γ′, µ) ∝ p(β′, γ′, µ, φ|Y ),

Step 3: Use MH to sample β from p(β|Y, γ′, µ, φ) ∝ p(β, γ′, µ, φ|Y ),

Step 4: Sample α from Gamma
{∑n

i=1 Yi + 1,
∑n

i=1(Ei
−β + γ′I{i = µ})e−φ/Ei

}
,

Step 5: Sample YiL from Binomial
{
Yi,

γ′I{i=µ}
Ei
−β+γ′I{i=µ}

}
, for i = 1, . . . , n,

Step 6: Sample γ from Gamma
{∑n

i=1 YiL + 1, α
∑n

i=1 I{i = µ}e−φ/Ei
}

.
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The steps of the MH within PCG sampler with highest degree of partial collapsing, i.e.,

Sampler 2.3, are almost the same as Sampler 2.2, except that Steps 2 and 3 are combined

into one single step. That is, we use MH to sample (β, φ) from p(β, φ|Y, γ′, µ) ∝
p(β, γ′, µ, φ|Y ).

We use a uniform distribution on {1, . . . , n} as the jumping rule when updating µ.

When updating either β or φ via MH, we specify a Gaussian distribution centered at

the current draw of the parameter as the jumping rule; the variance of the jumping rule

is adjusted to obtain an acceptance rate of around 40%. Analogously, when sampling

β and φ jointly via MH, the jumping rule is a bivariate Gaussian distribution centered

at the current draw with variance-covariance matrix adjusted to obtain an acceptance

rate of around 20%.

A.2 Details of the MH within Gibbs and MH within PCG samplers for

fitting the cosmological hierarchical model in (2.14)–(2.16)

The posterior distribution of (ξ,X,C , α, β,ΣP ) is

p(ξ,X,C , α, β,ΣP |Y ) ∝ |ΣC |−1/2|ΣP |−1/2|Σ0|−1/2 1

R2
c

1

R2
x

1

σ2
res

exp

{
− 1

2

[
(Y − AX − L)TΣ−1

C (Y − AX − L)

+ (X − Jξ)TΣ−1
P (X − Jξ) + (ξ − ξm)TΣ−1

0 (ξ − ξm)
]}

,

(A.4)

where J(3n×3) = (I, . . . , I) with I = Diag(1, 1, 1), A(3n×3n) = Diag(T, . . . , T ) with

T(3×3) =

 1 0 0

0 1 0

β −α 1

, L denotes the (3n× 1) vector (0, 0, µ1, . . . , 0, 0, µn), which is a

deterministic function of C , ξm = (0, 0,Mm), ΣC and ΣP are defined in Section 2.3.2,

and Σ0 = Diag(σ2
c0
, σ2

x0
, σ2

M0
).

The steps of the MH within Gibbs sampler, i.e., Sampler 2.7, are

Step 1: Sample (ξ,X), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X from N(µA,ΣA).

where Σ−1
A = ATΣ−1

C A + Σ−1
P , K−1 = −JTΣ−1

P ΣAΣ−1
P J + JTΣ−1

P J + Σ−1
0 , ∆ =

ATΣ−1
C (Y − L), µA = ΣA(∆ + Σ−1

P Jξ), and k0 = K(JTΣ−1
P ΣA∆ + Σ−1

0 ξm).
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Step 2: Use MH to sample C from p(C |Y, ξ,X, α, β,ΣP ), which is proportional to

p(ξ,X,C , α, β,ΣP |Y ), under the constraint C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2].

Step 3: Sample (α, β) from N(µB,ΣB) with constraint (α, β) ∈ [0, 1]× [0, 4], where

Σ−1
B =


n∑
i=1

x2i
σ̂2
mBi

n∑
i=1

−xici
σ̂2
mBi

n∑
i=1

−xici
σ̂2
mBi

n∑
i=1

c2i
σ̂2
mBi

 and µB = ΣB

 ∑n
i=1

xi(Mi−m̂Bi+µi)
σ̂2
mBi∑n

i=1
−ci(Mi−m̂Bi+µi)

σ̂2
mBi

 .
Step 4: Sample ΣP , which consists of three sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].

• Sample σ2
res from Inv-Gamma

[
n
2
,
∑n
i=1 (Mi−M0)2

2

]
with log(σres) ∈ [−5, 2].

Moreover, integrating (ξ,X) out of (A.4), the marginal distribution of (C , α, β,ΣP ) is

p(C , α, β,ΣP |Y ) ∝ |ΣC |−1/2|ΣP |−1/2|ΣA|1/2|K|1/2|Σ0|−1/2 1

R2
c

1

R2
x

1

σ2
res

× exp

{
− 1

2

[
(Y − L)TΣ−1

C (Y − L)−∆TΣA∆

−kT0 K−1k0 + ξTmΣ−1
0 ξm

]}
.

(A.5)

The steps of the MH within PCG sampler, i.e., Sampler 2.8, are

Step 1: Use MH to sample C from p(C |Y, α, β,ΣP ), which is proportional to p(C , α,

β,ΣP |Y ), with C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2].

Step 2: Use MH to sample (α, β) from p(α, β|Y,C ,ΣP ), which is proportional to

p(C , α, β,ΣP |Y ), with (α, β) ∈ [0, 1]× [0, 4].

Step 3: Sample (ξ,X), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).

Step 4: Sample ΣP , which consists of three sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].
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• Sample σ2
res from Inv-Gamma

[
n
2
,
∑n
i=1 (Mi−M0)2

2

]
with log(σres) ∈ [−5, 2].

When MH updates are required in any of the samplers, we use truncated Gaussian

distributions as the proposal distributions. These distributions are centered at the

current draws with variance-covariance matrices adjusted to obtain an acceptance rate

of around 25%. The truncation enforces prior constraints and in all cases the MH

updates are bivariate.

When generating parameters from a truncated distribution, we repeat drawing from the

corresponding unconstrained distribution until the truncation condition is satisfied. In

the cosmological example, rejection sampling is not computationally demanding, since

the ranges of the prior distributions are fairly large.

A.3 Details of the Gibbs and MH within PCG samplers for fitting the

factor analysis model in (2.21)

With priors p(σ2
j ) = Inv-Gamma(a, b) (j = 1, . . . , 6) and p(β) ∝ 1, the joint posterior

distribution of Z, β, and Σ under the factor analysis model (2.21) is

p(Z, β,Σ|Y ) ∝ exp

{
−1

2

100∑
i=1

[
(Yi − βZi)TΣ−1(Yi − βZi) + Zi

TZi

]}

|Σ|−100/2

(
6∏
j=1

σ
−2(a+1)
j

)
exp

{
−b

6∑
j=1

σ−2
j

}
.

(A.6)

Thus the steps of the Gibbs sampler, i.e., Sampler 2.9, are

Step 1: Sample Zi from N2

[
(I2 + β′TΣ′−1β′)

−1
β′TΣ′−1Yi, (I2 + β′TΣ′−1β′)

−1
]
, for i =

1, . . . , 100.

Step 2: Sample σ2
j from Inv-Gamma

[
a+ 100

2
, b+ 1

2

∑100
i=1 (Yij − β′jZi)

2], for j = 1, . . . , 6,

where β′j denotes the jth row of β′.

Step 3: Because of the constraint that β11 > 0, β22 > 0 and β12 = 0, we sample β from

p(β|Y, Z,Σ) by

• sampling β11 from TN
[∑100

i=1 Yi1Zi1∑100
i=1 Z

2
i1

,
σ2
1∑100

i=1 Z
2
i1

] ∣∣∣∣
β11>0

,

where TN(µ0, σ
2
0)
∣∣
F

denotes a normal distribution N(µ0, σ
2
0) truncated by the

constraint F ,
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• sampling β2 from TN2

[(
ZZT

)−1
ZY.2,

(
ZZT/σ2

2

)−1
] ∣∣∣∣

β22>0

,

where Y.2 denotes the vector (Y12 . . . , Yn2),

• sampling βj from N2

[(
ZZT

)−1
ZY.j,

(
ZZT/σ2

j

)−1
]
, for j = 3, . . . , 6.

Integrating (A.6) out of Z, we obtain the marginal posterior distribution of β and Σ,

that is,

p(β,Σ|Y ) ∝ exp

{
−1

2

n∑
i=1

[
Y T
i (Σ−1 − Σ−1β(I2 + βTΣ−1β)

−1
βTΣ−1)Y T

i

]}
∣∣I2 + βTΣ−1β

∣∣−100/2|Σ|−100/2

(
6∏
j=1

σ
−2(a+1)
j

)
exp

{
−b

6∑
j=1

σ−2
j

}
.

(A.7)

Henceforth, the steps of the MH within PCG sampler, i.e., Sampler 2.10, are

Step j: Use MH to sample σ2
j from p(σ2

j |Y, σ2′
−j, β

′) ∝ p(β,Σ|Y ), for j = 1, . . . , 4,

where σ2′
−j denotes the (5× 1) vector (σ2

1, . . . , σ
2
j−1, σ

2′
j+1, . . . , σ

2
6
′
).

Step 5: Sample Zi from N2

{[
I2 + β′

T
(Σ′)

−1
β′
]−1

β′
T

(Σ′)
−1
Yi,
[
I2 + β′

T
(Σ′)

−1
β′
]−1
}

, for i =

1, . . . , 100,

where Σ′ = Diag(σ2
1, . . . , σ

2
4, σ

2
5
′
, σ2

6
′
).

Step 6: Sample σ2
j from Inv-Gamma

[
a+ 100

2
, b+ 1

2

∑100
i=1 (Yij − β′jZi)

2], for j = 5, 6.

Step 7: Sample β from p(β|Y, Z,Σ) by

• sampling β11 from TN
[∑100

i=1 Yi1Zi1∑100
i=1 Z

2
i1

,
σ2
1∑100

i=1 Z
2
i1

] ∣∣∣∣
β11>0

,

• sampling β2 from TN2

[(
ZZT

)−1
ZY.2,

(
ZZT/σ2

2

)−1
] ∣∣∣∣

β22>0

,

• sampling βj from N2

[(
ZZT

)−1
ZY.j,

(
ZZT/σ2

j

)−1
]
, for j = 3, . . . , 6.

To sample σ2
j (j = 1, . . . , 4) without Z in Sampler 2.10, we first update log(σ2

j ) via

MH. The proposal distribution is specified as a Gaussian distribution centered at the

logarithm of the current draw of σ2
j ; the variance is adjusted to obtain an acceptance

rate of around 40%. Then the new iteration of σ2
j is set to the exponential of the

updated log(σ2
j ).
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B
The Proof of One Statement and

Details of the Gibbs-type

Samplers in Chapter 3

B.1 Proof of the equality of the cyclic-permutation bound of the

Gibbs sampler in Figure 3.2 and that of Gibbs Sampler 2

Proof. Recall that the cyclic-permutation bound of an N -step Gibbs-type sampler is de-

fined by minj∈{0,...,N−1}{γj}, where γj is the norm of the forward operator corresponding

to the j-step-lagged sampler, see Section 1.3 of Chapter 1. Henceforth, to prove that

the cyclic-permutation bound of the Gibbs sampler in Figure 3.2 equals to that of

Gibbs Sampler 2, we just need to show that these two samplers have equal values for all

of {γj, j = 0, 1, 2}. We use γ1
j to denote the norm of the forward operator corresponding

to the j-step-lagged sampler of the Gibbs sampler in Figure 3.2, and γ2
j to denote that

of Gibbs Sampler 2. We present the proof of γ1
1 = γ2

1 here; γ1
0 = γ2

0 and γ1
2 = γ2

2 can be

shown in the similar way.

The 1-step-lagged sampler of Gibbs Sampler 2 proceeds by

1. p̃(ψ2|α′, ψ̃′1, ψ′3)

2. p(ψ3|ψ′1, ψ2) (where ψ′1 = G−1
α′ (ψ̃′1))

3. p̃(α, ψ̃1|ψ2, ψ3); set ψ1 = G−1
α (ψ̃1),
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where Step 1 is equivalent to sampling ψ2 from p(ψ2|ψ′1, ψ′3) and Step 3 is equivalent to

sampling (α, ψ1) from p(α)p(ψ1|ψ2, ψ3). The stationary distribution of this 1-step-lagged

sampler is p̃(α, ψ1, ψ2, ψ3)p(α)p(ψ1, ψ2, ψ3).

The 1-step-lagged sampler of the Gibbs sampler in Figure 3.2 proceeds by

1. p(ψ2|ψ′1, ψ′3)

2. p(ψ3|ψ′1, ψ2)

3. p(ψ1|ψ2, ψ3),

and its stationary distribution is p(ψ1, ψ2, ψ3).

Then ∀h ∈ L2
0(p̃), with varp̃(h) = 1, we have

varp̃[E(h(α, ψ1, ψ2, ψ3)|ψ′1, ψ′3)] = Ep̃[E
2(h(α, ψ1, ψ2, ψ3)|ψ′1, ψ′3)]

=
∫

[
∫
h(α, ψ1, ψ2, ψ3)p(ψ2|ψ′1, ψ′3)p(ψ3|ψ′1, ψ2)p(α)p(ψ1|ψ2, ψ3)dαdψ1dψ2dψ3]

2

p(α′)p(ψ′1, ψ
′
2, ψ

′
3)dα′dψ′1dψ′2dψ′3

= varp(h
?)
∫ [∫ h?(ψ1,ψ2,ψ3)√

varp(h?)
p(ψ2|ψ′1, ψ′3)p(ψ3|ψ′1, ψ2)p(ψ1|ψ2, ψ3)dψ1dψ2dψ3

]2

p(ψ′1, ψ
′
2, ψ

′
3)dψ′1dψ′2dψ′3

≤ (γ1
1)

2
varp(h

?) ≤ (γ1
1)

2
,

(B.1)

where h?(ψ1, ψ2, ψ3) =
∫
h(α, ψ1, ψ2, ψ3)p(α)dα; h? ∈ L2

0(p), and varp(h
?) ≤ 1 because

i) Ep(h
?) =

∫
[
∫
h(α, ψ1, ψ2, ψ3)p(α)dα]p(ψ1, ψ2, ψ3)dψ1dψ2dψ3 = Ep̃(h) = 0;

ii) varp(h
?) =

∫
[
∫
h(α, ψ1, ψ2, ψ3)p(α)dα]

2
p(ψ1, ψ2, ψ3)dψ1dψ2dψ3 ≤ varp̃(h) = 1.

From (B.1), we conclude that γ2
1 ≤ γ1

1 .

Next, ∀g ∈ L2
0(p) with varp(g) = 1, it also holds that g ∈ L2

0(p̃) with varp̃(g) = 1 since

i) Ep̃(g) =
∫
g(ψ1, ψ2, ψ3)p(α)p(ψ1, ψ2, ψ3)dαdψ1dψ2dψ3 = Ep(g) = 0;

ii) varp̃(g) =
∫
g2(ψ1, ψ2, ψ3)p(α)p(ψ1, ψ2, ψ3)dαdψ1dψ2dψ3 = varp(g) = 1.

Thus, in addition, we have

varp[E(g(ψ1, ψ2, ψ3)|ψ′1, ψ′3)] = Ep[E
2(g(ψ1, ψ2, ψ3)|ψ′1, ψ′3)]

=
∫

[
∫
g(ψ1, ψ2, ψ3)p(ψ2|ψ′1, ψ′3)p(ψ3|ψ′1, ψ2)p(ψ1|ψ2, ψ3)dψ1dψ2dψ3]

2

p(ψ′1, ψ
′
2, ψ

′
3)dψ′1dψ′2dψ′3

=
∫

[
∫
g(ψ1, ψ2, ψ3)p(ψ2|ψ′1, ψ′3)p(ψ3|ψ′1, ψ2)p(α)p(ψ1|ψ2, ψ3)dαdψ1dψ2dψ3]

2

p(α′)p(ψ′1, ψ
′
2, ψ

′
3)dα′dψ′1dψ′2dψ′3

≤ (γ2
1)

2
.

(B.2)
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From (B.2), we conclude that γ1
1 ≤ γ2

1 .

Combining (B.1) and (B.2), γ1
1 = γ2

1 .

B.2 Details of the ASIS and combined samplers for fitting the factor

analysis model (2.21)

Setting Wi = βZi (i = 1, . . . , 100), the joint posterior distribution of W , β, and Σ is,

p(W,β,Σ|Y ) ∝ exp

{
−1

2

100∑
i=1

[
(Yi −Wi)

TΣ−1(Yi −Wi) + W̃ T
i

(
β̃β̃T

)−1

W̃i

]}
∣∣∣β̃β̃T ∣∣∣−100/2

|Σ|−100/2

(
6∏
j=1

σ
−2(a+1)
j

)
exp

{
−b

6∑
j=1

σ−2
j

}
,

(B.3)

where W̃i (i = 1, . . . , 100) denotes the sub-vector (Wi1,Wi2), and β̃ is defined in Sec-

tion 3.1.

The steps of the ASIS sampler, i.e., Sampler 3.1, are

Step 1: Sample Z?
i from N2

[
(I2 + β′TΣ′−1β′)

−1
β′TΣ′−1Yi, (I2 + β′TΣ′−1β′)

−1
]
, for i =

1, . . . , 100.

Step 2: Sample σ2
j from Inv-Gamma

[
a+ 100

2
, b+ 1

2

∑100
i=1 (Yij − β′jZ?

i )2], for j = 1, . . . , 6.

Step 3: Sample β? from p(β|Y, Z?,Σ) by

• sampling β?11 from TN
[∑100

i=1 Yi1Z
?
i1∑100

i=1 Z
?
i1

2 ,
σ2
1∑100

i=1 Z
?
i1

2

] ∣∣∣∣
β?11>0

,

• sampling β?2 from TN2

[(
Z?Z?T

)−1
Z?Y.2,

(
Z?Z?T/σ2

2

)−1
] ∣∣∣∣

β?22>0

,

• sampling β?j from N2

[(
Z?Z?T

)−1
Z?Y.j,

(
Z?Z?T/σ2

j

)−1
]
, for j = 3, . . . , 6;

Then set Wi = β?Z?
i , for i = 1, . . . , 100.

Step 4: Sample β from p(β|Y,W,Σ) by

• sampling β̃ from p(β̃|Y,W,Σ):

first, sampling S from Inv-wishart(ν, S0), where the degrees of freedom ν =

100 − 6 − 1 and the (2 × 2) scale matrix S0 =
∑100

i=1 W̃iW̃
T
i ; Then set β̃ as

the Cholesky factor of S, i.e., β̃ is the unique (2 × 2) lower triangle matrix

with positive diagonal elements satisfying S = β̃β̃T ,

167



• sampling βj from N2[mj, Vj], for j = 3, . . . , 6,

where Vj =

[
β̃−1(

∑100
i=1 W̃iW̃

T
i )(β̃T )

−1

σ2
j

]−1

, and mj = Vjβ̃
−1

 ∑100
i=1Wi1Yij
σ2
j∑100

i=1Wi2Yij
σ2
j

;

Finally set Zi = β̃−1W̃i, for i = 1, . . . , 100.

The steps of the sampler combining MH within PCG and ASIS, i.e., Sampler 3.2, are

Step j: Use MH to sample σ2
j from p(σ2

j |Y, σ2′
−j, β

′) ∝ p(β,Σ|Y ), for j = 1, . . . , 4,

where σ2′
−j denotes the (5× 1) vector (σ2

1, . . . , σ
2
j−1, σ

2′
j+1, . . . , σ

2
6
′
).

Step 5: Sample Z?
i from N2

{[
I2 + β′

T (
Σ(4)

)−1
β′
]−1

β′
T (

Σ(4)
)−1

Yi,
[
I2 + β′

T (
Σ(4)

)−1
β′
]−1
}

,

for i = 1, . . . , 100.

Step 6: Sample σ2
j from Inv-Gamma

[
a+ 100

2
, b+ 1

2

∑100
i=1 (Yij − β′jZ?

i )2], for j = 5, 6.

Step 7: Sample β? from p(β|Y, Z?,Σ) by

• sampling β?11 from TN
[∑100

i=1 Yi1Z
?
i1∑100

i=1 Z
?
i1

2 ,
σ2
1∑100

i=1 Z
?
i1

2

] ∣∣∣∣
β?11>0

,

• sampling β?2 from TN2

[(
Z?Z?T

)−1
Z?Y.2,

(
Z?Z?T/σ2

2

)−1
] ∣∣∣∣

β?22>0

,

• sampling β?j from N2

[(
Z?Z?T

)−1
Z?Y.j,

(
Z?Z?T/σ2

j

)−1
]
, for j = 3, . . . , 6;

Then set Wi = β?Z?
i , for i = 1, . . . , 100.

Step 8: Sample β from p(β|Y,W,Σ) by

• sampling β̃ from p(β̃|Y,W,Σ):

first, sampling S from Inv-wishart(ν, S0); Then set β̃ as the Cholesky factor

of S,

• sampling βj from N2[mj, Vj], for j = 3, . . . , 6;

Finally set Zi = β̃−1W̃i, for i = 1, . . . , 100.

B.3 Details of the ASIS and combined samplers for fitting the cosmo-

logical hierarchical model in (2.14)–(2.16)

Setting X̄ = AX + L, the joint distribution of (ξ, X̄,C , α, β,Σ2
P ) is
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p(ξ, X̄,Ωm,ΩΛ, α, β,Σ
2
P |Y ) ∝ |ΣC |−1/2|ΣP |−1/2|Σ0|−1/2 1

R2
c

1

R2
x

1

σ2
res

exp

{
− 1

2

[
(Y − X̄)

T
Σ−1
C (Y − X̄)

+ (A−1X̄ − A−1L− Jξ)TΣ−1
P (A−1X̄ − A−1L− Jξ)

+ (ξ − ξm)TΣ−1
0 (ξ − ξm)

]}
.

(B.4)

The steps of the ASIS sampler, i.e., Sampler 3.3, are

Step 1: Sample (ξ,X?), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X? from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).

Step 2: Use MH to sample C ? from p(C |Y, ξ,X, α, β,ΣP ), which is proportional to

p(ξ,X,C , α, β,ΣP |Y ), under the constraint C ? = (Ω?
m,Ω

?
Λ) ∈ [0, 1]× [0, 2];

Use C ? to construct L?.

Step 3: Sample (α?, β?) from N(µB,ΣB) with constraint (α?, β?) ∈ [0, 1]× [0, 4];

Use (α?, β?) to construct A?. Then set X̄ = A?X? + L?.

Step 4: Use MH to sample C from p(C |Y, ξ, X̄, α?, β?,ΣP ), which is proportional to

p(ξ, X̄,C , α?, β?,ΣP |Y ) under the constraint C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2];

Use C to construct L.

Step 5: Sample (α, β) from N(µD,ΣD) with constraint (α, β) ∈ [0, 1]× [0, 4], where

Σ−1
D =


n∑
i=1

x̄2i
σ2
res

n∑
i=1

−x̄ic̄i
σ2
res

n∑
i=1

−x̄ic̄i
σ2
res

n∑
i=1

c̄2i
σ2
res

 and µD = ΣD

[ ∑n
i=1

x̄i(M0−M̄i)
σ2
res∑n

i=1
−c̄i(M0−M̄i)

σ2
res

]
,

where c̄i, x̄i, and M̄i are the (3i− 2)th, (3i− 1)th, and (3i)th components of (X̄−L);

Use (α, β) to construct A. Then set X = A−1(X̄ − L).

Step 6: Sample ΣP , which consists of three sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].
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• Sample σ2
res from Inv-Gamma

[
n
2
,
∑n
i=1 (Mi−M0)2

2

]
with log(σres) ∈ [−5, 2].

The steps of the sampler combining MH within PCG and ASIS, i.e., Sampler 3.4, are

Step 1: Use MH to sample C from p(C |Y, α, β,ΣP ), which is proportional to p(C |α,
β,ΣP |Y ) with C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2];

Use C to construct L.

Step 2: Sample (ξ,X?), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X? from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).

Step 3: Sample (α?, β?) from N(µB,ΣB) with constraint (α?, β?) ∈ [0, 1]× [0, 4];

Use (α?, β?) to construct A?. Then set X̄ = A?X? + L.

Step 4: Sample (α, β) from N(µD,ΣD) with constraint (α, β) ∈ [0, 1]× [0, 4];

Use (α, β) to construct A. Then set X = A−1(X̄ − L).

Step 5: Sample ΣP , which consists of three sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].

• Sample σ2
res from Inv-Gamma

[
n
2
,
∑n
i=1 (Mi−M0)2

2

]
with log(σres) ∈ [−5, 2].

B.4 Details of the Gibbs-type samplers for fitting the hierarchical t

model in (3.12) and (3.13)

With the prior p(µ, σ, τ) ∝ 1, the joint posterior distribution of Z, σ2, β, τ , and µ under

the hierarchical t model in (3.12) and (3.13) is

p(Z, σ2, β, τ, µ|Y ) ∝ exp
{
−1

2

[∑n
i=1 Zi(Yi−βiXi)

2

σ2 + ν
∑n

i=1 Zi +
∑n
i=1 (βi−µ)2

τ2

]}
(σ2)

−(n+1)/2
τ−n
(∏n

i=1 Z
(ν−1)/2
i

)
.

(B.5)

Thus the steps of the Gibbs sampler, i.e., Sampler 3.5, are

Step 1: Sample Zi from Gamma
[
ν+1

2
, ν

2
+

(Yi−β′iXi)
2

2(σ2)′

]
, for i = 1, . . . , n.
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Step 2: Sample σ2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 Zi(Yi−β′iXi)

2

2

]
.

Step 3: Sample βi from N
[(

ZiYiXi
σ2 + µ′

(τ ′)2

)/(ZiX2
i

σ2 + 1
(τ ′)2

)
, 1
/(ZiX2

i

σ2 + 1
(τ ′)2

)]
, for i =

1, . . . , n.

Step 4: Sample (τ, µ) from p(τ, µ|Y, Z, β, σ2) by

• sampling τ 2 from Inv-Gamma
{
n
2
− 1,

[∑n
i=1 β

2
i −

(
∑n
i=1 βi)

2

n

] /
2
}

; τ =
√
τ 2,

• sampling µ from N
(∑n

i=1 βi
n

, τ
2

n

)
.

Setting Z̃ = αZ, and specifying the Haar measure prior to α as p∞(α) ∝ 1/α, we obtain

the joint posterior distribution of Z̃, α, σ2, β, τ and µ, that is,

p̃(Z̃, α, σ2, β, τ, µ|Y ) ∝ exp
{
−1

2

[∑n
i=1 Z̃i(Yi−βiXi)

2

ασ2 +
ν
∑n
i=1 Z̃i
α

+
∑n
i=1 (βi−µ)2

τ2

]}
(σ2)

−(n+1)/2
τ−nα−(nν+n)/2−1

(∏n
i=1 Z̃

(ν−1)/2
i

)
.

(B.6)

The steps of the Haar PX-DA sampler, i.e., Sampler 3.6, are

Step 1: Sample Z?
i from Gamma

[
ν+1

2
, ν

2
+

(Yi−β′iXi)
2

2(σ2)′

]
, for i = 1, . . . , n.

Step 2: Sample α from Inv-Gamma
(
nν+1

2
,
ν
∑n
i=1 Z

?
i

2

)
; Set Z = Z?/α.

Step 3: Sample σ2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 Zi(Yi−β′iXi)

2

2

]
.

Step 4: Sample βi from N
[(

ZiYiXi
σ2 + µ′

(τ ′)2

)/(ZiX2
i

σ2 + 1
(τ ′)2

)
, 1
/(ZiX2

i

σ2 + 1
(τ ′)2

)]
, for i =

1, . . . , n.

Step 5: Sample (τ, µ) from p(τ, µ|Y, Z, σ2, β) by

• sampling τ 2 from Inv-Gamma
{
n
2
− 1,

[∑n
i=1 β

2
i −

(
∑n
i=1 βi)

2

n

] /
2
}

; τ =
√
τ 2,

• sampling µ from N
(∑n

i=1 βi
n

, τ
2

n

)
.

Furthermore, setting β̄ = (β−µ)/τ , we obtain the joint posterior distribution of Z, σ2,

β̄, τ , and µ, that is,

p(Z, σ2, β̄, τ, µ|Y ) ∝ exp
{
−1

2

[∑n
i=1 Zi(Yi−τ β̄iXi−µXi)

2

σ2 + ν
∑n

i=1 Zi +
∑n

i=1 β̄
2
i

]}
(σ2)

−(n+1)/2
(∏n

i=1 Z
(ν−1)/2
i

)
.

(B.7)

The steps of the ASIS sampler, i.e., Sampler 3.7, are
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Step 1: Sample Zi from Gamma
[
ν+1

2
, ν

2
+

(Yi−β′iXi)
2

2(σ2)′

]
, for i = 1, . . . , n.

Step 2: Sample σ2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 Zi(Yi−β′iXi)

2

2

]
.

Step 3: Sample β?i from N
[(

ZiYiXi
σ2 + µ′

(τ ′)2

)/(ZiX2
i

σ2 + 1
(τ ′)2

)
, 1
/(ZiX2

i

σ2 + 1
(τ ′)2

)]
, for i =

1, . . . , n.

Step 4: Sample (τ ?, µ?) from p(τ, µ|Y, Z, β?, σ2) by

• sampling (τ ?)2 from Inv-Gamma
{
n
2
− 1,

[∑n
i=1 (β?i )

2 − (
∑n
i=1 β

?
i )2

n

] /
2
}

; τ ? =√
(τ ?)2,

• sampling µ? from N
[∑n

i=1 β
?
i

n
, (τ?)2

n

]
;

Set β̄ = (β? − µ?)/τ ?.

Step 5: Sample (τ, µ) from p(τ, µ|Y, Z, β̄, σ2) by

• sampling τ from TN(mτ , Vτ )
∣∣
τ>0

, where

mτ =

∑n
i=1 ZiYiβ̄iXi − (

∑n
i=1 ZiYiXi)(

∑n
i=1 Ziβ̄iX

2
i )
/

(
∑n

i=1 ZiX
2
i )∑n

i=1 Ziβ̄
2
iX

2
i − (

∑n
i=1 Ziβ̄iX

2
i )

2/
(
∑n

i=1 ZiX
2
i )

and

Vτ =
σ2∑n

i=1 Ziβ̄
2
iX

2
i − (

∑n
i=1 Ziβ̄iX

2
i )

2/
(
∑n

i=1 ZiX
2
i )
,

• sampling µ from N
[∑n

i=1 Zi(Yi−τβ̄i)Xi∑n
i=1 ZiX

2
i

, σ2∑n
i=1 ZiX

2
i

]
;

Set β = τ β̃ + µ.

Finally, the steps of the sampler combining Haar PX-DA and ASIS, Sampler 3.8, are

Step 1: Sample Z?
i from Gamma

[
ν+1

2
, ν

2
+

(Yi−β′iXi)
2

2(σ2)′

]
, for i = 1, . . . , n.

Step 2: Sample α from Inv-Gamma
(
nν+1

2
,
ν
∑n
i=1 Z

?
i

2

)
; Set Z = Z?/α.

Step 3: Sample σ2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 Zi(Yi−β′iXi)

2

2

]
.

Step 4: Sample β?i from N
[(

ZiYiXi
σ2 + µ′

(τ ′)2

)/(ZiX2
i

σ2 + 1
(τ ′)2

)
, 1
/(ZiX2

i

σ2 + 1
(τ ′)2

)]
, for i =

1, . . . , n.

Step 5: Sample (τ ?, µ?) from p(τ, µ|Y, Z, β?, σ2) by
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• sampling (τ ?)2 from Inv-Gamma
{
n
2
− 1,

[∑n
i=1 (β?i )

2 − (
∑n
i=1 β

?
i )2

n

] /
2
}

; τ ? =√
(τ ?)2,

• sampling µ? from N
[∑n

i=1 β
?
i

n
, (τ?)2

n

]
;

Set β̄ = (β? − µ?)/τ ?.

Step 6: Sample (τ, µ) from p(τ, µ|Y, Z, β̄, σ2) by

• sampling τ from TN(mτ , Vτ )
∣∣
τ>0

,

• sampling µ from N
[∑n

i=1 Zi(Yi−τ β̄i)Xi∑n
i=1 ZiX

2
i

, σ2∑n
i=1 ZiX

2
i

]
;

Set β = τ β̃ + µ.

B.5 Details of the steps of the Gibbs-type samplers for fitting the

hierarchical probit model in (3.16)

With the prior distributions µ ∼ N(0, V ) and p(τ) ∝ 1, the joint posterior distribution

of Z, β, µ and τ under the hierarchical probit model (3.16) is

p(Z, β, τ, µ|Y ) ∝ 1

τn
exp

{
−1

2

[
n∑
i=1

(Zi − βiXi)
2 +

∑n
i=1 (βi − µ)2

τ 2
+
µ2

V

]}[
n∏
i=1

Fi(βi;Yi)

]
,

(B.8)

where Fi(βi;Yi) =

{
1/Φ(βiXi), if Yi = 1,

1/Φ(−βiXi), otherwise,
with Φ(·) denoting the cumulative dis-

tribution function of the standard normal distribution.

Thus the steps of the Gibbs sampler, i.e., Sampler 3.9, are

Step 1: Sample Zi from TN(β′iXi, 1)|Yi , for i = 1, . . . , n,

where Zi is constrained by Zi > 0 if Yi = 1, and Zi ≤ 0 otherwise.

Step 2: Sample (µ, β) from p(µ, β|Y, Z, τ ′) by

• sampling µ from N
{ ∑n

i=1 ZiXi/[(τ
′)2X2

i +1]∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

, 1∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

}
,

• sampling βi from N
[
ZiXi+µ/(τ

′)2

X2
i +1/(τ ′)2

, 1
X2
i +1/(τ ′)2

]
, for i = 1, . . . , n.

Step 3: Sample τ 2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 (βi−µ)2

2

]
; τ =

√
τ 2.
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Setting Z̃ = αZ, β̃ = αβ, and µ̃ = αµ, and specifying the Haar measure prior to α as

p∞(α) ∝ 1/α, we obtain the joint posterior distribution of Z̃, α, β̃, µ̃, and τ , that is,

p̃(Z̃, α, β̃, µ̃, τ |Y ) ∝ exp

{
−1

2

[∑n
i=1 (Z̃i−β̃iXi)

2

α2 +
∑n
i=1 (β̃i−µ̃)

2

α2τ2
+ µ̃2

α2V

]}
τ−nα−2(n+1)

[∏n
i=1 F̃i(β̃i, α;Yi)

]
,

(B.9)

where F̃i(β̃i, α;Yi) =

 1/Φ
(
β̃i
α
Xi

)
, if Yi = 1,

1/Φ
(
− β̃i

α
Xi

)
, otherwise.

The steps of the Haar PX-DA sampler, i.e., Sampler 3.10, are

Step 1: Sample Z?
i from TN(β′iXi, 1)|Yi , for i = 1, . . . , n.

Step 2: Sample α2 from Inv-Gamma

n
2
,

∑n
i=1

(Z?i )2

(τ ′)2X2
i +1
−

(∑n
i=1

Z?i Xi

(τ ′)2X2
i
+1

)2

∑n
i=1

X2
i

(τ ′)2X2
i
+1

+ 1
V

/2

;

Set α =
√
α2 and Z = Z?/α.

Step 3: Sample (µ, β) from p(µ, β|Y, Z, τ ′) by

• sampling µ from N
{ ∑n

i=1 ZiXi/[(τ
′)2X2

i +1]∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

, 1∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

}
,

• sampling βi from N
[
ZiXi+µ/(τ

′)2

X2
i +1/(τ ′)2

, 1
X2
i +1/(τ ′)2

]
, for i = 1, . . . , n.

Step 4: Sample τ 2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 (βi−µ)2

2

]
; τ =

√
τ 2.

Integrating (B.8) over β, we obtain the marginal distribution of Z, µ, and τ , that is,

p(Z, µ, τ |Y ) ∝ exp

{
−1

2

[
n∑
i=1

(Zi − µXi)
2

τ 2X2
i + 1

+
µ2

V

]}
n∏
i=1

[
(τ 2X2

i + 1)
−1/2

Fi(τ, µ;Yi)
]
,

(B.10)

where Fi(µ, τ ;Yi) =

 1/Φ
(
µXi/

√
τ 2X2

i + 1
)
, if Yi = 1,

1/Φ
(
−µXi/

√
τ 2X2

i + 1
)
, otherwise.

Furthermore, setting Z̄ = Z − µX, we obtain the joint distribution of Z̄, µ, and τ , i.e.,

p(Z̄, τ, µ|Y ) ∝ exp

{
−1

2

[
n∑
i=1

Z̄2
i

τ 2X2
i + 1

+
µ2

V

]}
n∏
i=1

[
(τ 2X2

i + 1)
−1/2

Fi(τ, µ;Yi)
]
.

(B.11)

Thus the steps of the sampler using ASIS I, i.e., Sampler 3.11, are
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Step 1: Sample Z?
i from TN

{
µ′Xi,

[
(τ ′)2X2

i + 1
]} ∣∣

Yi
, for i = 1, . . . , n.

Step 2: Sample µ? from N
{ ∑n

i=1 Z
?
i Xi/[(τ

′)2X2
i +1]∑n

i=1X
2
i /[(τ

′)2X2
i +1]+1/V

, 1∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

}
;

Set Z̄ = Z? − µ?X.

Step 3: Sample µ from TN(0, V )|Fµ , where Fµ is the constraint {µ : Z̄i + µXi >

0 if Yi = 1; Z̄i + µXi ≤ 0 otherwise, for i = 1, . . . , n};

Set Z = Z̄ + µX.

Step 4: Sample βi from N
[
ZiXi+µ/(τ

′)2

X2
i +1/(τ ′)2

, 1
X2
i +1/(τ ′)2

]
, for i = 1, . . . , n.

Step 5: Sample τ 2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 (βi−µ)2

2

]
; τ =

√
τ 2.

Furthermore, setting β̄ = (β − µ)/τ , we get the joint posterior distribution of Z, β̄, µ,

and τ , that is,

p(Z, β̄, µ, τ |Y ) ∝ exp

{
−1

2

[
n∑
i=1

(Zi − τ β̄iXi − µXi)
2

+
n∑
i=1

β̄2
i +

µ2

V

]}[
n∏
i=1

F̄i(β̄i, µ, τ ;Yi)

]
,

(B.12)

where F̄i(β̄i, µ, τ ;Yi) =

{
1/Φ

[
(τ β̄i + µ)Xi

]
, if Yi = 1,

1/Φ
[
−(τ β̄i + µ)Xi

]
, otherwise.

Thus the steps of the sampler using ASIS II, i.e., Sampler 3.12, are

Step 1: Sample Zi from TN(β′iXi, 1)|Yi , for i = 1, . . . , n.

Step 2: Sample (µ?, β?) from p(µ, β|Y, Z, τ ′) by

• sampling µ? from N
{ ∑n

i=1 ZiXi/[(τ
′)2X2

i +1]∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

, 1∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

}
,

• sampling β?i from N
[
ZiXi+µ

?/(τ ′)2

X2
i +1/(τ ′)2

, 1
X2
i +1/(τ ′)2

]
, for i = 1, . . . , n.

Step 3: Sample (τ ?)2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 (βi−µ)2

2

]
; τ ? =

√
(τ ?)2;

Set β̄ = (β? − µ?)/τ ?.

Step 4: Sample µ from N
{[∑n

i=1Xi(Zi − τ ?β̄iXi)
] / (∑n

i=1X
2
i + 1

V

)
, 1
/ (∑n

i=1X
2
i + 1

V

)}
.

Step 5: Sample τ from TN
{[∑n

i=1(Zi −Xiµ)Xiβ̄i
] / (∑n

i=1X
2
i β̄

2
i

)
, 1
/ (∑n

i=1X
2
i β̄

2
i

)} ∣∣
τ>0

;

Set β = τ β̃ + µ.

The steps of the sampler combining Haar PX-DA and ASIS II, Sampler 3.13, are

Step 1: Sample Z?
i from TN(β′iXi, 1)|Yi , for i = 1, . . . , n.
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Step 2: Sample α2 from Inv-Gamma

n
2
,

∑n
i=1

(Z?i )2

(τ ′)2X2
i +1
−

(∑n
i=1

Z?i Xi

(τ ′)2X2
i
+1

)2

∑n
i=1

X2
i

(τ ′)2X2
i
+1

+ 1
V

/2

;

Set α =
√
α2 and Z = Z?/α.

Step 3: Sample (µ?, β?) from p(µ, β|Y, Z, τ ′) by

• sampling µ? from N
{ ∑n

i=1 ZiXi/[(τ
′)2X2

i +1]∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

, 1∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

}
,

• sampling β?i from N
[
ZiXi+µ

?/(τ ′)2

X2
i +1/(τ ′)2

, 1
X2
i +1/(τ ′)2

]
, for i = 1, . . . , n.

Step 4: Sample (τ ?)2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 (βi−µ)2

2

]
; τ ? =

√
(τ ?)2;

Set β̄ = (β? − µ?)/τ ?.

Step 5: Sample µ from N
{[∑n

i=1Xi(Zi − τ ?β̄iXi)
] / (∑n

i=1X
2
i + 1

V

)
, 1
/ (∑n

i=1X
2
i + 1

V

)}
.

Step 6: Sample τ from TN
{[∑n

i=1(Zi −Xiµ)Xiβ̄i
] / (∑n

i=1X
2
i β̄

2
i

)
, 1
/ (∑n

i=1X
2
i β̄

2
i

)} ∣∣
τ>0

;

Set β = τ β̃ + µ.

Finally, the steps of the sampler combining ASIS I and ASIS II, Sampler 3.14, are

Step 1: Sample Z?
i from TN

{
µ′Xi,

[
(τ ′)2X2

i + 1
]} ∣∣

Yi
, for i = 1, . . . , n.

Step 2: Sample µ? from N
{ ∑n

i=1 Z
?
i Xi/[(τ

′)2X2
i +1]∑n

i=1X
2
i /[(τ

′)2X2
i +1]+1/V

, 1∑n
i=1X

2
i /[(τ

′)2X2
i +1]+1/V

}
;

Set Z̄ = Z? − µ?X.

Step 3: Sample µ from TN(0, V )|Fµ , where Fµ is the constraint {µ : Z̄i + µXi >

0 if Yi = 1; Z̄i + µXi ≤ 0 otherwise, for i = 1, . . . , n};

Set Z = Z̄ + µX.

Step 4: Sample β?i from N
[
ZiXi+µ/(τ

′)2

X2
i +1/(τ ′)2

, 1
X2
i +1/(τ ′)2

]
, for i = 1, . . . , n.

Step 5: Sample (τ ?)2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 (βi−µ)2

2

]
; τ ? =

√
(τ ?)2;

Set β̄ = (β? − µ?)/τ ?.

Step 6: Sample τ from TN
{[∑n

i=1(Zi −Xiµ)Xiβ̄i
] / (∑n

i=1 X
2
i β̄

2
i

)
, 1
/ (∑n

i=1X
2
i β̄

2
i

)} ∣∣
τ>0

;

Set β = τ β̃ + µ.
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C
Derivation of the

cyclic-permutation bound of

Sampler 4.2 and Details of the

Gibbs-type Samplers in Chapter 4

C.1 Deriving the cyclic-permutation bound of Sampler 4.2 with gen-

eral target and surrogate distribution

Recall that the cyclic-permutation bound of an N -step Gibbs-type sampler is defined by

minj∈{0,...,N−1}{γj}, where γj is the norm of the forward operator corresponding to the

j-step-lagged sampler, see Section 1.3 of Chapter 1. Henceforth, to derive the cyclic-

permutation bound of Sampler 4.2 in Section 4.1, we first compute the norms of the

forward operators corresponding to its 0-step-lagged and 1-step-lagged samplers, i.e., γ0

and γ1.

The 0-step-lagged sampler is Sampler 4.2 itself, and its stationary distribution is the

target, i.e., p(ψ1, ψ2).

Then ∀h ∈ L2
0(p) with varp(h) = 1, since p(ψ1, ψ2) and ps(ψ1, ψ2) have the same marginal

distributions, we have
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varp

[
E(h(ψ

(t+1)
1 , ψ

(t+1)
2 )|ψ(t)

2 )
]

= Ep

[
E2(h(ψ

(t+1)
1 , ψ

(t+1)
2 )|ψ(t)

2 )
]

=
∫ [∫

h(ψ
(t+1)
1 , ψ

(t+1)
2 )ps(ψ

(t+1)
1 |ψ(t)

2 )p(ψ
(t+1)
2 |ψ(t+1)

1 )dψ
(t+1)
1 dψ

(t+1)
2

]2

p(ψ
(t)
2 )dψ

(t)
2

= varps(h
?)
∫ [∫ h?(ψ

(t+1)
1 )√

varps (h?)
ps(ψ

(t+1)
1 |ψ(t)

2 )dψ
(t+1)
1

]2

ps(ψ
(t)
2 )dψ

(t)
2

≤ ρ2
psvarps(h

?) ≤ ρ2
ps .

(C.1)

where ρps is the maximum correlation between ψ1 and ψ2 for ps(ψ1, ψ2); h?(ψ1) =∫
h(ψ1, ψ2)p(ψ2|ψ1)dψ2; h? ∈ L2

0(ps,1) with ps,1 the marginal distribution of ψ1 for

ps(ψ1, ψ2), and varps,1(h
?) ≤ 1, because

i) Eps,1(h
?) =

∫
[
∫
h(ψ1, ψ2)p(ψ2|ψ1)dψ2]ps(ψ1)dψ1 = Ep(h) = 0;

ii) varps,1(h
?) =

∫
[
∫
h(ψ1, ψ2)p(ψ2|ψ1)dψ2]

2
ps(ψ1)dψ1 ≤ varp(h) = 1.

From (C.1), we conclude that γ0 ≤ ρps .

Furthermore, ∀g ∈ L2
0(ps,1) with varps,1(g) = 1, it also holds that g ∈ L2

0(p) with

varp(g) = 1, because

i) Ep(g) =
∫
g(ψ1)p(ψ1, ψ2)dψ1dψ2 =

∫
g(ψ1)ps(ψ1)dψ1 = Eps,1(g) = 0;

ii) varp(g) =
∫
g2(ψ1)p(ψ1, ψ2)dψ1dψ2 =

∫
g2(ψ1)ps(ψ1)dψ1 = varps,1(g) = 1.

Thus, in addition, we have

γ2
0 ≥ varp

[
E(g(ψ

(t+1)
1 )|ψ(t)

2 )
]

= Ep

[
E2(g(ψ

(t+1)
1 )|ψ(t)

2 )
]

=
∫ [∫

g(ψ
(t+1)
1 )ps(ψ

(t+1)
1 |ψ(t)

2 )p(ψ
(t+1)
2 |ψ(t+1)

1 )dψ
(t+1)
1 dψ

(t+1)
2

]2

p(ψ
(t)
2 )dψ

(t)
2

=
∫ [∫

g(ψ
(t+1)
1 )ps(ψ

(t+1)
1 |ψ(t)

2 )dψ
(t+1)
1

]2

ps(ψ
(t)
2 )dψ

(t)
2

= varps(Eps(g(ψ
(t+1)
1 )|ψ(t)

2 )).

(C.2)

From (C.2), we conclude that γ0 ≥ ρps .

Combining (C.1) and (C.2), γ0 = ρps

In the similar manner, we can obtain that γ1 = ρp. Since ρps ≤ ρp by the definition of

the surrogate distribution, the cyclic-permutation bound of Sampler 4.2 is γ0 = ρps .
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C.2 Details of the Gibbs-type samplers for fitting the univariate t-

distribution model (4.13)

The target posterior distribution of q and (µ, σ2) is,

p(q, µ, σ2|Y ) ∝

(
n∏
i=1

qi

) ν+1
2
−1(

σ2
)−n

2
−1

exp

{
−

[∑n
i=1 qi(Yi − µ)2

2σ2
+
ν
∑n

i=1 qi
2

]}
.

(C.3)

The steps of the standard DA sampler, i.e., Sampler 4.10, are

Step 1: Sample qi from Gamma
[
ν+1

2
, (Yi−µ′)2

2σ2′ + ν
2

]
, for i = 1, . . . , n.

Step 2: Sample (µ, σ2) from p(µ, σ2|q, Y ) by

• sampling σ2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 qi(Yi−µ̂)2

2

]
, where µ̂ =

∑n
i=1 qiYi∑n
i=1 qi

,

• sampling µ from N
(
µ̂, σ2∑n

i=1 qi

)
.

Setting q̃ = αq, and specifying the Haar measure prior to α as p∞(α) ∝ 1/α, we obtain

the joint posterior distribution of q̃, α, and (µ, σ2), that is,

p̃(q̃, α, µ, σ2|Y ) ∝ (
∏n

i=1 q̃i)
ν+1
2
−1

(σ2)
−n

2
−1
α−

n(ν+1)
2
−1

exp
{
−
[∑n

i=1 q̃i(Yi−µ)2

2ασ2 +
ν
∑n
i=1 q̃i
2α

]}
.

(C.4)

The steps of the Haar PX-DA sampler, i.e., Sampler 4.11, are

Step 1: Sample q?i from Gamma
[
ν+1

2
, (Yi−µ′)2

2σ2′ + ν
2

]
, for i = 1, . . . , n.

Step 2: Sample α from Inv-Gamma
(
nν
2
,
ν
∑n
i=1 q

?
i

2

)
; Set q = q?/α.

Step 3: Sample (µ, σ2) from p(µ, σ2|q, Y ) by

• sampling σ2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 qi(Yi−µ̂)2

2

]
,

• sampling µ from N
(
µ̂, σ2∑n

i=1 qi

)
.

We derive the surrogate distribution of q and (µ, σ2) as in (4.15). We first work out

p(q|Y ) and ps(µ, σ
2|q, Y ) as

p(q|Y ) ∝

(
n∏
i=1

qi

) ν+1
2
−1( n∑

i=1

qi

)− 1
2
[

n∑
i=1

qi(Yi − µ̂)2

]−n−1
2

e−
ν
∑n
i=1 qi
2 ; (C.5)
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ps(µ, σ
2|q, Y ) =

∫
p̃(α, µ, σ2|q, Y )dα

= Γ[n(ν+1)/2]
Γ(nν/2)Γ[(n−1)/2]

νnν/2√
π

(σ2)
−n

2
−1

(
∑n

i=1 qi)
nν+1

2
[∑n

i=1 qi(Yi − µ̂)2]n−1
2[

ν
∑n

i=1 qi +
∑n
i=1 qi(Yi−µ)2

σ2

]−n(ν+1)/2

.

(C.6)

Thus the surrogate distribution is

ps(q, µ, σ
2|Y ) = ps(µ, σ

2|q, Y )p(q|Y )

∝ (σ2)
−n

2
−1

(
∏n

i=1 qi)
ν+1
2
−1

(
∑n

i=1 qi)
nν
2 e−

ν
∑n
i=1 qi
2[

ν
∑n

i=1 qi +
∑n
i=1 qi(Yi−µ)2

σ2

]−n(ν+1)/2

.

(C.7)

The steps of the Gibbs sampler for updating the surrogate distribution, i.e., Sam-

pler 4.12, are

Step 1: Sample q from ps(q|Y, µ′, σ2′) by,

• sampling w?i from Gamma
[
ν+1

2
, (Yi−µ′)2

2σ2′ + ν
2

]
, for i = 1, . . . , n,

• sampling β? from Gamma
(
nν
2
,
ν
∑n
i=1 w

?
i

2

)
; setting q = β?w?,

where w? = (w?1, . . . , w
?
n);

Discard β? and w.

Step 2: Sample (µ, σ2) from ps(µ, σ
2|q, Y ) by

• Sample α? from Inv-Gamma
(
nν
2
,
ν
∑n
i=1 qi
2

)
,

• sampling σ2 from Inv-Gamma
[
n−1

2
,
∑n
i=1 qi(Yi−µ̂)2

2α?

]
,

• sampling µ from N
(
µ̂, α?σ2∑n

i=1 qi

)
;

Discard α?.

C.3 Details of the Gibbs-type samplers for fitting the multivariate

t-distribution model (4.16)

The target posterior distribution of q and (µ, σ2) is,

p(q, µ,Σ|Y ) ∝

(
n∏
i=1

qi

) ν+d
2
−1

|Σ|−
n+d+1

2 exp

{
−1

2

[
n∑
i=1

qi(Yi − µ)TΣ−1(Yi − µ) + ν

n∑
i=1

qi

]}
.

(C.8)
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The steps of the standard DA sampler for updating the target distribution are

Step 1: Sample qi from Gamma
[
ν+d

2
, (Yi−µ′)TΣ′−1(Yi−µ′)+ν

2

]
, for i = 1, . . . , n.

Step 2: Sample (µ,Σ) from p(µ,Σ|q, Y ) by

• sampling Σ from Inv-Wishart
[
n− 1,

∑n
i=1 qi(Yi − µ̂)(Yi − µ̂)T

]
,

where µ̂ =
∑n
i=1 qiYi∑n
i=1 qi

,

• sampling µ from Nd

(
µ̂, Σ∑n

i=1 qi

)
.

Setting q̃ = αq, and specifying the Haar measure prior to α as p∞(α) ∝ 1/α, we obtain

the joint posterior distribution of q̃, α, and (µ,Σ), that is,

p̃(q̃, α, µ,Σ|Y ) ∝ (
∏n

i=1 q̃i)
ν+d
2
−1|Σ|−

n+d+1
2 α−

n(ν+d)
2
−1

exp
{
− 1

2α

[∑n
i=1 q̃i(Yi − µ)TΣ−1(Yi − µ) + ν

∑n
i=1 q̃i

]}
.

(C.9)

The steps of the Haar PX-DA sampler are

Step 1: Sample q?i from Gamma
[
ν+d

2
, (Yi−µ′)TΣ′−1(Yi−µ′)+ν

2

]
, for i = 1, . . . , n.

Step 2: Sample α from Inv-Gamma
(
nν
2
,
ν
∑n
i=1 q

?
i

2

)
; Set q = q?/α.

Step 3: Sample (µ,Σ) from p(µ,Σ|q, Y ) by

• sampling Σ from Inv-Wishart
[
n− 1,

∑n
i=1 qi(Yi − µ̂)(Yi − µ̂)T

]
,

• sampling µ from Nd

(
µ̂, Σ∑n

i=1 qi

)
.

We derive the surrogate distribution of q and (µ,Σ) as in (4.15). We first work out

p(q|Y ) and ps(µ,Σ|q, Y ) as

p(q|Y ) ∝

(
n∏
i=1

qi

) ν+d
2
−1( n∑

i=1

qi

)− d
2
∣∣∣∣∣
n∑
i=1

qi(Yi − µ̂)(Yi − µ̂)T

∣∣∣∣∣
−n−1

2

e−
ν
∑n
i=1 qi
2 ; (C.10)

ps(µ,Σ|q, Y ) =
∫
p̃(α, µ,Σ|q, Y )dα

= Γ[n(ν+d)/2]
Γ(nν/2)Γd[(n−1)/2]

νnν/2

πd/2
|Σ|−

n+d+1
2

(
∑n

i=1 qi)
nν+d

2

∣∣∣∑n
i=1 qi(Yi − µ̂)(Yi − µ̂)T

∣∣∣n−1
2[

ν
∑n

i=1 qi +
∑n

i=1 q̃i(Yi − µ)TΣ−1(Yi − µ)
]−n(ν+d)

2
.

(C.11)
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Thus the surrogate distribution is

ps(q, µ,Σ|Y ) = ps(µ,Σ|q, Y )p(q|Y )

∝ |Σ|−
n+d+1

2 (
∏n

i=1 q̃i)
ν+d
2
−1

(
∑n

i=1 qi)
nν
2 e−

ν
∑n
i=1 qi
2[

ν
∑n

i=1 qi +
∑n

i=1 q̃i(Yi − µ)TΣ−1(Yi − µ)
]−n(ν+d)

2
.

(C.12)

The steps of the Gibbs sampler for updating the surrogate distribution are

Step 1: Sample q from ps(q|Y, µ′,Σ′) by,

• sampling w?i from Gamma
[
ν+d

2
, (Yi−µ′)TΣ′−1(Yi−µ′)+ν

2

]
, for i = 1, . . . , n,

• sampling β? from Gamma
(
nν
2
,
ν
∑n
i=1 w

?
i

2

)
; setting q = β?w?,

where w? = (w?1, . . . , w
?
n);

Discard β? and w.

Step 2: Sample (µ,Σ) from ps(µ,Σ|q, Y ) by

• Sample α? from Inv-Gamma
(
nν
2
,
ν
∑n
i=1 qi
2

)
,

• sampling Σ from Inv-Wishart
[
n− 1,

∑n
i=1 qi(Yi−µ̂)(Yi−µ̂)T

α?

]
,

• sampling µ from Nd

(
µ̂, α?Σ∑n

i=1 qi

)
;

Discard α?.

In fact, the univariate t-distribution model is a special case of the multivariate t-

distribution model.

C.4 Details of the Gibbs-type samplers for fitting the spectral anal-

ysis model (4.18)

The target posterior distribution of α, β, µ, and φ under the spectral model (4.18) is

p(α, β, µ, φ|Y ) ∝
∏n

i=1

[
α(Ei

−β +
∑K

k=1 γkI{i = µk})e−φ/Ei
]Yi

exp
{
−α
∑n

i=1(Ei
−β +

∑K
k=1 γkI{i = µk})e−φ/Ei

}
.

(C.13)

Integrating (C.13) over α, we have,
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p(β, µ, φ|Y ) ∝
∏n

i=1

[
(Ei
−β +

∑K
k=1 γkI{i = µk})e−φ/Ei

]Yi
×[∑n

i=1(Ei
−β +

∑K
k=1 γkI{i = µk})e−φ/Ei

]−(
∑n
i=1 Yi+1)

.
(C.14)

Hence, the steps of the MH within PCG sampler updating µ and (β, φ) without condi-

tioning on α, i.e., Sampler 4.13, are

Step 1: Use MH to sample µ from p(µ|β′, φ′, Y ) ∝ p(β′, µ, φ|Y ).

Step 2: Use MH to sample (β, φ) from p(β, φ|µ, Y ) ∝ p(β, µ, φ|Y ).

Step 3: Sample α from Gamma
[∑n

i=1 Yi + 1,
∑n

i=1(Ei
−β +

∑K
k=1 γkI{i = µk})e−φ/Ei

]
.

The steps of the three-step sampler using the conditionals of the surrogate distribution

ps(α, β, µ, φ|Y ) in Steps 1 and 3, i.e., Sampler 4.14, are

Step 1: Use MH to sample µ from p(µ|β′, φ′, Y ) ∝ p(β′, µ, φ|Y ).

Step 2: Use MH to sample (β, φ) from p(β, φ|µ, Y ) ∝ p(β, µ, φ|Y ).

Step 3: For K = 2, as for the simulation study in Section 4.3.2, sample α from∑n
l=1

∑n
j=1 pjlGamma(a, bjl),

where a =
∑n

i=1 Yi + 1; pjl =
ωjl∑n

l=1

∑n
j=1 ωjl

and
∑n

l=1

∑n
j=1 pjl = 1; for j = 1 and

l = 1, bjl =
∑n

i=1E
−β
i e−φ/Ei + γ1e

−φ/Ej + γ2e
−φ/El , and

• if j = l, ωjl = ωll = (E−βl + γ1 + γ2)
Yl
b−all (

∏n
i=1,i 6=lE

−βYi
i ),

• otherwise, ωjl = (E−βj + γ1)
Yj

(E−βl + γ2)
Yl
b−ajl (

∏n
i=1,i 6=j 6=lE

−βYi
i ).

We use a uniform distribution on {1, . . . , n}K as the jumping rule when updating µ.

When sampling β and φ jointly via MH, the jumping rule is a bivariate Gaussian

distribution centered at the current draw with variance-covariance matrix adjusted to

obtain an acceptance rate of around 20%.

C.5 Details of the Gibbs-type samplers for fitting the simple hierar-

chical Gaussian model (4.20)

The target posterior distribution of X and ψ is,

p(X,ψ|Y ) ∝ exp

{
−1

2

[
(Y −X)2 +

(X − ψ)2

V

]}
. (C.15)
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The steps of the standard DA sampler, i.e., Sampler 4.15, are

Step 1: Sample X from N
(
V Y+ψ′

V+1
, V
V+1

)
.

Step 2: Sample ψ from N(X, V ).

Setting X̄ = X − ψ, the joint posterior distribution of X̄ and ψ is,

p(X,ψ|Y ) ∝ exp

{
−1

2

[
(Y − X̄ − ψ)

2
+
X̄2

V

]}
. (C.16)

The steps of the ASIS sampler, i.e., Sampler 4.16, are

Step 1: Sample X? from N
(
V Y+ψ′

V+1
, V
V+1

)
.

Step 2: Sample ψ? from N(X?, V ); Set X̄ = X? − ψ?.

Step 3: Sample ψ from N(Y − X̄, 1); Set X = X̄ + ψ.

We derive the surrogate distribution of X and ψ as in (4.21). We first obtain p(X|Y ),

which is N(Y, 1), and ps(ψ|X, Y ), which is N[Y, (V+1)]. Because ps(ψ|X, Y ) = p(ψ|Y ) =

ps(ψ|Y ), ps(X|ψ, Y ) = p(X|Y ). Thus it is not necessary to express the joint surrogate

distribution ps(ψ,X|Y ) explicitly.

The steps of the Gibbs sampler for updating the surrogate distribution, i.e., Sam-

pler 4.17, are

Step 1: Sample X from N(Y, 1).

Step 2: Sample ψ from N(Y, V + 1).
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D
Details of the Gibbs-type

Samplers in Chapter 5

In this appendix, we provide the details of the samplers for fitting the generalized ver-

sions of the Baseline Model in supernova cosmology, which are introduced in Chapter 5.

D.1 The Baseline Model

The joint and marginal posterior distributions under the Baseline Model have almost

the same forms as (A.4) and (A.5) in Section A.2 of Appendix A, except that we replace
1
σ2
res

by the density of Inv-Gamma(0.003, 0.003).

The MH within PCG sampler for the Baseline Model is almost the same as Sampler 2.8

in Section 2.3.2 of Chapter 2, except that we sample σ2
res from Inv-Gamma [ n

2
+ 0.003,∑n

i=1 (Mi−M0)2

2
+ 0.003 ].

The posterior distributions for the hierarchical model with ΣC = Cstat have the same

forms as those for the Baseline Model. The steps of the sampler for fitting this model

are also the same as those for fitting the Baseline Model.
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D.2 The Hard Classification Model

In this model, we divide the SN population into two classes according to the observed

host galaxy mass. The joint and marginal posterior distributions under the Hard Clas-

sification Model have the identical forms as those in (A.4) and (A.5) except that we

replace 1
σ2
res

with the product of two Inv-Gamma(0.003, 0.003) densities. The specifica-

tion of Y , X, L, ΣC , and A is identical to that in the Baseline Model. However, the

specification of ξ, ξm, ΣP , Σ0, and J is modified to reflect the existence of two host galaxy

mass populations. Under this model, ξ = (c0, x0,M
lo
0 ,M

hi
0 ); ξm = (0, 0,−19.3,−19.3);

ΣP = Diag(S1, . . . , Sn), where Si = Diag[R2
c , R

2
x, (1 − Zi)(σ

lo
res)

2
+ Zi(σ

hi
res)

2
]; Σ0 =

Diag(12, 102, 22, 22); J(3n×4) =

 J1

...

Jn

, where Ji =

 1 0 0 0

0 1 0 0

0 0 1− Zi Zi

. Under this

model, Z = (Z1, . . . , Zn) is known with,

Zi =

{
1 if M̂g i ≥ 10

0 otherwise.
(D.1)

The steps of the MH within PCG sampler for fitting the Hard Classification Model are,

Step 1: Use MH to sample C from p(C |Y, α, β,ΣP ), which is proportional to p(C , α,

β,ΣP |Y ), with C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2].

Step 2: Use MH to sample (α, β) from p(α, β|Y,C ,ΣP ), which is proportional to

p(C , α, β,ΣP |Y ), with (α, β) ∈ [0, 1]× [0, 4].

Step 3: Sample (ξ,X), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).

Step 4: Sample ΣP , which consists of four sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].

• Sample (σlo
res)

2
from Inv-Gamma[

∑n
i=1(1−Zi)

2
+0.003,

∑n
i=1 (1−Zi)(Mi−M lo

0 )
2

2
+0.003].

• Sample (σhi
res)

2
from Inv-Gamma

[∑n
i=1 Zi

2
+ 0.003,

∑n
i=1 Zi(Mi−Mhi

0 )
2

2
+ 0.003

]
.
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D.3 The Soft Classification Model

For the Soft Classification Model, the SNe are classified by their true (latent) host galaxy

masses (rather than by their observed masses as in the Hard Classification Model),

and the indicator variables, Z, are treated as unknown. Thus, the joint and marginal

posterior distributions under this model should be written as p(X, ξ,C , α, β,ΣP , Z|Y )

and p(C , α, β,ΣP , Z|Y ). The distributions have the identical forms as those in (A.4)

and (A.5) respectively except that we replace 1
σ2
res

with

p
(
σlo

res

2
)
p
(
σhi

res

2
) n∏
i=1

pZii (1− pi)1−Zi , (D.2)

where
pi = Pr(Zi = 1 | M̂g i) = Pr(Mg i ≥ 10 | M̂g i)

=
∫ +∞

10
1√

2πσg i
exp

[
−(Mg i − M̂g i)

2
/(2σ2

g i)
]

dMg i,
(D.3)

for i = 1, . . . , n. The specification of Y , X, ξ, ξm, L, ΣC , ΣP , Σ0, A, and J is identical

to that in the Hard Classification Model.

The steps of the MH within PCG sampler for fitting the Soft Classification Model are,

Step 1: For each i, sample Zi from Bernoulli(p̃i), where p̃i =
pi,high

pi,low+pi,high
, with

pi,low =
1

σlo
res

exp

{
−(M ε

i −M lo
0 )

2

2(σlo
res)

2

}
(1− pi), (D.4)

and

pi,high =
1

σlo
res

exp

{
−(M ε

i −Mhi
0 )

2

2(σhi
res)

2

}
(1−)pi); (D.5)

Use Z to construct J .

Step 2: Use MH to sample C from p(C |Y, α, β,ΣP , Z), which is proportional to p(C ,

α, β,ΣP , Z|Y ), with C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2].

Step 3: Use MH to sample (α, β) from p(α, β|Y,C ,ΣP , Z), which is proportional to

p(C , α, β,ΣP , Z|Y ), with (α, β) ∈ [0, 1]× [0, 4].

Step 4: Sample (ξ,X), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).
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Step 5: Sample ΣP , which consists of four sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].

• Sample (σlo
res)

2
from Inv-Gamma[

∑n
i=1(1−Zi)

2
+0.003,

∑n
i=1 (1−Zi)(Mi−M lo

0 )
2

2
+0.003].

• Sample (σhi
res)

2
from Inv-Gamma

[∑n
i=1 Zi

2
+ 0.003,

∑n
i=1 Zi(Mi−Mhi

0 )
2

2
+ 0.003

]
.

D.4 The Covariate Adjustment Model

In this model, since we include Mg i as an additional covariate, the specification of quan-

tities in the posterior distribution is different from the Baseline Model. First, for Y =

(Y1, . . . , Yn), Yi = (ĉi, x̂i, M̂g i, m̂Bi). Moreover, X = (c1, x1,Mg,1,M1, . . . , cn, xn,Mg,n,Mn),

ξ = (c0, x0,Mg?,M0), and ξm = (0, 0, 10,−19.3). For the variance-covariance matri-

ces, ΣC now has the dimension of (4n × 4n). The (3n × 3n) submatrix of ΣC , after

deleting the (4i)th (i = 1, . . . , n) rows and columns, is (Cstat + Csyst). The (4i, 4i)th

element of ΣC is σ2
g i, while the other elements in the (4i)th rows and columns are all

zero, because we ignore correlations between M̂g i and other observed quantities; ΣP =

Diag(S1, . . . , Sn), where each Si = Diag(R2
c , R

2
x, R

2
g, σ

2
res); Σ0 = Diag(12, 102, 1002, 22).

In addition, J(4n×4) =

 J1

...

Jn

, where each Ji is a (4 × 4) identity matrix; A(4n×4n) =

Diag(T1, . . . , Tn), where each Ti =


1 0 0 0

0 1 0 0

0 0 1 0

β −α γ 1

. Under this model, the joint and

marginal posterior distributions should be written as p(X, ξ,C , α, β, γ,ΣP |Y, D̂g) and

p(C , α, β, γ,ΣP |Y, D̂g) respectively. But they are formally identical to (A.4) and (A.5),

respectively, except that we replace 1
σ2
res

with

1

R2
g

p(σ2
res). (D.6)

The steps of the MH within PCG sampler for fitting the Covariate Adjustment Model

are,

Step 1: Use MH to sample C from p(C |Y, D̂g, α, β, γ,ΣP ), which is proportional to
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p(C , α, β, γ,ΣP |Y, D̂g), with C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2].

Step 2: Use MH to sample (α, β, γ) from p(α, β, γ|Y, D̂g,C ,ΣP ), which is proportional

to p(C , α, β, γ,ΣP |Y, D̂g), with (α, β, γ) ∈ [0, 1]× [0, 4]× [−4, 4].

Step 3: Sample (ξ,X), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).

Step 4: Sample ΣP , which consists of four sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].

• Sample R2
g from Inv-Gamma

[
n
2
,
∑n
i=1 (Mg i−Mg?)2

2

]
with log(Rg) ∈ [−5, 2].

• Sample σ2
res from Inv-Gamma

[
n
2

+ 0.003,
∑n
i=1 (Mi−M0)2

2
+ 0.003

]
.

D.5 The z-Linear color Correction Model

In the z-Linear color Correction model, the specification of Y , ξ, ξm, L, ΣC , ΣP , Σ0,

and J is identical to that in the Baseline model. But X = (c1, z1c1, x1,M1, . . . , cn, zncn,

xn,Mn), and A = Diag(T1, . . . , Tn), where Ti =

 1 0 0

0 1 0

β0 + β1zi −α 1

.

Under this model, the joint and marginal posterior distributions should be written as

p(X, ξ,C , α, β0, β1,ΣP |Y ) and p(C , α, β0, β1,ΣP |Y ) respectively. But they are formally

identical to (A.4) and (A.5), respectively, except that we replace 1
σ2
res

with the density

of Inv-Gamma(0.003, 0.003).

For fitting this model, we combine MH within PCG and ASIS algorithms. We integrate

(X, ξ) out when updating C , and use the ASIS algorithm to update (−α, β0, β1). The

distribution of X conditioning on (−α, β0, β1) and other parameters is

X|ξ,ΣP , α, β0, β1,C ∼ N3n(Jξ,ΣP ). (D.7)

Because this distribution is free of (−α, β0, β1), X is an ancillary augmentation for

(−α, β0, β1) conditioning on other parameters. To derive a sufficient augmentation,

we set X̃ = AX. The distribution of Y conditioning on X̃, (−α, β0, β1), and other
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parameters is

Y |X̃, ξ,ΣP , α, β0, β1,C ∼ N3n(X̃ΣC). (D.8)

Because this distribution is free of (−α, β0, β1), X̃ is the corresponding sufficient aug-

mentation for (−α, β0, β1).

The steps of the MH within PCG + ASIS sampler for fitting the z-Linear color Correc-

tion Model are,

Step 1: Use MH to sample C from p(C |Y, α, β0, β1,ΣP ), which is proportional to p(C ,

α, β0, β1,ΣP |Y ), with C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2].

Step 2: Sample (ξ,X?), which consists of two sub-steps:

• Sample ξ from N(k0, K);

• Sample X? from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).

Step 3: Sample (−α?, β?0 , β?1) from N3(ζB,ΣB) (details about this distribution are given

below) with constraint (−α?, β?0 , β?1) ∈ [−1, 0]× [0, 4]× [−4, 4];

Use (−α?, β?0 , β?1) to construct A?; Then set X̃ = A?X?.

Step 4: Sample (−α, β0, β1) from N3(ζ̃B, Σ̃B) (details about this distribution are given

below) with constraint (−α, β0, β1) ∈ [−1, 0]× [0, 4]× [−4, 4];

Use (−α, β0, β1) to construct A; Then set X = A−1X̃.

Step 5: Sample ΣP , which consists of four sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].

• Sample σ2
res from Inv-Gamma[n

2
+ 0.003,

∑n
i=1 (Mi−M0)2

2
+ 0.003].

In Step 3, Σ−1
B = ETV −1

m E, where Vm is the (n × n) submatrix of ΣC after delet-

ing the (3i− 2)th (i = 1, . . . , n) and (3i− 1)th (i = 1, . . . , n) rows and columns, and

E(n×3) =

 c1 z1c1 x1

...
...

...

cn zncn xn

. Furthermore, ζB = ΣBE
TV −1

m (η̂m − ηm − ∆η), where

η̂m = (m̂?
B1−µ1, . . . , m̂

?
Bn−µn), ηm = (M1, . . . ,Mn), and ∆η = Vm,−mV

−1
−m(η̂−m− η−m);

V−m is the (2n × 2n) submatrix of ΣC after deleting the (3i)th (i = 1, . . . , n) rows

and columns; Vm,−m is the (n × 2n) submatrix of ΣC after deleting the (3i− 2)th

(i = 1, . . . , n) and (3i− 1)th (i = 1, . . . , n) rows and the (3i)th (i = 1, . . . , n) columns;

η̂−m = (ĉ1, x̂11, . . . , ĉn, x̂1n); η−m = (c1, x11, . . . , cn, x1n).
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In Step 4, Σ̃−1
B = (ẼT Ẽ)/σ2

res, where Ẽ(n×3) =

 ẼT
1
...

ẼT
n

 with Ẽi = (−c̃i,−zic̃i,−x̃1i); c̃i

and x̃1i are the (3i− 2)th and (3i− 1)th components of X̃ respectively. Furthermore,

ζ̃B = Σ̃B[ẼT (ηM0 − η̃m)/σ2
res], where ηM0 = (M0, . . . ,M0︸ ︷︷ ︸

n

) and η̃m = (M̃1, . . . , M̃n); M̃i is

the (3i− 2)th component of X̃.

D.6 The z-Jump color Correction Model

In the z-Jump color Correction model, the specification of Y , ξ, ξm, L, ΣC , ΣP ,

Σ0, and J is identical to that in the Baseline model. But under this model, X =(
c1,
(

1
2

+ 1
π

arctan
(
z1−zt
0.01

))
c1, x1,M1, . . . , cn,

(
1
2

+ 1
π

arctan
(
zn−zt
0.01

))
cn, xn,Mn

)
, and A =

Diag(T1, . . . , Tn), where Ti =

 1 0 0

0 1 0

β0 + ∆β
(

1
2 + 1

π arctan
(
zi−zt
0.01

))
−α 1

.

Under this model, the joint and marginal posterior distributions should be written as

p(X, ξ,C , α, β0,∆β, zt,ΣP |Y ) and p(C , α, β0,∆β, zt,ΣP |Y ) respectively. But they are

formally identical to (A.4) and (A.5), respectively, except that we replace 1
σ2
res

with the

density of Inv-Gamma(0.003, 0.003).

For fitting this model, as in the sampler for the z-Linear color Correction Model, we

also combine MH within PCG and ASIS algorithms in this sampler. We integrate (X, ξ)

out when updating both C and zt, and use the ASIS algorithm to update (−α, β0,∆β).

When implementing ASIS, we also regard X as the ancillary augmentation, and X̃ =

AX as the corresponding sufficient augmentation for (−α, β0,∆β), conditioning on other

parameters.

The steps of the MH within PCG + ASIS sampler for fitting the z-Jump color Correction

Model are,

Step 1: Use MH to sample C from p(C |Y, α, β0,∆β, zt,ΣP ), which is proportional to

p(C , α, β0,∆β, zt,ΣP |Y ), with C = (Ωm,ΩΛ) ∈ [0, 1]× [0, 2].

Step 2: Use MH to sample zt from p(zt|Y,C , α, β0,∆β,ΣP ), which is proportional to

p(zt,C , α, β0,∆β,ΣP |Y ), under the constraint zt ∈ [0.2, 1].

Step 3: Sample (ξ,X?), which consists of two sub-steps:

• Sample ξ from N(k0, K);
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• Sample X? from N(µA,ΣA), where µA = ΣA(∆ + Σ−1
P Jξ).

Step 4: Sample (−α?, β?0 ,∆β?) from N3(ζB,ΣB) with constraint (−α?, β?0 , β?1) ∈ [−1, 0]×
[0, 4]× [−1.5, 1.5];

The construction of ζB and ΣB is identical to that in the z-Linear color Correction

sampler;

Use (−α?, β?0 ,∆β?) to construct A?; Then set X̃ = A?X?.

Step 5: Sample (−α, β0,∆β) from N3(ζ̃B, Σ̃B) with constraint (−α, β0,∆β) ∈ [−1, 0]×
[0, 4]× [−1.5, 1.5];

The construction of ζ̃B and Σ̃B is identical to that in the z-Linear color Correction

sampler, except that under this model, Ẽi =
(
−c̃i,−

(
1
2

+ 1
π

arctan
(
zi−zt
0.01

))
c̃i,−x̃1i,

)
;

Use (−α, β0,∆β) to construct A; Then set X = A−1X̃.

Step 6: Sample ΣP , which consists of four sub-steps:

• Sample R2
c from Inv-Gamma

[
n
2
,
∑n
i=1 (ci−c0)2

2

]
with log(Rc) ∈ [−5, 2].

• Sample R2
x from Inv-Gamma

[
n
2
,
∑n
i=1 (xi−x0)2

2

]
with log(Rx) ∈ [−5, 2].

• Sample σ2
res from Inv-Gamma[n

2
+ 0.003,

∑n
i=1 (Mi−M0)2

2
+ 0.003].

When MH updates are required in the samplers above, we use truncated normal distri-

butions centered at the current draw with variance-covariance matrix adjusted to obtain

an acceptance rate of around 40% (univariate) or 25% (multivariate). Truncations are

applied according to prior constraints.
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E
Algorithms IvD-2, IvD-2c, BN,

and BNc in Chapter 6

E.1 Algorithms IvD-2 and IvD-2c

Algorithm IvD-2 does not marginalize α out when updating β. Thus Algorithm IvD-2

can be used when the prior mean of β, β0, is not equal to zero, while Algorithm IvD-1

can not.

The error in Algorithm IvD-2 arises in Step 2(a), same as the error in Step 3(a)

of Algorithm IvD-1. Thus Steps 0, 1, and 3 of Algorithms IvD-2 and IvD-2c are

the same. In Step 2(a), however, Algorithm IvD-2c updates Σ̃? by sampling from

Inv-Wishart
(
n+ ν,

∑n
i=1 Z̃iZ̃

T
i + S̃

)
subject to the constraint in (6.7), whereas Algo-

rithm IvD-2 ignores the constraint. Note that β(t+1) in ξ̃i (σ̃
?
11) of the constraint (6.7)

should be replaced by β(t) in Algorithm IvD-2c. We display Algorithm IvD-2c here.

Except for the boxed expression, Algorithm IvD-2 is identical to Algorithm IvD-2c.∗

∗In Algorithm IvD-2, the constraint in the box of Algorithm IvD-2c is ignored.
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Algorithm IvD-2c (with the correction in the box)

Step 0: Initialize parameters t = 0, β(0), α(0), Σ(0), and W (0).

while t < T do

Step 1: Update
(

(α2)
?
, Z̃
)

from p(α2, Z̃|Y, β(t),Σ(t)) by

(a) sampling (α2)
?

from p(α2|Σ(t)): (α2)
? ∼ α2

0trace
(
SΣ(t)−1

)
/χ2

νp; setting α? =
√

(α2)
?
;

(b) sampling Z̃ from p(Z̃|Y, α?, β(t),Σ(t)):

for i := 1, . . . , n do
for k := 1, . . . , p do

sampling W ?
ik via p(Wik|Yi,W ?

i,−k, β
(t),Σ(t)): W ?

ik ∼ TN(µik, τ
2
ik), see Appendix E.3 for

details;
end for
Set Z̃i = α?(W ?

i −Xiβ
(t)).

end for

Step 2: Update
(

(α2)
(t+1)

,Σ(t+1)
)

via p(α2,Σ|Y, Z̃, β(t)) by

(a) sampling Σ̃? from p(Σ̃|Y, Z̃, β(t)):

Σ̃? ∼ Inv-Wishart

[
n+ ν,

n∑
i=1

Z̃iZ̃
T
i + S̃

]
, subject to the constraint in (6.7) ;

(b) setting α(t+1) = σ̃?11, Σ(t+1) = Σ̃?/
(
α(t+1)

)2
, and W

(t+1)
i = (Z̃i + α(t+1)Xiβ

(t))/α(t+1).

Step 3: Update β(t+1) via p(β|Y,W (t+1),Σ(t+1)):

β(t+1) ∼ Nq

β̂,( n∑
i=1

XT
i Σ(t+1)−1

Xi +A−1

)−1
 ,

where β̂ =
(∑n

i=1X
T
i Σ(t+1)−1

Xi +A−1
)−1 (∑n

i=1X
T
i Σ(t+1)−1

W
(t+1)
i

)
.

return β(t+1), Σ(t+1), and W (t+1)

t+ 1← t
end while

E.2 Algorithms BN and BNc

Algorithm BN is almost the same as Algorithm IvD-1. The only difference is Step 3(b).

Specifically, first, in Algorithm BN, α2 in this step is set to trace(Σ̃)/p, while in Algo-

rithm IvD-1, α2 is set to the first element of Σ̃; second, Algorithm BN sets β = β̃/α in

Step 3(b), while Algorithm IvD-1 does not.

There are three errors in Algorithm BN and all of the errors appear in Step 3. Besides

the same two errors as in Algorithm IvD-1, “β(t+1) = β̃?/α(t+1)” in Step 3(b) of Algo-

rithm BN should be removed, because we update Σ̃? conditioning on (Y, Z̃, β(t+1)), not

on (Y, W̃ ?, β̃?). Thus Steps 0, 1, and 2 of Algorithms BN and BNc are the same. How-

ever, Step 3(a) of Algorithm BNc updates Σ̃? by sampling from a constrained inverse-
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Algorithm BNc (with corrections in boxes)

Step 0: Initialize parameters t = 0, β(0), α(0), Σ(0), and W (0).

while t < T do

Step 1: Update
(

(α2)
?
, W̃ ?

)
via p(α2, W̃ |Y, β(t),Σ(t)) by

(a) sampling (α2)
?

from p(α2|Σ(t)): (α2)
? ∼ α2

0trace
(
SΣ(t)−1

)
/χ2

νp; setting α? =
√

(α2)
?
;

(b) sampling W̃ ? from p(W̃ |Y, α?, β(t),Σ(t)):

for i := 1, . . . , n do
for k := 1, . . . , p do

sampling W ?
ik from p(Wik|Yi,W ?

i,−k, β
(t),Σ(t)): W ?

ik ∼ TN(µik, τ
2
ik), see Appendix E.3 for

details;
end for
Set W̃ ?

i = α?W ?
i .

end for

Step 2: Update
(
(α2)

?
, β(t+1)

)
via p(α2, β|Y, W̃ ?,Σ(t)) by

(a) sampling (α2)
?

from p(α2|Y, W̃ ?,Σ(t)):

(α2)
? ∼

∑n
i=1 (W̃ ?

i −Xiβ̂)
T

Σ(t)−1
(W̃ ?

i −Xiβ̂) + β̂TA−1β̂ + trace
(
S̃Σ(t)−1

)
χ2

(n+ν)p

,

where β̂ =
(∑n

i=1X
T
i Σ(t)−1

Xi +A−1
)−1 (∑n

i=1X
T
i Σ(t)−1

W̃ ?
i

)
;

(b) sampling β̃? from p(β̃|Y, W̃ ?, (α2)
?
,Σ(t)):

β̃? ∼ Nq

β̂, (α2)
?

(
n∑
i=1

XT
i Σ(t)−1

Xi +A−1

)−1
 ;

setting α? =
√

(α2)
?

and β(t+1) = β̃?/α?.

Step 3: Update
(

(α2)
(t+1)

,Σ(t+1)
)

via p(α2,Σ|Y, W̃ ?, β(t+1)) by

(a) sampling Σ̃? from p(Σ̃|Y, Z̃, β(t+1)):

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

Z̃iZ̃
T
i + S̃

)
, subject to the constraint in (6.7?) ,

where Z̃i = W̃ ?
i − α?Xiβ

(t+1);

(b) setting α(t+1) =
√

trace(Σ̃?/p), Σ(t+1) = Σ̃?/
(
α(t+1)

)2
, and

W
(t+1)
i = (Z̃i + α(t+1)Xiβ

(t+1))/α(t+1) .

return β(t+1), Σ(t+1), and W (t+1)

t+ 1← t
end while
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Wishart distribution, that is,

Σ̃? ∼ Inv-Wishart

(
n+ ν,

n∑
i=1

Z̃iZ̃
T
i + S̃

)
subject to the constraint (6.7?),

whereas Algorithm BN ignores the constraint. The constraint (6.7?) is an adaptation

of (6.7) by replacing σ̃?11 with r =
√

trace(Σ̃?/p). Specifically, ξ̃i(r) = Z̃i + rXiβ
(t+1),

for i = 1, . . . , n. The updated value of r must satisfy max
{
ξ̃i1(r), . . . , ξ̃ip(r)

}
< 0 if Yi = 0

max
{

0, ξ̃i1(r), . . . , ξ̃ip(r)
}

= ξ̃ik(r) if Yi = k
, for i = 1, . . . , n. (6.7?)

Finally, in Step 3(b), Algorithm BNc sets α(t+1) =
√

trace(Σ̃?/p), Σ(t+1) = Σ̃?/
(
α(t+1)

)2
,

andW
(t+1)
i = (Z̃i+α

(t+1)Xiβ
(t+1))/α(t+1), while Algorithm BN sets α(t+1) =

√
trace(Σ̃?/p),

Σ(t+1) = Σ̃?/
(
α(t+1)

)2
, W (t+1) = W̃ ?/α(t+1), and additionally, β(t+1) = β̃?/α(t+1). We

display Algorithm BNc here. Except for Step 3, Algorithm BN is identical to Algo-

rithm BNc.†

E.3 Details of Sampling W in Step 1(b) of Algorithms IvD-1, IvD-1c,

IvD-2, IvD-2c, BN, and BNc

Updating W in Step 1(b) of Algorithms IvD-1, IvD-1c, IvD-2, IvD-2c, BN, and BNc

consists of sampling from a series of univariate truncated normal distributions, that is,

for i = 1, . . . , n and k = 1, . . . , p,

W ?
ik ∼ TN(µik, τ

2
ik),

where µik = Xikβ
(t) + Σ

(t)
k,−kΣ

(t)−1
−k,−k(W

?
i,−k −Xi,−kβ

(t)) with W ?
i,−k = ( W ?

i1, . . . ,W
?
i,(k−1),

W
(t)
i,(k+1), . . . ,W

(t)
ip ), and τ 2

ik =
(
σ

(t)
kk

)2

− Σ
(t)
k,−kΣ

(t)−1
−k,−kΣ

(t)
−k,k; Xik is the kth row of Xi,

and Xi,−k is the sub-matrix of Xi with Xik removed. The constraint on W ?
ik is, W ?

ik ≥
max{0,W ?

i,−k}, if Yi = k; W ?
ik < max{0,W ?

i,−k}, if Yi 6= k.

If the constraint on W ?
ik has the form, W ?

ik ≥ w, and w ≤ 0, we update W ?
ik with simple

†In Algorithm BN, the constraint in the first box of Algorithm BNc is ignored, the expression in
the second box is replaced by W (t+1) = W̃ ?/α(t+1), and β(t+1) = β̃?/α(t+1) is added at the end of
Step 3(b).
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rejection sampling: we iteratively sample from the unconstrained normal distribution

until W ?
ik ≥ w is satisfied. If W ?

ik ≥ w, but w > 0, we update W ?
ik with the exponential

rejection sampling proposed by Robert (1995). Otherwise, if the constraint on W ?
ik has

the form W ?
ik ≤ w, we can apply the above sampling scheme with slight adaptation,

since −W ?
ik ≥ −w.
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