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Abstract

On some Complex and Massive Data Problems

In this thesis, we develop statistical solutions to some complex and massive data

problems, which involve modern data complications such as big data size, black-

box structures, complex data acquisitions and manifold structures. These problems

stem from astronomy, brain imaging and computer experiments. Novel, efficient and

tailored statistical methodologies are developed to cope with the unique difficulties

of each problem.
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Chapter 1

Overview

1.1 Introduction
In this thesis, statistical solutions to four different data problems are developed. These

data problems involve various modern data complications such as big data size, black-

box structures, complex data acquisitions and manifold structures. They stem from

three different areas: astronomy, brain imaging and computer experiments, in which

the corresponding data problems inherit the domain’s unique difficulties. In the fol-

lowing, these four pieces of work are briefly described.

1.2 Brain imaging
The recent advancement of neuroimaging technology has generated a huge amount of

brain imaging data. These images are not only large, but also complex. They carry the

mission of understanding the incredibly complicated brain structures. The analysis

of such data poses many challenging statistical problems that require both accurate

modeling and fast algorithms.

In Chapter 2, we focus on diffusion magnetic resonance imaging (dMRI), which is

one of the more recent medical imaging techniques. It is used to measure the diffusion

of water molecules along a pre-specified set of gradient directions. The data consist

of signals measured along these pre-specified gradient directions for each voxel in a

three dimensional space. A fiber or fiber bundle lies across voxels and its direction

1



can be detected through these signals. The goal is to track these fibers. In our work,

we investigate a non-identifiability issue of the commonly used diffusion tensor mod-

eling and propose a novel route for solving the tracking problem. We also develop

smoothing methods for fiber orientations under a mixture of orientation populations.

Here, the space of fiber orientations is a special manifold called real projective space

and this requires a non-standard smoothing technique. In our work, we show that

the proposed method enjoys desirable asymptotic properties and produces excellent

results to a dMRI dataset from Alzheimer’s Disease Neuroimaging Initiative.

1.3 Computer experiments
In many areas, complex mathematical models are used to model the physical reality

and these models are typically implemented as computer codes. A computer experi-

ment is referred to as gathering data through running the computer codes with vari-

ous values of input parameters. This strategy is widely used in areas where physical

experiments are too expensive or simply impossible, but a reasonable mathematical

model can be implemented as computer codes. However, even computer experiments

(computer models) are relatively easier to conduct, these codes are still sophisticated

and time costly to run due to the complexity of the underlying mathematical mod-

els. Thus, another layer of statistical modeling is usually assumed for the computer

model to form a fast surrogate, which is called an emulator. In addition, uncertainty

quantification is important in this area since the resources usually are limited, which

prevents one from routinely getting data, and thus one would want have some idea

about the uncertainty of the estimates.

In Chapter 3, we work on statistical approaches to incorporating uncertainty quan-

tification (UQ) into global optimization techniques, which are intended to be used for

optimizing high dimensional expensive black-box functions (e.g. computer models).

Our work refines high dimensional optimization techniques through variable selec-

tion, sequential sampling and incorporation of uncertainty into the function estima-

tion. We developed an efficient algorithm for construction of confidence sets in order
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to quantify the uncertainty of the estimated optimum. This can serve as a guideline

for determining when the estimated optimum is satisfactory and can be used to safe-

guard scenarios of multiple global optima or occurrences of competitive local optima.

In Chapter 4, we develop a frequentist framework for computer calibration prob-

lems, for which Bayesian methods are dominate. The common calibration framework

involves a semi-parametric model which leads to identifiability issue. In our work, we

provide an intuitive and identifiable parametrization for this semi-parametric model,

which lay down a general computer calibration framework from a frequentist’s an-

gle. The flexibility of the framework allows practitioners to have their own choices

of surrogates. Our approach enjoys desirable theoretical properties. In addition, we

propose a bootstrapping approach for uncertainty quantification. The bootstrap is

coherent with our proposed framework and together allows for flexibility for practi-

tioners’ choices of surrogates for the computer model, nonparametric models for the

discrepancy function and methods of global optimization.

For both Chapter 3 and Chapter 4, since permissions have not yet been granted

from the data providers to disclose the corresponding analysis, their corresponding

real data applications are not presented in this thesis.

1.4 Astronomy
Due to technological breakthroughs, more and more powerful and complex telescopes

have been set up. This leads to strong demands for statistical tools and the rise of

a new interdisciplinary field called astrostatistics. Telescopic data are usually com-

plex, involving many instrumental adjustments. The modeling of telescopic data are

usually complicated and requires hierarchical structures, but fast computations are

usually required for the increasing amount of astronomical data.

In Chapter 5 (Wong et al., 2014), we study a broken-power law models for the

well-known log(N)-log(S) relationship in astrophysics community. The major chal-

lenge of using this model arises from the unusual difficulty in obtaining the maximum

likelihood estimation of its parameters. In this work, we construct an efficient algo-
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rithm through a newly proposed interwoven expectation-maximization strategy. This

strategy combines powers of different data augmentation schemes to achieve fast and

stable performances. In our work, we apply our method successfully to a Chandra

Deep Field North dataset. This work has already been accepted for publication in the

Annals of Applied Statistics.

1.5 Outline of the thesis
The following chapters (with the corresponding appendix) of this thesis are self-

contained, with each of them focuses on a single problem. Chapter 2 is about the fiber

estimation of diffusion MRI. As for Chapter 3 and Chapter 4, we focus on computer

experiments. Global optimization of high dimensional expensive black-box systems

and a frequentist approach to computer model calibration are discussed. In Chapter

5, the work about automatic estimation of flux distributions of astrophysical source

populations is presented.
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Chapter 2

Fiber Direction Estimation in Diffusion
MRI

Abstract

Diffusion magnetic resonance imaging is a medical imaging technology to probe

anatomical architectures of biological samples in an in vivo and non-invasive man-

ner through measuring water diffusion. It is widely used to reconstruct white

matter fiber tracts in brains. This can be done in several steps. Typically, the

first step is to estimate the diffusion direction(s) for each voxel of the biologi-

cal sample under study by extracting the leading eigenvector from the estimated

diffusion tensor at each voxel. As it is reasonable to assume that the diffusion

directions from neighboring voxels are similar, a local smoothing may be applied

to the estimated tensors or directions to improve the estimation of diffusion di-

rections. Finally, a tracking algorithm is used to reconstruct fiber tracts based on

(estimated) diffusion directions.

Most commonly used tensor estimation methods assume a single tensor and do

not work well when there are multiple principal diffusion directions within a

single voxel. The first contribution of this paper is the proposal of a new method

which is able to identify and estimate multiple diffusion directions within a voxel.

This method is based on a new parametrization of the multi-tensor model and it

produces reliable results even when there are multiple principal diffusion direc-

tions within the voxels. As a second contribution, this paper proposes a novel
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direction smoothing method which greatly improves diffusion direction estima-

tion in regions with crossing fibers. This smoothing method is shown to have

excellent theoretical and empirical properties. Lastly this paper develops a novel

fiber tracking algorithm which takes (estimated) diffusion directions as input and

accommodates multiple directions within a voxel. The overall methodology is

illustrated with data sets collected for the study of Alzheimer’s disease.

This is a joint work with Thomas C. M. Lee1, Debashis Paul1 and Jie Peng1.

2.1 Introduction
Diffusion magnetic resonance imaging (dMRI) is a medical imaging technology that

uses magnetic field gradients to measure water diffusion on a three-dimensional (3D)

grid of biological tissue along a set of predetermined directions (Bammer et al., 2009;

Beaulieu, 2002; Chanraud et al., 2010; Mukherjee et al., 2008). In biological tissues, wa-

ter diffusion is anisotropic due to the presence of fiber bundles with coherent orienta-

tions and thus anatomical structures can be deduced from the diffusion characteristics

of water. Due to its in vivo and non-invasive nature, dMRI has been widely applied

to delineate the white matter fiber tracts in human brain. Mapping white matter fiber

tracts is of great importance in the study of neuronal connectivity and understanding

of brain functionality (Mori, 2007; Sporns, 2011).

Water diffusion in any location in the brain is often modeled as a 3D Gaussian pro-

cess. At each voxel, diffusion is described by a 3× 3 positive definite matrix, which

is referred to as a diffusion tensor; see Mori (2007) for an introduction to diffusion

tensor imaging (DTI) techniques. One then extracts the direction information from

the estimated diffusion tensor (e.g., the principal eigenvector) at each voxel and re-

constructs the white matter fiber tracts by computer aided tracking algorithms via a

process named tractography (Basser et al., 2000).

However, DTI cannot resolve multiple fiber populations with distinct orientations

(i.e., crossing fibers) within a voxel since a tensor only has one principal direction.

1Department of Statistics, University of California at Davis
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In crossing fiber regions, estimated diffusion tensors may lead to low anisotropy es-

timation or oblate tensor estimation. Poor tensor estimation results in poor direction

estimation which affects fiber reconstruction, e.g., early termination of the fiber track-

ing or biased fiber tracking.

In order to resolve intravoxel orientational heterogeneity, several approaches have

been proposed. Tuch et al. (2002) propose a multi-tensor model which assumes a finite

number of homogeneous fiber directions with a voxel and Gaussian diffusion along

each direction. However, it has been shown that the parameters in the multi-tensor

model are not identifiable (Scherrer and Warfield, 2010). Nonparametric methods

such as Q-ball and Q-space imaging have been proposed (Descoteaux et al., 2007;

Tuch, 2004). However such methods rely on high angular resolution diffusion imaging

(HARDI) (Hosey et al., 2005; Tuch et al., 2002) where a large number of gradients is

sampled (e.g., a few hundreds). Most currently available data sets, and particularly

those obtained under clinical settings, have much less number of gradient directions

(a few tens at most), rendering such methods not applicable.

The primary goal of this paper is to develop a new method for fiber detection and

tracking that works exceptionally well in the presence of crossing fibers. Our method

is completely automatic and improves existing methods in several aspects. Loosely,

the method can be divided into the following three major steps.

In the first step, we estimate the tensor directions within each voxel under a multi-

tensor model. We propose a new parametrization which makes the tensor directions

identifiable. We develop an efficient and numerically stable computational procedure

to obtain the global MLE of the tensor directions.

Once the tensor direction estimates are obtained for all individual voxels, in the

second step, a direction smoothing procedure is applied to further improve the dif-

fusion direction estimates by borrowing information from neighboring voxels. A dis-

tinctive and unique feature of this new procedure is that it handles crossing fibers

through the clustering of directions into homogeneous groups. We note that, al-

though various tensor smoothing methods have been proposed (e.g., Arsigny et al.,
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2006; Carmichael et al., 2013; Fillard et al., 2007; Fletcher and Joshi, 2007; Pennec et al.,

2006; Yuan et al., 2012), to the best of our knowledge, little work in the literature

on direct diffusion direction smoothing. Since diffusion directions rather than ten-

sors are used as input for tracking algorithms, methods on direction estimation and

smoothing should be more efficient in terms of fiber tracking.

In the last step, a fiber tracking algorithm is applied to reconstruct fiber tracts

through (smoothed) diffusion direction estimates. Our tracking algorithm is designed

to explicitly allow for multiple directions within a voxel.

It is shown by extensive numerical studies that the proposed procedure is effective

in direction estimation as well as fiber tracts reconstruction.

The rest of the paper is organized as follows. Section 2.2 provides background ma-

terial for some common tensor models. The proposed methods for tensor direction

estimation, smoothing of estimated directions, and fiber tracking are presented in,

respectively, Sections 2.3, 2.4 and 2.5. Theoretical support for the direction smooth-

ing method are presented in Section 2.6. The empirical performance of the overall

methodology is illustrated with numerical experiments in Section 2.7 and with a real

data set in Section 2.8. Section 2.9 provides some concluding remarks, while addi-

tional results and technical details are collected in an supplementary (Appendix A).

2.2 Tensor models
Suppose dMRI measurements are made on N voxels on a three dimensional grid

representing a brain. For each voxel, we have measurements of diffusion weighted

signals (complex numbers) along a fixed set (i.e., the same for all voxels) of unit-norm

gradient vectors U = {ui : i = 1, . . . , m}.

By assuming Gaussian additive noise on both real and imaginary parts of the

signal, the observed signal intensity can be modeled as

S(s, u) = ∥S̄(s, u)ϕ(s, u) + σϵ(s, u)∥,

where S̄(s, u) is the intensity of the noiseless signal, ϕ(s, u) is a unit vector in R2

representing the phase of the signal, ϵ(s, u) is the noise random variable following
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N2(0, I2) and σ > 0 denotes the noise level. The observed signal intensity then follows

a Rician distribution (Gudbjartsson and Patz, 1995):

S(s, u) ∼ Rician(S̄(s, u), σ).

Moreover, we assume the noise ϵ(s, u)’s are independent across different voxels and

gradient directions. We write the set of measurements as {S(s, u) : u ∈ U}, where s

is the three dimensional coordinate of the center of this voxel.

Assuming Gaussian diffusion, the noiseless signal intensity is given by (e.g., Mori,

2007)

S̄(s, u) = S0(s) exp {−bu⊺D(s)u} ,

where S0(s) is the non-diffusion-weighted intensity, b > 0 is an experimental constant

referred to as the b-value and D(s) is a 3 × 3 covariance matrix referred to as the

diffusion tensor. This model is called the single tensor model and suits for the case

of at most one dominant diffusion direction within a voxel. To indicate the degree of

anisotropy of the diffusion, one commonly used measure is the fractional anisotropy

(FA),

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

, (2.1)

where λ1, λ2 and λ3 are the eigenvalues of D. FA value lies between zero and one

and the larger it is, the more anisotropic the water diffusion is at the corresponding

voxel.

Although the single tensor model is probably the most widely used tensor model

in practice (implemented by most softwares for DTI), it is not suitable for crossing

fiber regions. To deal with crossing fibers, this model has been extended to a multi-

tensor model (e.g., Behrens et al., 2007, 2003; Tabelow et al., 2012; Tuch, 2002):

S̄(s, u) = S0(s)
J(s)

∑
j=1

pj(s) exp
{
−bu⊺Dj(s)u

}
, (2.2)

where ∑
J(s)
j=1 pj(s) = 1 and pj(s) > 0 for j = 1, . . . , J(s). Here J(s) represents the

number of fiber populations and pj(s)’s denote weights of the corresponding fibers.
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2.3 Voxel-wise estimation of diffusion directions
One important goal of DTI studies is to estimate principal diffusion directions, re-

ferred to as diffusion directions hereafter, at each voxel. They may be interpreted as

tangent directions along fiber bundles at the corresponding voxel. The estimated dif-

fusion directions are then used as an input for tractography algorithms to reconstruct

fiber tracts. This section explores the diffusion direction estimation within a single

voxel. For notational simplicity, dependence on voxel index s is temporarily dropped.

Moreover, for ease of exposition, we assume that σ and S0(s) are known and delay

the discussion of their estimation to Section 2.8.

Under the single tensor model, various methods for tensor estimation have been

proposed including linear regression, nonlinear regression and ML estimation; e.g.,

see Carmichael et al. (2013) for a comprehensive review. Then diffusion directions are

derived as principal eigenvectors of (estimated) diffusion tensors. However, for the

multi-tensor models, severe computational issues have been observed and additional

prior information and assumptions are imposed to tackle these issues. For instance,

Behrens et al. (2007, 2003) use shrinkage priors and Tabelow et al. (2012) assume all

tensors to be axially symmetric (i.e., the two minor eigenvalues are the same) and have

the same set of eigenvalues. Scherrer and Warfield (2010) show that the multi-tensor

model is indeed non-identifiable and they suggest to use multiple b-values in data ac-

quisition to make the model identifiable. However, due to practical limitations, most

of the current dMRI studies are obtained under a fixed b-value and so render their

suggestion inapplicable. Below we show that the identifiability issue does not pre-

vent one from estimating the diffusion directions and so neither strong assumptions

nor special experimental settings are necessary if one is only interested in diffusion

directions rather than the diffusion tensors themselves.

2.3.1 Identifiability of multi-tensor model

From Scherrer and Warfield (2010), model (2.2) can be re-written as

S̄(u) = S0

J

∑
j=1

pjaj exp
{
−bu⊺

(
Dj +

log aj

b
I3

)
u
}

,
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where aj > 0 for j = 1, . . . , J such that pjaj > 0, Dj + (log aj/b)I3 is positive definite

and ∑J
j=1 pjaj = 1. When J = 2, one can easily derive the explicit conditions for aj

to fulfill these criteria, and see that there are infinite sets of such aj’s. However, note

that Dj + (log aj/b)I3 shares the same set of eigenvectors with Dj. Thus, one may still

be able to estimate diffusion directions, which correspond to the major eigenvectors

of the tensors. This motivates us to consider estimating diffusion directions directly

instead of the tensors themselves.

Now we assume that Dj’s are axially symmetric; that is, the two minor eigenvalues

of Dj are equal. This is a common assumption (Basser et al., 1994) for modeling dMRI

data and it implies that diffusion is symmetric around the principal diffusion direction

(here, the principal eigenvector) (Tournier et al., 2007, 2004). By not differentiating the

two minor eigenvectors, we obtain a clear meaning of diffusion direction. In addition,

this reduces the number of unknown parameters by one and thus facilities estimation.

In the following, we propose a new parametrization of the multi-tensor model which

is identifiable and thus can be used for direction estimation.

WriteM as the space of the unit principal eigenvector, i.e., the three dimensional

unit sphere with equivalence relation m ∼ −m. Let αj ≥ 0, ξ j > 0 and mj ∈ M

be the difference between the larger and smaller eigenvalue, smaller eigenvalue and

the standardized principal eigenvector of Dj, respectively. Since Dj = αjmjm
⊺
j + ξ jI3,

model (2.2) becomes

S̄(u) = S0

J

∑
j=1

pj exp
{
−bu⊺

(
αjmjm

⊺
j + ξ jI3

)
u
}

= S0

J

∑
j=1

pj exp(−bξ j) exp
{
−bαj(u⊺mj)

2
}

= S0

J

∑
j=1

τj exp
{
−bαj(u⊺mj)

2
}

, (2.3)

where τj = pj exp(−bξ j) ∈ (0, 1). From the above, one can see that pj and ξ j are

not simultaneously identifiable, so we cannot estimate the tensors. However, the

new parametrization γ = (γ⊺1 , . . . ,γ⊺J )
⊺ is identifiable, where γj = (τj, αj, m⊺

j )
⊺ for

j = 1, . . . , J, so that we can estimate the principal diffusion directions mj’s.
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2.3.2 A fast and stable algorithm for ML estimation

To estimate the parameters in model (2.3), we start by investigating the standard ML

estimation. Under the Rician noise assumption, the log-likelihood of γ is:

l(γ) = ∑
u∈U

log
[

S(u)
σ2 exp

{
−S2(u) + S̄2(u)

2σ2

}
I0

{
S(u)S̄(u)

σ2

}]
= ∑

u∈U

[
log
{

S(u)
σ2

}
− S2(u) + S̄2(u)

2σ2 + log I0

{
S(u)S̄(u)

σ2

}]
, (2.4)

where I0(x) =
∫ π

0 exp(x cos ϕ)dϕ/π is the zeroth order modified Bessel function of

the first kind (Abramowitz and Stegun, 1964). The ML estimate is obtained through

maximizing the log-likelihood function (2.4). Although the new parametrization

avoids the identifiability issue, the likelihood function usually has multiple local max-

ima, which makes the computation of ML estimate difficult and unstable. Next we

discuss a strategy to tackle this issue.

In attempt to find the global maximizer, we develop an efficient algorithm through

an approximation of model (2.3). This algorithm essentially performs a grid search,

but it makes use of the geometry of the problem so it is quite fast. It includes three

major steps: (i) lay down a grid for (αj, m⊺
j )’s, (ii) evaluate the likelihood function on

the grid, and (iii) return the grid point that maximizes the likelihood function. One

can then use this returned grid point as a starting value in a gradient method for

obtaining ML estimation of Model (2.3). Such a strategy results in better numerical

stability and accuracy in finding ML estimates.

2.3.2.1 An approximation of model (2.3)

Let cj = (αj, m⊺
j )

⊺, c = (c⊺1 , . . . , c⊺J )
⊺ and Cj be the set of grid points for cj. For

simplicity, we take the same set of grid points, C, for all j. To lay down a grid for

mj’s, we apply the sphere tessellation using Icosahedron, which is depicted in Figure

2.1. Here, we only pick unique vertices up to a sign for the formation of the grid. In

our implementation, we utilize randomly rotated versions of the tessellation with two

subdivisions, which results in a grid with 321 directions. If c ∈ ∏J
j=1 Cj = C J , model

12



(2.3) can be rewritten as

S̄(u) =
K

∑
k=1

β̃kx(u, m̃k, α̃k), (2.5)

where K = |C|, x(u, m̃k, α̃k) = S0 exp{−bα̃k(u⊺m̃k)
2}, (α̃k, m̃k) ∈ C and β̃k ∈ [0, 1).

One may notice that, in this reformulation, the non-zero β̃k’s have an one-to-one

correspondence with τj’s in model (2.3). If c ̸∈ C J , i.e. the set of parameters is not a

grid point, then equation (2.5) serves as an approximation to S̄(u) in model (2.3) as

long as the grid is dense enough in the parameter space.

Furthermore, under the commonly used scales of b-values and tensors, x(u, m̃k, α̃k)

and x(u, m̃k′ , α̃k′) are highly correlated if m̃k = m̃k′ . Inspired by this observation, we

reduce the grid size by setting α̃k = α̃ for all k to a common value α̃. From our

experience, we set α̃ = 2/b. With all these approximations, we consider fitting the

following model:

S̄(u) =
K

∑
k=1

βkxk(u), (2.6)

where xk(u) = x(u, m̃k, α̃) and βk ≥ 0. For our purpose, we want to identify nonzero

βk’s because those m̃k’s associated with non-zero β̂k’s can be regarded as selected

diffusion directions. Note that model (2.6) converts the expensive grid search to an

estimation problem of a linear model (with respect to βk’s) with non-negative con-

straints. A fast algorithm for fitting this model with Rician noise assumption is given

in Section S1 of the supplementary material (SM) (Appendix A). As it turns out, the

non-negativity constraints often result in a sparse estimate of β = (β1, . . . , βK)
⊺; i.e.,

only a subset of directions is selected. In particular, if the estimate of the uncon-

strained problem (i.e., βk’s are allowed to be negative) is not located in the first quad-

rant of the parameter space, the corresponding constrained solution will be sparse.

Even though the solution is often sparse, the number of selected directions is

usually larger than J, the true number of tensor components. This is partly due

to colinearity of xk(u)’s resulting from the use of a dense grid on the directions m̃k’s.

In the following, we propose to first divide the selected directions into I groups

and then generate stable estimates of mj’s via gradient methods (Section 2.3.2.2). Fi-

13



nally, Bayesian information criterion (BIC) (Schwarz, 1978) is used to choose an ap-

propriate I as the estimate for J (Section 2.3.3).

Figure 2.1. Sphere tessellations through triangulation using Icosahedron with level
of subdivisions: 0 (Left), 1 (Middle) and 2 (Right).

2.3.2.2 Clustering of the selected directions

Write the above ML estimate of βk as β̂k for k = 1, . . . , K. Suppose there are L > 0

nonzero β̂k’s, without loss of generality, k = 1, . . . , L. Thus, m̃1, . . . , m̃L are the selected

directions. Now, we develop a strategy to cluster the selected directions into I groups,

for a set of I ∈ {1, . . . , L}. To perform clustering, we require a metric measure on the

space of directionsM. A natural metric is

d∗(u, v) = arccos(|u⊺v|), (2.7)

where u, v ∈ M. Note that, d∗(u, v) is the acute angle between u and v. With this

distance metric, one can define dissimilarity matrix for a set of directions and make

use of a generic clustering algorithm. Our choice is the Partition Around Medoids

(PAM) (Kaufman and Rousseeuw, 1990) due to its simplicity. The detailed proce-

dure is described in Algorithm S1 in the SM, where the input vectors are the selected

directions. Due to the sparsity of β̂ j’s and efficient algorithms of PAM, this clus-

tering strategy is practically fast. Let m̌1, . . . , m̌I be the resulting group (Karcher)

means. They are used as the starting value for gradient-based methods, such as L-

BFGS-B algorithm (Byrd et al., 1995), for obtaining γ̂(I), the ML estimate of γ under

model (2.3) with I tensor components. More specifically, the starting value is set as

((1/I, α̃, m̌⊺
1), . . . , (1/I, α̃, m̌⊺

I ))
⊺.

14



2.3.3 Selection of the number of tensor components J

We use BIC to select the number of components J. Under model (2.3), the BIC for a

model with I components is

BIC(I) = −2l(γ̂(I)) + 4I log(m), (2.8)

where m is the number of gradient directions. Then J is chosen as

Ĵ = argminI∈{1,..., Ĩ}BIC(I),

where Ĩ is a pre-specified upper bound for the number of components. Based on

our experience, Ĩ = 4 is reasonable choice. If Ĩ > L, we simply compare BIC(1), . . . ,

BIC(L).

In practice, there are voxels with no major diffusion directions. Under single tensor

model, the corresponding diffusion tensor is isotropic, i.e., all three eigenvalues are

equal.

In the case of isotropic tensor, (2.3) reduces to S̄(u) = S0τ1. Thus there is only one

parameter τ1. We write the corresponding likelihood function as l̃ and denote the

ML estimate of τ1 by τ̂1, which can be obtained by a generic gradient method. The

corresponding BIC criterion is

BIC(0) = −2l̃(τ̂1) + log(m),

where 0 represents no diffusion direction. Combined with the previous BIC formula-

tion (2.8), one has a comprehensive model selection rule, which handles voxels with

from zero to up to Ĩ (here 4) fiber populations. In practice, we follow the convention

and use FA (2.1) (see, e.g., Mori, 2007) as a first step screening; i.e., we first remove

voxels with small FA values and then apply the BIC approach over those suspected

anisotropic voxels.

We summarize our voxel-wise estimation procedure in Algorithm S2 in the SM. A

simulation study is conducted and the corresponding results are presented in Section

S2 of the SM. These numerical results suggest that our voxel-wise estimation proce-

dure provides extremely stable and reliable results under various model settings.
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2.4 Spatial smoothing of diffusion directions
Although model (2.3) provides a better modeling than single tensor model for crossing

fiber regions, it also leads to an increase in the number of parameters and thus the

variability of the estimates. To further improve estimation, we consider borrowing

information from neighboring voxels and develop a novel smoothing technique for

diffusion directions.

Tensor smoothing has been widely studied in the literature (Arsigny et al., 2006;

Carmichael et al., 2013; Pennec et al., 2006; Yuan et al., 2012). However, as discussed

earlier, tensors are not identifiable in the multi-tensor model without additional as-

sumptions. Moreover, if the ultimate goal is the reconstruction of fiber tracts, a good

estimate of diffusion directions suffices. This motivates the proposal of the new di-

rection smoothing method below.

We shall assume that tangent directions of fiber bundles change smoothly. This

leads to the spatial smoothness of diffusion directions that belong to the same fiber

bundle. In many brain regions, it is reasonable to model the fiber tracts as smooth

curves at the resolution of voxels in dMRI (∼ 2mm).

However, there is one major challenge in diffusion direction smoothing. The

smoothness assumption is only reasonable along the same fiber bundle. In regions

with crossing fibers, the diffusion directions may belong to several different fibers

which contribute to a mixture of populations of diffusion directions. To circum-

vent this issue, we propose to first cluster the diffusion directions within a neighbor-

hood into separate homogeneous populations (Section 2.4.2) and then apply direction

smoothing within each population (Section 2.4.1).

2.4.1 Smoothing along a single fiber

This subsection assumes that there is only one homogeneous population of diffusion

directions, which corresponds to a single fiber bundle. Let {{m̂j(s) : j = 1, . . . , Ĵ(s)} :

∀s} be the estimated diffusion directions obtained from the above voxel-wise esti-

mation procedure in Section 2.3. Further, write T = ∑s Ĵ(s) and, by re-indexing,

{m̂k : k = 1, . . . , T} = {{m̂(s) : j = 1, . . . , Ĵ(s)} : ∀s}. Also write sk as the correspond-
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ing voxel location associated with m̂k. Following the idea of kernel smoothing on

Euclidean space (Fan and Gijbels, 1996), the smoothing estimate at voxel s0 is defined

as a weighted Karcher mean of the neighboring direction vectors:

arg min
v∈M

T

∑
i=1

wid∗2(m̂i, v), (2.9)

where wi = KH(si − s0)’s are spatial weights and the metric d∗ is defined in (2.7).

These weights place more emphasis on spatially closer observations. Here KH(·) =

|H|−1/2K(H−1/2·) with K(·) as a three dimensional kernel function satisfying
∫

K(s)ds

= 1, and H is a 3× 3 bandwidth matrix. In our numerical work, we choose K as the

standard Gaussian density, and set H = hI3, where h is chosen automatically using

the cross-validation approach described in Section S3 of the SM.

2.4.2 Smoothing over multiple fibers

As discussed earlier, the spatial smoothness assumption does not hold in a voxel

s0 with crossing fibers. To tackle this issue, we first apply clustering to estimated

directions within a neighborhood of s0 in an attempt to separate the direction vectors

corresponding to different fiber populations into different clusters. Then we apply the

smoothing procedure in the previous subsection within each direction cluster. This

subsection describes this procedure in details.

First we define neighboring voxels for s0. We begin with computing the spatial

weights defined in Section 2.4.1. We then remove those voxels with weights smaller

than a threshold. By filtering out these voxels, we obtain tighter and better separated

clusters of directions. Moreover, such voxels have little effects on smoothing due to

their small weights. The artificial data set displayed in Figure 2.2 provides an illus-

trative example. Every black dot in the left panel represents an estimated direction

(from the center of the sphere). In the middle panel, the size of each dot is propor-

tional to its spatial weight in equation (2.9). Lastly, the right panel shows all dots with

spatial weights larger than a threshold. Notice that such a trimming operation leads

to two obvious clusters of directions, which makes the subsequent task of clustering

the estimated directions much easier.

17



Figure 2.2. Finding all the neighboring voxels for separating crossing fiber directions.
Left: all estimated directions. Middle: sizes of all estimated directions proportional
to weights. Right: estimated directions with weights larger than a threshold. Red
lines represents underlying true directions.

Next we utilize the same clustering strategy developed in Section 2.3.3 to choose

the number of clusters adaptively by the average silhouette (Rousseeuw, 1987); see

Algorithm S3 of the SM. The silhouette of a datum i measures the strength of its mem-

bership to its cluster, as compared to the neighboring cluster. Here, the neighboring

cluster is the one, apart from cluster of datum i, that has the smallest average dissimi-

larity with datum i. The corresponding silhouette is defined as (bi− ai)/(max{ai, bi}),

where ai and bi represent the average dissimilarities of datum i with all other data in

the same cluster and that with the neighboring cluster respectively. The average sil-

houette of all data gives a measure of how good the clustering is. Thus we select the

number of clusters via maximizing the average silhouette.

The detailed smoothing procedure is given in Algorithm 1.

2.5 Fiber tracking
For dMRI, fiber tractography can be divided into deterministic and probabilistic meth-

ods. Deterministic methods (e.g. Mori et al., 1999; Mori and van Zijl, 2002; Weinstein

et al., 1999) track fiber bundles by utilizing the principal eigenvectors of tensors. Prob-

abilistic methods (e.g. Friman et al., 2006; Koch et al., 2002; Parker and Alexander,

2003) use the probability density of diffusion orientations. Deterministic methods,

including the popular Fiber Assignment by Continuous Tracking (FACT) (Mori et al.,
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Algorithm 1 Algorithm for direction smoothing
Input: Target voxel s∗, voxel-wise estimate {(sk, m̂k), k = 1, . . . , T}, estimated number
of fibers { Ĵ(s) : s ∈ S}, kernel function K, bandwidth matrix H, threshold c, maxi-
mum number of cluster (Algorithm S3 of the SM) K, angular threshold (Algorithm S3
of the SM) ξ

Output: Updated number of directions and updated directions at s∗

Description: To perform smoothing for diffusion directions at s∗

1: for k = 1 to T do Compute spatial weight: wk ← KH(sk − s∗)

2: for k = 1 to T do Standardize spatial weights: wk ← wk/ ∑T
j=1 wj

3: Sort wk’s in decreasing order such that wl1 ≥ · · · ≥ wlT

4: Identify neighborhood for clustering (Section 2.4.2):
Compute L ← minM∈{1,...,T} 1{∑T

m=M+1 wlm ≤ c} (The summation ∑T
m=T+1 wlm is

defined as 0.)
5: Clustering via Algorithm S3 (SM): ({u1, . . . , uC}, C)←ClustDirN({m̂l1 , . . . , m̂lL},

K, ξ)
6: if C ≥ Ĵ(s∗) then
7: Match the smoothed directions, {u1, . . . , uC}, to the voxel-wise estimates at s∗,
{m̂1(s∗), . . . , m̂ Ĵ(s∗)(s

∗)} :

(
k̂1, . . . , k̂ Ĵ(s∗)

)
← arg min
{k1...,k Ĵ(s

∗)∈{1,...,C}:ki ̸=kj}

Ĵ(s∗)

∑
j=1

d∗(m̂j(s∗), ukj)

8: for j = 1 to Ĵ(s∗) do m̂j(s∗)← uk̂j

9: else
10: Match the voxelwise estimates at s∗ to the smoothed directions: :(

k̂1, . . . , k̂C

)
← arg min
{k1...,kC∈{1,..., Ĵ(s∗)}:ki ̸=kj}

C

∑
j=1

d∗(m̂kj(s
∗), uj)

11: for j = 1 to C do m̂k̂j
(s∗)← uj

12: Ĵ(s∗)← C and remove non-updated m̂j(s∗)’s
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1999) and Tensorlines (Weinstein et al., 1999) algorithms, typically require a diffusion

tensor field, where there is a single diffusion tensor (either isotropic or anisotropic)

associated with each voxel, as an input. In below, we propose a deterministic tracking

algorithm which takes diffusion directions (associated with the location information)

as input. This algorithm allows for multiple or no principal diffusion directions at a

voxel. One advantage of the proposed algorithm is that it makes use of the directional

information from individual fibers at voxel level.

To construct our procedure, we adopt similar tracking ideas from FACT, as de-

picted in Figure 2.3 (Left). Tracking starts at the center of a voxel (Voxel 1 in Fig-

ure 2.3) and continues in the direction of the estimated diffusion direction. When it

enters the next voxel (Voxel 2 in Figure 2.3), the track changes its direction to align

with the new diffusion direction and so on. The above tracking rule may produce

many short and fragmented fiber tracts due to either a wrongfully identified isotropic

voxel or spurious directions which go nowhere. In addition, it does not tell us which

direction to follow in case there are multiple directions in a voxel, which happens in

crossing fiber regions. To address these issues, we modify the above procedure in the

following.

Given a current diffusion direction (we refer to the corresponding voxel as the

current voxel), the voxel that it points to (we refer to this voxel as the destination

voxel) may have (i) at least one direction; (ii) no direction (i.e., isotropic). In case

(i), we will first identify the direction with the smallest angular difference with the

current direction. If its separation angle is smaller than a pre-specified threshold (e.g.,

π/6), we enter the destination voxel and tracking will go on along this direction. See

Figure 2.3 (Middle). On the other hand, if the separation angle is greater than the

threshold, or case (ii) happens, we deem that the destination voxel does not have a

viable direction. In this case, tracking will go along the current direction if it finds a

viable direction within a pre-specified number of voxels. The number of voxels that

are allowed to be skipped is set to be 1 in our numerical illustrations. See Figure

2.3 (Right). On the other hand, the tracking stops at the current voxel if no viable
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directions within a pre-specified number of voxels can be found. The detailed tracking

algorithm is described in Algorithm S4 in the SM.

As for the choice of starting voxels (known as seeds), there are two common strate-

gies. One can choose seeds based on tracts of interest and starts the tracking from a

region of interest (ROI). This approach is based on knowledge on ROI and may not

give a full picture of the tracts of interest if there are diverging branches. The other

approach is called brute-force approach, where tracking starts from every voxel. It

usually leads to a more comprehensive picture of tracts at a higher computational

cost.

The proposed algorithm can be coupled with either strategy. In the brute-force

approach, we apply Algorithm S4 of the SM for every pair of (sk, v̂k) twice, i.e., (sk, v̂k)

and (sk,−v̂k). Due to the continuity of fiber, one would not expect a fiber going to

and from nowhere, and only exists within a single voxel. Therefore, if that happens,

we remove the corresponding fiber.

The simplicity of the proposed algorithm makes various extensions possible. For

instance, we may use weighted average of neighboring directions to produce smoother

tracts, similar to Mori and van Zijl (2002).

Combining with the aforementioned smoothing procedure, we call the resulting

technique Diffusion diection Smoothing and Tracking (DiST).

Figure 2.3. Left: Demonstration of the proposed algorithm in single fiber region.
Middle: Demonstration of the proposed algorithm in crossing fiber region. Right:
Demonstration of the proposed algorithm in case of absence of viable directions.
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2.6 Theoretical results
This section derives some asymptotic properties of the proposed direction smoothing

estimator. Note that, since the space of direction vectors has a non-Euclidean geom-

etry and so the theoretical framework is different from that of classical smoothing

estimators. Without loss of generality, suppose we observe v1, . . . , vn ∈ M at spatial

locations s1, . . . , sn respectively. Let V be the three dimensional unit sphere. ThenM

is the quotient space of V with equivalence relation v ∼ −v for any v ∈ V . This space

is also identified with the so-called real projective space RP2.

In the following, we derive our theoretical results under random design where

si’s are independently and identically sampled from a distribution with density fS,

but our results also apply to regular voxels. Given a spatial location s0, our target

is to estimate v0, namely the diffusion direction at s0, in the sense that it minimizes

E
{

d∗2(V, v)|S = s0
}

, where d∗(u, v) = arccos(|u⊺v|). For simplicity, we assume si ∈

R and write it as si thereafter. Thus, our estimator (2.9) at s0 can be written as

v̂(s0) = arg min
v∈M

n

∑
i=1

Kh(si − s0)d∗2(vi, v),

where Kh(·) = K(·/h)/h. Here, with slight notation abuse, K(·) represents a one

dimensional kernel function throughout the theoretical developments.

2.6.1 Working coordinate system

For each p ∈ V , one can endow a tangent space TpV = {v ∈ R3 : v⊺p = 0} with

the metric tensor gp : TpV × TpV → R defined as gp(u1, u2) = u⊺
1u2. Note that the

tangent space is identified with R2. The geodesics are great circles and the geodesic

distance is arccos(p⊺
1p2), for any p1, p2 ∈ V . The corresponding exponential map at

p ∈ V , Expp : TpV → V , is given by

Expp(0) = p and Expp(u) = cos(∥u∥)p +
sin(∥u∥)
∥u∥ u when u ̸= 0,

while the corresponding logarithm map at p ∈ V , Logp : V\{−p} → TpV , is given by

Logp(p) = 0 and Logp(v) =
arccos(v⊺p)√

1− (v⊺p)2
[v− (v⊺p)p] when v ̸= p.
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One can use the exponential map and the logarithm map to define a coordinate sys-

tem for the V\{−v0} in the following way. Given v ∈ V , we define the logarithmic

coordinate as

ω1 = e⊺1Logv0
(v) and ω2 = e⊺2Logv0

(v),

where e1, e2 ∈ Tv0V and {e1, e2} forms an orthonormal basis for Tv0V . Write ϕ(v) =

(ω1, ω2)
⊺. In addition, we define

ρv0(v) =

sign(v⊺
0v)v v⊺

0v ̸= 0

v v⊺
0v = 0

,

and

d(ω,θ) = d∗(ϕ̃−1(ω), ϕ̃−1(θ)), ω,θ ∈ R2,

where ϕ̃ = ϕ ◦ ρv0 . Here, we define ρ−1
v0

as an identity map.

2.6.2 Asymptotic results

Now, write θi = ϕ̃(vi) for i = 1, . . . , n, and ψ(ω,θ) = d2(ω,θ). We have θ0 =

ϕ̃(v0) = 0. Also, let ψ1(ω,θ) and ψ2(ω,θ) be the first and second order derivative

of ψ with respect to θ respectively. Let m(s) = (m1(s), m2(s))⊺ = E(θ1|S1 = s)

and Σ(s) = [Σjk(s)]1≤j,k≤2 = Var(θ1|S1 = s). Also, denote Ψ(s) = [Ψjk(s)]1≤j,k≤2 =

E[ψ2(θ1,θ0)|S1 = s]. Write Bδ(θ0) = {θ ∈ R2 : ∥θ− θ0∥ < δ}, for δ > 0. Throughout

our discussion, we use the L2-norm for matrix. We need the following assumptions

to proceed.

Assumption 2.1. There exists ϵ > 0 such that supp(V1|S1 = s) ⊆ {v ∈ R3 : d∗(v, v0) ≤

π/2− ϵ}, in a neighborhood of s0.

Assumption 2.2. h→ 0 and nh→ ∞.

Assumption 2.3. K(·) is bounded, compactly supported kernel satisfying (i)
∫

K(x)dx = 1

and (ii)
∫

xK(x)dx = 0.
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Assumption 2.4. The density of S, fS(·), is twice continuously differentiable in a neighbor-

hood of s0 and fS(s0) > 0.

Assumption 2.5. mj(·) is twice continuously differentiable in a neighborhood of s0, for j =

1, 2.

Assumption 2.6. Σjk(·) is continuous in a neighborhood of s0, for j, k = 1, 2.

Assumption 2.7. Ψjk(·) is continuous in a neighborhood of s0, for j, k = 1, 2.

Assumption 2.8. E{[ψ2(θ1,θ0)]
2
j,k|S1 = s} ≤ Cjk for all s, for j, k = 1, 2.

Assumption 2.9. Let γ(δ, s) = E[supθ̃∈Bδ(θ0)
∥ψ2(θ1, θ̃) − ψ2(θ1,θ0)∥|S1 = s]. There

exists a neighborhood of s0,W(s0), such that

γ̃(δ) = sup
s∈W(s0)

γ(δ, s) = o(1),

as δ→ 0.

Assumption 2.10. Ψ(s0) is positive definite.

Assumption 1 is a technical assumption for avoiding the unnecessary complica-

tion arising from the representation of geodesic distance as a function of the working

coordinate system. As a result of Assumption 1, one can use a representation of ±v,

which aligns with v0, and reduces the geodesic distance ofM to the geodesic distance

of V . This assumption is usually satisfied by our procedure, as a results of thresh-

olding and clustering. Assumptions 2-10 are standard conditions for consistency and

distributional limits for smoothing estimators.

Theorem 2.1. Suppose Assumptions 1-10 hold. Let Mn(θ) = ∑n
i=1 hKh(Si − s0)d2(θi,θ).
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(a) There exists a sequence of solutions, θ̂n(s0), to M(1)
n (θ) = 0, such that θ̂n(s0) converges

in probability to θ0.

(b) And θ̂n is asymptotically normal:

√
nh
{
(θ̂n − θ0)− h2η

}
=⇒ N2(0, Ω),

where

η = 2
∫

x2K(x)dxΨ−1(s0)

{
f (1)S (s0)

fS(s0)
m(1)(s0) +

1
2

m(2)(s0)

}

and

Ω = 4
∫

K2(x)dxΨ−1(s0)Σ(s0).

The proof of the Theorem 2.1 can be found in Section S5 of the SM.

2.7 Simulation results
This section presents simulation results of the proposed DiST procedure. For sim-

ulation results of the voxel-wise estimation procedure proposed in Section 2.3, see

Section S2 of the SM.

We simulate 200 diffusion tensor data sets from the tensor field given in Figure

2.4 (Top). The tensors all have the principal eigenvalues being 4× 10−3 and FA (2.1)

being 0.9. The b-value is set to be 1000 across all voxels. This mimics the b-value and

diffusivity (reflected by the numerical scale of the tensor) in a real dMRI study.

At each voxel there is either one tensor or there are two tensors. For crossing

fiber regions, p1 and p2 are set to 0.7 and 0.3 respectively, and the separation angles

between the two tensors range from 66.3 to 86.6 degree. In crossing fiber regions of

Figure 2.4 (Top), the more transparent the tensor is, the less weight it takes.

In addition, S0(s)’s have the same value which is set to 1000. Two choices of the

noise standard deviation σ are used, namely 50 and 100, which corresponds to signal-

to-noise ratio (S0/σ) of 20 and 10, respectively. The case that SNR = 20 is typical for
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dMRI studies while that SNR = 10 corresponds to a high noise setting. The set of

gradient directions U is obtained from the sphere tessellation with 3 subdivision us-

ing octahedron and |U | = 33, which is in a typical range for dMRI studies nowadays.

With these gradient directions, the observed signal intensities S(s)’s are simulated ac-

cording to the multi-tensor model (2.2) with the Rician noise. A total of four different

procedures are compared:

• raw: voxel-wise estimation without any smoothing;

• DiST-cv: DiST using ordinary cross-validation score for choosing h;

• DiST-tcv: DiST using 5% trimmed cross-validation score for choosing h;

• DiST-mcv: DiST using median cross-validation score for choosing h.

See Section S3 of the SM for definitions of the various cross-validation variants.

Table 2.1 shows numerical summaries of the simulation results. In addition to the

proportion of correctly estimated number of diffusion directions, we also report the

mean MSE (MMSE) and the mean root MSE (MRMSE), defined as follows. Condi-

tional on the correct estimation of J, the squared error of m is defined as

min
{k1,...,k J∈{1,...,J}:ki ̸=kj}

J

∑
j=1

d∗2(mj, ûkj), (2.10)

where û1, . . . , ûJ are the estimated diffusion directions. Here, the MSE is the mean of

squared errors (2.10) over voxels with Ĵ = J in one simulated data set and root MSE

(RMSE) is the square root of MSE. Then MMSE and MRMSE are defined, respectively,

as the means of MSEs and RMSEs over the 200 simulated data sets.

The voxel-wise estimation works reasonably well in estimating both the number of

diffusion directions J and the diffusion directions. Even for the low SNR setting, the

correctness of estimation of J is around 75% and the angular error is no more than 11

degree. For the single tensor region (J = 1), smoothing improves upon estimation of

both J and diffusion directions. For regions with two tensors (J = 2), smoothing only
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improves direction estimation. Among the three smoothing procedures, DiST-mcv

works the best.

Table 2.2 shows the five-number summary of the maximum angular error with

Ĵ = J = 2 across the 200 simulated data sets. Again smoothing procedures have

smaller errors than the raw procedure and DiST-mcv is the best among all methods.

For DiST-mcv, the mean and median of angular errors are around 2.5 degree and 1

degree for SNR = 10 and SNR = 20, respectively. Such magnitude of errors has little

impact on tracking.

We then apply the proposed tracking algorithm in Section 2.5 (Algorithm S4, SM)

to the estimated diffusion directions based on the above procedures. The tracking

results of a simulation with SNR = 10 are shown in Figures 2.4 (Bottom) and 2.5. As

can be seen in Figure 2.5, the lines produced by DiST are much more aligned when

compared to the tracking result based on voxel-wise estimation without smoothing

(raw).

Table 2.1. Diffusion direction estimation results. Correct-select: proportion of Ĵ =
J. MMSE: mean of MSEs (Each MSE is computed over voxels with Ĵ = J in one
simulated data set.), in squared degree, of the estimated diffusion direction, with the
corresponding standard error stated in brackets. MRMSE: mean of RMSEs (Each
RMSE is computed over voxels with Ĵ = J in one simulated data set.), in degree,
of the estimated diffusion direction, with the corresponding standard error stated in
brackets.

SNR J raw DiST-cv DiST-tcv DiST-mcv

10 1 Correct-select 97.12% 99.09% 99.15% 99.45%
MMSE 9.84 (3.84e-02) 4.95 (2.94e-01) 2.70 (1.09e-01) 3.06 (1.40e-01)

MRMSE 3.14 (6.12e-03) 2.09 (5.46e-02) 1.60 (2.60e-02) 1.69 (3.13e-02)
2 Correct-select 75.18% 74.38% 75.37% 75.44%

MMSE 114 (2.42) 50.9 (3.45) 40.0 (3.11) 9.81 (1.40)
MRMSE 10.6 (1.07e-01) 6.05 (2.68e-01) 5.26 (2.49e-01) 2.49 (1.35e-01)

20 1 Correct-select 98.59% 99.46% 99.69% 99.75%
MMSE 2.30 (8.50e-03) 1.25 (1.23e-01) 7.97e-01 (3.02e-02) 1.15 (5.47e-02)

MRMSE 1.52 (2.80e-03) 1.02 (3.28e-02) 8.79e-01 (1.10e-02) 1.03 (2.04e-02)
2 Correct-select 99.38% 99.94% 99.99% 99.99%

MMSE 19.8 (2.12e-01) 6.43 (5.18e-01) 2.00 (2.84e-01) 1.48 (2.13e-01)
MRMSE 4.43 (2.34e-02) 2.13 (9.75e-02) 1.13 (6.02e-02) 9.93e-01 (4.98e-02)
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Figure 2.4. Top: The true tensor field used in the simulation study (Section 2.7).
Bottom: Illustration of fiber tracking using DiST-mcv.
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Figure 2.5. Illustration of fiber tracking over the crossing fiber region by raw (top)
and DiST-mcv (bottom) respectively.
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Table 2.2. Summary statistics of the maximum absolute error across the voxels with
Ĵ = J = 2.

SNR Method Minimum 1st Quantile Median Mean 3rd Quantile Maximum

10 raw 0.530 6.63 9.86 11.8 14.6 89.3
DiST-cv 0.132 2.32 4.99 6.97 9.59 89.3
DiST-tcv 0.0933 2.08 4.01 6.00 8.07 89.3
DiST-mcv 0.135 1.35 2.11 2.91 3.35 65.1

20 raw 0.350 3.20 4.67 5.20 6.65 29.5
DiST-cv 0.0803 0.931 1.73 2.48 3.28 26.1
DiST-tcv 0.0494 0.613 0.965 1.33 1.53 15.7
DiST-mcv 0.0473 0.531 0.841 1.16 1.40 15.9

2.8 Real data application
In this section, we apply the proposed methodology to a real dMRI data set, which

was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(www.loni.ucla.edu/ADNI). The primary goal of ADNI has been to test whether se-

rial MRI, positron emission tomography (PET), other biological markers, and clini-

cal and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and onset of Alzheimer’s disease (AD). In the

following, we use an eddy-current-corrected ADNI data set of a normal subject for

illustration of our technique.

This data set contains 41 distinct gradient directions with b-value set as 1000s/mm2.

In addition, there are 5 b0 images (corresponding to b = 0), forming in total 46 mea-

surements for each of the 256 × 256 × 59 voxels. To implement our technique, we

require estimates of S0(s)’s and σ. We first estimate S0(s) and σ(s) for each voxel

by ML estimation based on the 5 b0 images. Then we fix σ as the median of esti-

mated σ(s)’s for voxel-wise estimation of the diffusion directions. Since the original

256× 256× 59 voxels contain volume outside the brain, we only take median over a

human-chosen set of 81× 81× 20 voxels. The estimated σ is 56.9.

In this analysis, we focus on a subset of voxels (15× 15× 5), which contains the

intersection of corpus callosum (CC) and corona radiata (CR). This region is known

to contain significant fiber crossing (Wiegell et al., 2000). Figure 2.6 shows the fiber
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orientation color map (derived from the single tensor model). The aforementioned

region is indicated by a white rectangular box. Within this region, S0(s)’s have mean

1860.1 and standard deviation 522.7.

We then apply voxel-wise estimation to individual voxels followed by the DiST-

mcv procedure. Distributions of the estimated number of diffusion directions are

summarized in Table 2.3. For comparison purposes, we also fit the single tensor

model with the commonly used regression estimator (e.g., Mori, 2007).

The tracking results are produced by applying the proposed tracking algorithm

to the estimated diffusion directions from DiST-mcv and those from the single tensor

model estimation. Figure 2.7 shows the corresponding tracking results. For visual-

ization purposes, we also present the longest 300 tracts in Figure 2.8. From anatomy,

the CC has a mediolateral direction while the CR has a superoinferior orientation.

They are clearly shown in both tracking results. In these figures, reconstructed fiber

tracts are colored by a RGB color model with red for left-right, green for anteropos-

terior, and blue for superior-inferior. Thus, one can easily locate the CC and the CR

as the red fiber bundle and the blue fiber bundle respectively. Tracking result based

on DiST-mcv shows clear crossing between mediolateral fiber and the superoinferior

fiber (In the figure, the crossing of red and blue fiber tracts). From neuroanatomic

atlases and previous studies, Wiegell et al. (2000) conclude that there are several fiber

populations with crossing structure in this conjunction region of CC and CR, which

matches with the tracking based on DiST-mcv. However, the single tensor model esti-

mation can only reconstruct one major diffusion direction in each voxel and thus the

corresponding tracking result does not show crossing structure. Instead, the CC (red

fiber bundle) is blocked by the CR (blue fiber bundle) and this leads to either termi-

nation of the CC fiber tracts or significant merging of the CC and the CR fiber tracts

instead of the known crossing structure. To give further illustration, Figure 2.9 shows

the locations of the CC, the CR and the region of crossing fibers (Cross). One can see

that tracking based on DiST-mcv reproduces the crossing fiber structures between the

CC and the CR, while the result based on single tensor model tends to connect the
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CC and the CR fibers.

Moreover, the green fiber on top of the CC represents the cingulum bundle. Both

fiber tracking based DiST and single fiber model produce clear and sensible recon-

struction of cingulum bundle. All these features match with neuroanatomic atlases

and provide a good demonstration of our proposed method.

Table 2.3. Number of voxels with different estimated number of diffusion directions.

Number of diffusion directions
0 1 2 3 4

Voxel-wise estimation 37 476 589 23 0
Smoothing 37 476 593 19 0

2.9 Discussion
Using tensor estimation to resolve cross-fiber can be problematic, due to the non-

identifiability issue in multi-tensor model. In this paper, we take a different route

by focusing on the estimation of diffusion directions rather than the non-identifiable

diffusion tensors. We develop the corresponding direction smoothing procedure and

fiber tracking strategy, together called DiST, along this route. Our technique gives

promising empirical results in both simulation study and real data analysis.

The procedure we presented works well even with moderate number of gradient

directions (a few tens), as long as the number of distinct crossing fibers within a voxel

is not large. With HARDI data, which can have up to a couple of hundreds gradient

directions, rather than modeling the direction distribution within a tensor framework,

we can estimate the fiber orientation distribution nonparametrically (Descoteaux et al.,

2007; Tuch, 2004). In that case, we can potentially extend the fiber tracking procedure

presented here by adopting a probabilistic approach in which the directions for mov-

ing from one voxel to another are sampled from the fiber orientation distribution.

Such a probabilistic fiber tracking has the additional advantage of giving a measure

of uncertainty of the fiber tracts extracted from the data. This is a topic of future

research.
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Figure 2.6. The fiber orientation color map (based on the single tensor model). The
focused region is indicated by white rectangular boxes.
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Figure 2.7. Top: Tracking using DiST-mcv. Bottom: Tracking using single tensor
model.
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Figure 2.8. Top: The longest 300 tracks using DiST-mcv (The left and right figures
corrspond to different view angles). Bottom: Similarly for single tensor model.
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Figure 2.9. The projection of fiber directions to the xy-plane at z = 102.6 for illus-
tration of crossing fibers. The plot also shows the location of corpus callosum (CC),
corona radiata (CR) and crossing region (Cross). The fiber orientation color map is
overlayed as the background. Left: for DiST-mcv. Right: for single tensor model.
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Chapter 3

Global Optimization of High
Dimensional Expensive Black-box
Systems with Uncertainty
Quantification

Abstract

Numerical optimization is usually conducted through iterative evaluations of a

target function. In many situations, such as computer experiments, the target

function is complicated and the corresponding evaluations are costly. Emula-

tors (i.e., statistical response surfaces) can be used to overcome these difficulties.

One common strategy to handle such situations is to adaptively sample the input

space for a new set of target function evaluations with which to update the emu-

lator. This is accomplished by involving another optimization of a quantity (e.g.,

expected improvement) as a function of the next set of locations for evaluation.

However, evaluation and optimization of this quantity can be challenging when

the input dimension of the function becomes large. In this work, we propose a

novel technique to overcome the aforementioned difficulties via explorations of

sparsity. This technique can generate multiple sampling locations (batch sam-

pling) so that evaluations of the target function can be done in a parallel manner.

As another promising feature, our technique provides uncertainty quantification
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of the optimal solution, which can be used to safeguard scenarios of multiple

global optima or occurrences of competitive local optima.

This is a joint work with Curtis B. Storlie1 and Thomas C. M. Lee2.

3.1 Introduction
In many situations such as computer experiments, the underlying target functions

(e.g. computer models) are complicated and costly to evaluate. Such target functions

are usually called black-box functions. Despite the vast study of global optimiza-

tion, optimizations of these functions are still challenging. Such optimizations are

very different from the traditional global optimization framework, under which func-

tion evaluations are relatively cheap. It is very common that a single evaluation of

expensive functions, such as those in computer experiments, takes a few days with

reasonably fast machines. Moreover, the black-box functions are complicated and so,

very often, no simple model can be laid down for them. In addition, the evaluations

are often imperfect and subject to noise contamination, such as in a manufacturing

process. In the examples when the target function is a computer model, the noise is

relatively small, but they usually are not negligible because numerical solving error

of the computational code results in a little bit of jitter around the true value.

In many problems related to expensive black-box functions, statistical nonpara-

metric surface estimation plays an important role. These surface estimates, called

emulators, provides a flexible modeling for black-box functions. A common opti-

mization strategy is to adaptively sample the input space for a new set of target

function evaluations based on the current surface estimate. This is accomplished by

involving another optimization of a quantity such as expected improvement (Jones

et al., 1998). This falls into the framework of sequential sampling. The purpose of

sequential sampling is to make the best possible use of the model evaluations for the

purpose at hand. For example, if we are interested in obtaining the minimum of the

target function then sampling at places where we know the function is likely to be

1Los Alamos National Laboratory
2Department of Statistics, University of California at Davis
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high (given what we know so far) is of little use to us. Instead, we should observe at

values of inputs where the function could be small. Thus some have used a sequen-

tial sampling scheme where they throw down an initial sample of size n0, estimate

the function given the n0 points, then use some criterion, like expected improvement

in the minimum, to determine a location to evaluate next. That means, one has to

optimize the criterion with respect to the values of inputs. This nested optimization

can be a curse in traditional regime where function evaluations are cheap. However,

if function evaluations are expensive, the gain in utilizing the information of exist-

ing evaluations usually outweighs the additional computational power invested in

obtaining a better set of next sampling locations.

The aforementioned strategy has been widely used (Ginsbourger et al., 2010; Huang

et al., 2006a,b; Jones et al., 1998). However, when the dimension of the input space be-

comes large, there are three major complications with this strategy:

1. Decent estimation of target function becomes challenging, so that calculating the

criterion for where to evaluate next produces highly variable results.

2. Searching the input space for the point with the most favorable criterion value

becomes very challenging, and suboptimal searches must be performed (with

varying levels of how suboptimal they are the bigger dimension is).

3. Just calculating the criterion may require a high dimensional integral which

makes the issue in 2 even worse.

In a lot of problems with high dimensionality, many input dimensions do not have

strong effect on the target function value. So the idea is to use a surface estimation that

has variable selection built in to select the useful input dimensions. The procedure

we propose at a qualitative level is the following:

1. Lay down a Latin Hypercube Sample (LHS) and estimate the target function

with a variable selection procedure.

2. Use some criterion (e.g., expected information increase) to determine where to

place the next value(s) of inputs to evaluate the target function. This is a reduced
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dimensional search because many of the dimensions of the inputs have no effect

on the criterion due to the variable selection. The other dimensions are still

sampled with an LHS sample or other sampling scheme. Thus, the other zeroed

out dimensions will have a chance to come back.

3. Also the criterion is easier to compute for each candidate point because the

expected information gain is only a function of the non-zero input variables.

In addition, the proposed procedure can generate multiple sampling locations at a

time. This is called batch designs (e.g., Loeppky et al., 2010). Batch design is very

useful in situations like computer experiments, where the evaluations of the target

function can be obtained in a parallel manner. With variable selection, the surface

estimates are usually of lower dimensions and this makes the uncertainty quantifica-

tion of the optimal solution computationally feasible. This can be used to safeguard

scenarios of multiple global optima or occurrences of competitive local optima.

3.2 Emulator with variable selection
In this section, we focus on the surface estimation of a target function f , which is

assumed to be smooth. As f is complicated and difficult to be modeled easily, the

nonparametric surface estimation techniques have been widely used as surrogates or

emulators of f . Our choice of emulator is ACOSSO (Storlie et al., 2011), which is an

extension of smoothing spline ANOVA (Gu, 2013; Wahba, 1990). Similarly as LASSO

and adaptive LASSO (Tibshirani, 1996; Zou, 2006), ACOSSO has an embedded vari-

able selection power, which can automatically remove ‘weak’ functional components.

To lay down the mathematical framework, suppose

y(x) = f (x) + ε

where f ∈ F (a reproducing kernel Hilbert space) is the interested surface (e.g., a

manufacturing process or a computer model) and ε is the observational error. Here

the observational error follows N (0, σ2). For different observations, we assume f

stays the same, but the corresponding observational errors are independently and
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identically distributed. Without loss of generality, we assume x = (x1, . . . , xp)⊺ ∈ X =

[0, 1]p. And we take F as p-dimensional tensor product of some reproducing kernel

Hilbert spaces on [0, 1], {Fj}
p
j=1. One common choice is to take all Fj’s as the second

order Sobolev spaces, S2 = {g : g, g′ are absolutely continuous and g′′ ∈ L2[0, 1]},

with squared norm

∥ f ∥2 =

(∫ 1

0
f (x)dx

)2

+

(∫ 1

0
f ′(x)dx

)2

+
∫ 1

0

(
f ′′(x)

)2 dx. (3.1)

Write the reproducing kernel of Fj as Kj. Using the smoothing spline ANOVA de-

composition (see, e.g., Gu, 2013; Wahba, 1990), one can express

F =
p⊗

j=1

Fj = {1} ⊕


p⊕

j=1

F̄j

⊕
⊕

j<k

(
F̄j ⊗ F̄k

)⊕ · · ·
where {1} represents the space of constant functions and Fj = {1} ⊕ F̄j. With trun-

cation, we can rewrite

F = {1} ⊕


q⊕

j=1

Fj

 .

In general, if we observe samples

yi(xi) = f (xi) + εi, i = 1, . . . , n,

ACOSSO selects f ∈ F that minimizes

1
n

n

∑
i=1
{yi(xi)− f (xi)}2 + λ

q

∑
j=1

wj∥Pj f ∥F , (3.2)

where Pj f is the orthogonal projection of f onto the Fj for j = 1, . . . , q. Here the sum

of norms gives rise to the sparsity of the solution (Storlie et al., 2011).

Under the sequential framework, our strategy is to apply ACOSSO for summariz-

ing the information from previous samples to help look for better sites for the next

sample. Roughly speaking, the ACOSSO summarizes two pieces of information. First,

it achieves variable selection. If the variable selection is correct, the unselected vari-

ables are essentially classified as irrelevant variables and so special sampling design
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for these variables should not improve the situation. Thus, with variable selection, we

can confine our focus to the construction of adaptive design of the low dimensional

subspace of X . Second, ACOSSO provides the adaptive kernels which are useful for

deriving the design criterion. We will explain more about this in the next section.

3.3 Equivalent formulation and empirical Bayesian in-
terpretation of ACOSSO

In this section, we study the empirical Bayesian interpretation of ACOSSO, which we

can use for the construction of the criterion for sequential sampling. First, consider

the problem of finding θ = (θ1, . . . , θq)⊺ and f ∈ F to minimize

1
n

n

∑
i=1
{yi(xi)− f (xi)}2 + λ0

q

∑
j=1

θ−1
j w2

j ∥Pj f ∥2
F + λ1

q

∑
j=1

θj, subject to θj ≥ 0 ∀j.

(3.3)

From Storlie et al. (2011), it is shown that, under λ1 = λ2/(4λ0), (3.2) and (3.3) shares

the same minimizer f̂ (with θ̂j = λ1/2λ−1/2
1 wj∥Pj f̂ ∥F , j = 1, . . . , q, for (3.3)). For fixed

θ, minimizing (3.3) is equivalent to minimizing

1
n

n

∑
i=1
{yi(xi)− f (xi)}2 + λ0

q

∑
j=1

θ−1
j w2

j ∥Pj f ∥2
F .

This corresponds to a classical smoothing spline estimation and the solution has the

Bayesian interpretation as a posterior mean of f (x) = µ + ∑
q
j=1(Pj f )(x) where Pj f

has a mean zero Gaussian process prior on X with covariance function Gj(s, t) =

σ2θjw−2
j Kj(s, t)/nλ0, for s, t ∈ X . Here Kj is the corresponding reproducing kernel

with respect to Fj. In ACOSSO, we estimate θ from the data and the resulting estimate

of f can be viewed as a smoothing spline estimate under θ = θ̂. This idea is basically

an empirical Bayesian approach.

The variable selection mechanism of ACOSSO lies in setting some θj’s to zero.

Under the Bayesian interpretation, the corresponding prior covariance functions Gj’s

are set to zero. Thus one can understand why the posterior mean of f has zero

projected component on the corresponding Fj.
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This above interesting observation facilitates a corresponding Gaussian process

model for f . Suppose now Pj f has a mean zero Gaussian process prior on X with

covariance function Gj, for j = 1, . . . , q and write G = ∑
q
j=1 Gj. The distribution of

observation (y1(x1), . . . , yn(xn))⊺ is given by

N
{

µ1n,
(
G(xi,xj)

)n
i,j=1 + σ2In

}
.

And, suppose, now, we are given a set of new observations y′1(x
′
1), . . . , y′m(x′m). The

joint distribution of (y1(x1), . . . , yn(xn), y′1(x
′
1), . . . , y′m(x′m))⊺ is given by

N

µ1n+1,


(
G(xi,xj)

)n
i,j=1 + σ2In

(
G(xi,x′j)

)n,m

i,j=1(
G(x′i,xj)

)m,n
i,j=1

(
G(x′i,x

′
j)
)m

i,j=1
+ σ2Im


 .

Write the covariance matrix as

R =

 R11 R12

R⊺
12 R22


according to the above matrix partition. The posterior covariance matrix of (y′1(x

′
1), . . . ,

y′m(x′m))⊺ can be written as R23 −R⊺
12R

−1
11 R12.

3.4 Kernel Proposal
Note that the Sobolev’s norm (3.1) induces a kernel K(s, t). In Figure 3.1, the plot

of K is shown. For instance, one may see that when s is set as around 0.8, K(0.8, t)

is an increasing function with respect to t. Thus, K(0.8, 1) is larger than K(0.8, 0.8).

Basically, that means the prior covariance between the f j(0.8) and f j(1) is larger than

the variance of f j(0.8). This effect carries to the search of good design and result in

more emphasis on the boundary, 0 and 1.

To solve this problem, the Gaussian kernel is used. In this case, we have to select

the variance parameter of the Gaussian kernel. Note that the variance parameter is

related to the smoothness of each dimension. For computational simplicity, the vari-

ance parameters for all dimensions are set to be the same and is chosen by Bayesian

information criterion (Schwarz, 1978). Some properties of the Gaussian kernel as the
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Figure 3.1. The demonstration of the induced kernel K from (3.1).

reproducing kernel are given by Steinwart et al. (2006) and Minh (2010). One impor-

tant property is the reproducing kernel Hilbert space generated by this kernel does

not include nonzero constant functions.

3.5 Sequential sampling for minimizing f
In this section, we aim to design a sequential sampling scheme for estimating the

minimizer of f . For kriging models, expected improvement criterion is developed by

Jones et al. (1998) to formulate the sequential sampling scheme for global optimization.

Huang et al. (2006b) extend the expected improvement criterion to global optimiza-

tion from noisy observations and call it augmented expected improvement criterion.

To cope with batch sampling, Ginsbourger et al. (2010) explore a batch version of

expected improvement criterion. But due to the additional computational burden,

they propose using the constant liar algorithm which utilizes the original expected

improvement criterion. Although all of these global optimization idea are developed
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under kriging models, we can apply them to ACOSSO with above empirical Bayesian

viewpoint.

The augmented expected improvement criterion (Huang et al., 2006b) is defined as

EI(x) = E
[
max

{
f̂ (x∗∗)− y(x), 0

}]
·
{

1− σ√
s2(x) + σ2

}

where the expectation is taken over the posterior distribution of y(x) with f̂ (x∗∗) kept

fixed, x∗∗ is the current ‘effective best solution’, f̂ (x∗∗) is posterior mean of y(x∗∗)

and s2(x) is the posterior variance of y(x). According to Huang et al. (2006b),

x∗∗ = arg max
x1,...,xn

u(x),

where u(x) = − f̂ (x) − cs(x) is called the utility function and x1, . . . ,xn are the

previously observed locations. Here, s is the posterior standard deviation of f and

c is a tuning parameter, which reflects the degree of risk aversion. See Huang et al.

(2006b) for more discussions. For our numerical illustrations, we choose c as the third

quantile of a standard normal distribution. Under normality assumption, EI has a

closed-form formulation:

E
[
max

{
f̂ (x∗∗)− y(x), 0

}]
=
{

f̂ (x∗∗)− f̂ (x)
}

Φ

{
f̂ (x∗∗)− f̂ (x)

s(x)

}

+ s(x)ϕ

{
f̂ (x∗∗)− f̂ (x)

s(x)

}
,

where Φ and ϕ are the standard normal cumulative distribution and normal probabil-

ity density function respectively. For sequential batch design, we apply the constant

liar algorithm (Ginsbourger et al., 2010) with the augmented expected improvement

criterion. An illustration of the sequential sampling is shown in Figure 3.2.

3.6 Credible set for minimizers
In this section we construct a credible set for minimizers. Although most of the

procedure described in this section works for kriging, the computational time grows

dramatically as dimensionality grows. Thus, it is usually computationally infeasible to
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Figure 3.2. An illustration of the sequential sampling procedure (ACOSSO with
Gaussian kernel). The setting is adapted from Section 3.7 (Branin function). The
true function has three global minimizers and is of 13 dimensions with only 2 of
them are useful. Blue dots: initial sampling locations. Red dots: proposed sampling
locations so far (sampled). Red triangles: newly proposed sampling locations (not
yet sampled).
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apply the credible set idea for kriging models. With variable selection, our method can

be used with the methodology developed in this section to obtain a credible set for the

minimizers. Note that the idea of a credible set is extremely useful when the objective

function has a few global optimizers or the value of global optimum is very close to

values of some local optima. For instance, in our Branin function example, there are

three global minimizers. It may turn out that all three minimizers are important and

one does not want to miss any of them. Ordinary global optimization techniques tend

to return one global minimizer without noticing the possibilities of multiple global

minimizers. Similarly, if some local optima have very close value as the unique global

optima does. Ordinary global optimization techniques may miss the global optima

without any notice for other possible locations of global minimizers. The credible set

serves as a safeguard in these situations.

Note that ACOSSO has the posterior interpretation as described in Section 3.3.

And thus we can generate posterior sample from the posterior distribution and nu-

merically estimate the posterior distribution of the optimizers. To be precise, we have

the posterior distribution of a function and generating a sample of a function can

be computationally expensive. One straightforward idea is to generate the values of

the function over a dense grid. However, as the dimension grows, the number of

grid points grow exponentially. And for estimating the optimizer of a posterior sam-

ple accurately, we need a fine grid. Thus, instead, we develop a fast and accurate

algorithm for generating a sample of optimizer from the posterior distribution. We

call this algorithm ‘zoom-in’ algorithm, as it evaluates a posterior sample adaptively

through iteratively zooming into its minimizer. The ‘zoom-in’ algorithm for sampling

a minimizer is given as follows.

1. Lay down a Latin Hypercube design of size N over the space of index set of f

and generate sample over the design from the posterior distribution.

2. Find design points with K smallest sampled values.

3. Apply k-means clustering over those K design points and group them into L
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groups.

4. For each group, lay down a smaller patch centering at the group mean and

draw a new Latin Hypercube sample over this smaller patch, by conditioning

on the existing samples. For speed, the new sample is drawn by conditioning

on samples inside a relatively larger patch that contains the smaller patch.

5. For each group, find the minimizer.

6. Repeat (4) by laying down a even smaller patch with center of their current

minimizer, for certain number of times.

7. Compare the current minimizers from each group and return the one with the

minimum value.

The above algorithm is illustrated in Figure 3.4. It shows the sampling locations for a

particular process generated from the posterior distribution. We generate the credible

set for minimizers using the following algorithm:

1. Sample M minimizers using the above algorithm.

2. Apply kernel density estimation over these M minimizers.

3. Find the highest density set.

3.7 Simulation study
A simulation study is conducted to evaluate the practical performance of the proposed

methodology. Here we use a popular test function in the optimization literatures.

This function is called Branin function, which has two input variables. This function

is defined over [−5, 10]× [0, 15] and we rescale its domain to [0, 1]× [0, 1] and depict

it in Figure 3.3 (Left). Branin function is a challenging function to minimize as it

has three global minima: x∗1 = (0.9616520, 0.15)⊺ x∗2 = (0.1238946, 0.8166644)⊺ and

x∗3 = (0.5427730, 0.15)⊺. To demonstrate the added difficulty of high dimensionality,

we assume that there are 13 input dimensions and clearly only 2 of them are useful.
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Moreover, we also tilt the Branin function so that the tilted version only has one

global minimizer. See Figure 3.3 (Right). In the following, we provide a simulation

study using both the Branin and tilted Branin function with the following detailed

simulation setting:

• Total number of variables: p = 13

• Initial sample size: n0 = 100

• Sequential sample size: ni = 10 for i = 1, . . . , 5

• Noise level, σ: 3 (Gaussian noise) (around 1% of the range of the Branin function)

And we compare the following procedures.

1. ss-acosso: Sequential sampling with ACOSSO with Sobolev’s kernel.

2. ss-acosso-gauss: Sequential sampling with ACOSSO with Gaussian kernel.

3. ss-gp: Sequential sampling with kriging.

4. acosso: ACOSSO on augmented LHS.

5. acosso-gauss: ACOSSO with Gaussian kernel on augmented LHS.

6. gp: Kriging on augmented LHS.

For acosso, acosso-gauss and gp, the LHS is generated through augmenting the initial

design and maintaining the Latin properties of the design (and attempting to add the

points to the design in a way that maximizes S optimality). Thus, all methods share

the same n0 samples. All ACOSSO are fitted using weights from an initial COSSO

fitting (Lin and Zhang, 2006) and both tuning parameters are selected by BIC. The

numerical results are reported in Tables 3.1 and 3.2. Here, for all 500 simulations,

all procedures obtain 100% superset selection (ss-gp and gp implement no variable

selection). Generally, the sequential sampling procedures (ss-acosso, ss-acosso-gauss

and ss-gp) perform better than their one-time sampling counterparts (acosso, acosso-

gauss and gp). Those procedures with variable selection have better results than the
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ss-acosso ss-acosso-gauss ss-gp acosso acosso-gauss gp

Correct selection 92.8% 100% 0% 77% 100% 0%

Superset selection 100% 100% 100% 100% 100% 100%

Minimum 4.66 0.728 9.15 8.30 6.10 9.99

Minimizer 0.0521 0.0407 0.0963 0.120 0.0901 0.0675

x∗1 0.252 0.386 0.336 0.678 0.578 0.366

x∗2 0.412 0.400 0.360 0.248 0.340 0.368

x∗3 0.336 0.214 0.304 0.074 0.082 0.266

Table 3.1. Simulation results: (1) Correct selection: proportion of selecting exactly
all true predictors in the final fit. (2) Superset selection: proportion of selecting
a superset of the true predictors in the final fit. (3) Minimum: The RMSE of the
minimum. (4) Minimizer: The RMSE from the closet true minimizers. (5) x∗i : The
proportion that the closest true minimizer is x∗i .

others. If we particularly focus on ss-gp and gp, we can see that the gain of sequential

sampling is not much. It is probably because the computation and optimization of

the EI is not numerically stable due to the high dimensionality.
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Figure 3.3. Left: The Branin function (rescaled). Right: The tilted Branin function
(rescaled).

In addition, the 90%, 95% and 99% credible sets for ss-acosso-gauss in the above

simulations is generated. And we summarize the performance of credible sets in

Table 3.3. Also, illustrations of credible sets are given in Figure 3.5. Since this credible
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ss-acosso ss-acosso-gauss ss-gp acosso acosso-gauss gp

Correct selection 93.6% 100% 0% 80.4% 99.8% 0%

Superset selection 100% 100% 100% 100% 100% 100%

Minimum 0.926 0.688 8.16 5.95 3.92 8.90

Minimizer 0.0682 0.0569 0.206 0.451 0.412 0.260

Table 3.2. Similar to Table 3.1, but for tilted Branin function.

Branin function Tilted Branin function

Target coverage Area Coverage Joint coverage Area Coverage

90% 0.0207 99.8% 40.8% 0.0077 95.2%

95% 0.0283 100% 56.6% 0.0101 98.2%

99% 0.0461 100% 83.6% 0.0155 99.8%

Table 3.3. (1) Area: the mean area of credible sets. (2) Coverage: the proportion that
at least one of the three minimizers is included. (3) Joint coverage: the proportion
that all three minimizers are included.

set is developed for one global minimizer, one needs a larger credible set to obtain the

joint coverage. In practice, if one increases the level of the credible set, one usually see

the set is formed by a few disjoint sets, e.g. in Figure 3.5, and this is a sign of multiple

global optimizers or existence of local optimizers that have close function values as

the global optimizer has.

3.8 Concluding remarks
In this work, we propose a global optimization technique for high dimensional expen-

sive black-box functions. Our technique automatically selects useful variables (input

dimensions) in each steps of the sequential sampling. This eases and stabilizes the

optimization of the criterion used for designing the next sampling locations in the

sequential sampling. As another contribution, we also provide a uncertainty quan-

tification technique for the proposed optimization method. This technique provides a

mean to compute credible sets for optimizer, which is very useful in global optimiza-

tion for determining the quality of the estimated optimizer.
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Figure 3.4. Illustration of the “zoom-in” algorithm.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 3.5. Illustration of the 90%, 95% and 99% credible sets. True minimizers are
shown as red dots. Left: for Branin function. Right: for tilted Branin function.
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Chapter 4

A Frequentist Approach to Computer
Model Calibrations

Abstract

We consider the computer model calibration problem and provide a general fre-

quentist approach with uncertainty quantification. Under the proposed frame-

work, the data model is semi-parametric with a nonparametric discrepancy func-

tion to account for any discrepancy between the physical reality and the simulator.

In an attempt to solve the fundamental identifiability issue between model param-

eters (of the simulator) and discrepancy function, we provide a new parametriza-

tion of the problem And for uncertainty quantification, a bootstrapping approach

is used to provide a simple but effective method for construction of confidence

regions of the quantities of interests.

This is a joint work with Curtis B. Storlie1 and Thomas C. M. Lee2.

4.1 Introduction
In many areas, complex mathematical models, implemented as computer codes, are

used to model the physical reality. However, some computer models cannot be used

for this goal without the specification of the values of some parameters, called model

parameters. One would want to specify their values such that, with these values, the

1Los Alamos National Laboratory
2Department of Statistics, University of California at Davis
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computer model can best reproduce the physical reality. The goal of calibration is to

find such parameter values. In computer model calibration problem (Kennedy and

O’Hagan, 2001), we observe an output y from the physical reality ζ at n locations of

“controllable” input x = (x1, . . . , xp)⊺:

yi = ζ(xi) + εi,

for i = 1, . . . , n. Here εi is the observation error for the i-th observation. The computer

model η(x,θ), also called the simulator, can be used to approximate the physical

reality ζ(x) when the model parameter θ = (θ1, . . . , θd)
⊺ is set to an approximate

but unknown value θ0. To account for the discrepancy between the simulator and

the physical reality, one can assume there exists a discrepancy function δ0(x) and the

model of the experimental data can be written as

yi = η(xi,θ0) + δ0(xi) + εi, (4.1)

for i = 1, . . . , n. In order to estimate θ0 and δ0, we will need to be able to evaluate

η at different values of x and θ. However, evaluation of η(x,θ) is often very time

expensive due to complex nature of the mathematical models. This complication

facilitates the use of a surrogate model, referred to as an emulator (Higdon et al.,

2004; Kennedy and O’Hagan, 2001; Reich et al., 2009), for the simulator. Typically

a Gaussian process (GP) is assumed for the simulator to form a flexible emulator.

Moreover, GP is often used to model the discrepancy function. To form the emulator,

we obtain an additional set of observations from the simulator at m design locations

(x∗1 ,θ∗1), . . . , (x∗m,θ∗m). Note that, we have observed two data sets thus far, with one

from the physical reality and the other from the simulator. In this setting, we have to

estimate θ0, δ0 and η.

Typically, the computer model calibrations are done within a Bayesian framework

(Higdon et al., 2004; Kennedy and O’Hagan, 2001; Reich et al., 2009; Storlie et al.,

2013a, e.g.,). There have been frequentist approaches to the calibration problem, the

most common of which involves obtaining the maximum likelihood estimator (MLE)

for θ directly by evaluating η sequentially in an optimization routine (Huang et al.,
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2006b; Jones et al., 1998; Vecchia and Cooley, 1987), for example. Sometimes this may

be too computationally prohibitive and a surrogate model (e.g., Storlie and Helton

(2008); Storlie et al. (2009)) could be used in place of η for the purpose of obtaining

an MLE for θ. However, this latter approach must be used with care as to not ignore

the estimation error uncertainty in the surrogate model for η, which can often be sub-

stantial. Also, neither approach above allows for a model form discrepancy δ0. While

some models may be very good approximations, leading to a small discrepancy, no

model is perfect and neglecting discrepancy is a major pitfall. However, the incor-

poration of the discrepancy function leads to an identifiability issue, which we will

address in Section 4.2.

Because of the GP’s ability to incorporate uncertainty about the surrogate model

for η(x,θ), and a similar ability to provide uncertainty about the discrepancy function

δ0, the Bayesian approach has been prominent in computer model calibration prob-

lems, particularly when η is expensive to evaluate. However, we are interested here

in solving this problem from a purely frequentist perspective, while also accounting

for uncertainty in the model parameters, surrogate model, and discrepancy. To the

best of our knowledge, there has been no previous attempt to solve the computer

model calibration problem in this manner. Yet, there are several reasons for doing

this: (i) The proposed approach is simple, robust, and easy to understand, and it

will work with any choice of surrogate model. (ii) It provides a complementary cal-

ibration result to the Bayesian approach, each approach providing some qualitative

confirmation of the other. (iii) Many researchers in computational physics are op-

posed to the Bayesian calibration approach because of the complex prior assumptions

of GP and identifiability concerns between emulator and discrepancy. The proposed

approach now provides a viable alternative that now accounts for potentially impor-

tant sources of uncertainty. While any statistical model makes assumptions, there

are fewer assumptions necessary in the proposed approach than in the Bayesian ap-

proach. For example, prior distributions on the emulator and discrepancy are re-

placed with “smoothness” assumptions and an emphasis is intuitively placed on the
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ability to predict the experimental data via cross validation. Empirical evidence shows

that our proposed frequestist approach tends to give better performance than existing

Bayesian approaches.

4.2 A semi-parametric modeling to calibration problem
In this section we aim to develop a frequentist approach to calibration problems. Con-

sider the semi-parametric model (4.1) for the physical reality. Despite its popularity

under Bayesian framework, this model is not identifiable in the frequentist regime,

where θ0 and δ0 are treated as fixed. In the following, we provide intuitive and iden-

tifiable definition for θ0 and δ0 under model (4.1). For ease of exploration, a general

framework for the estimation of θ0 and δ0 is proposed under the knowledge of η in

Section 4.2.1 and 4.2.2. We delay the discussion of emulator of η to Section 4.2.3. The

proposed framework takes advantage of existing optimization techniques and non-

parametric regression techniques, and thus provide an effective and flexible approach

to estimate θ0 and δ0 with easy implementation.

4.2.1 Identifiability issue

Under frequentist interpretation, θ0 and δ0 are treated as fixed values. In model

(4.1), the discrepancy function δ0 is usually assumed to be an unconstrained smooth

function, where nonparametric regression techniques are commonly used to estimate

such function. To see the non-identifiability of (4.1), imagine there are two differ-

ent values of θ, say θ1 and θ2. Now, we can write δ1(x) = ζ(x) − η(x,θ1) and

δ2(x) = ζ(x) − η(x,θ2). Here (θ1, δ1) and (θ2, δ2) both give the same distribution

of y in model (4.1) and this leads to an identifiability issue. Even though prior in-

formation or penalty can be incorporated in the estimation procedure to “bias” the

estimator towards certain values, the fundamental identifiability issue in the above

model still exists. This issue prevents us from defining the θ0 and δ0 even one knows

ζ completely. This identifiability issue forbids us from constructing uncertainty mea-

sure such as confidence intervals of θ0 or confidence bands of δ0, since there is no

well-defined target parameters.
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Here we attempt to give sensible definitions of θ0 and δ0 in order to achieve iden-

tifiable modeling. Write the spaces of model parameters and inputs as Θ and X . We

propose the following model of the physical reality ζ:

ζ(x) = η(x,θ0) + δ0(x),

where η is the simulator (a smooth function), θ0 = arg minθ∈Θ

∫
X (ζ(x) − η(x,θ))2

dF(x), δ is an unknown smooth function (discrepancy) and F characterizes a weighing

scheme of x. F is related to the sampling design and is usually an identity function

for common sampling design schemes. Under an regularity assumption (Assumption

4.6 in Section 4.4), both θ0 and δ0 are identifiable. Clearly, there exists different ways

to define θ0 and δ0. We choose these definitions as they match with the intuition that

θ0 is the most plausible one, i.e. the one makes η closest to ζ, and δ is for taking care

of the left-over.

4.2.2 Estimation

Now, suppose we observe the physical system ζ at n locations x1, . . . ,xn, i.e. yi =

ζ(xi) + εi, i = 1, . . . , n, where εi is the observation error for the i-th observation.

These errors are assumed to be independent and have mean 0. For simplicity, we

assume X = [0, 1]p, where p is the number of inputs. With the above modeling of ζ,

the observations are assumed to follow

yi = η(xi,θ0) + δ0(xi) + εi. (4.2)

Here we consider a simpler situation by assuming η is known. In calibration prob-

lems, we can estimate η by a second set of samples, which we will describe later in

details in Section 4.2.3. The definitions of θ0 and δ0 motivate a two-step procedure for

their estimation:

1. (Optimization) Compute the estimate of θ, θ̂ = arg minθ∈Θ Mn(θ) where

Mn(θ) =
1
n

n

∑
i=1
{yi − η(xi,θ)}2.
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2. (Nonparametric regression) Estimate δ via common nonparametric regression

on {(xi, yi − η(xi, θ̂))}n
i=1.

This estimation strategy has its beauty in flexibility and ease of implementation. This

can be coupled with different (global) optimization techniques and nonparametric re-

gression methods. Since the estimation of θ0 and that of δ0 are separated, one does

not have to worry about re-running the optimization to choosing the smoothing pa-

rameter in the nonparametric regression. In general, this strategy is very efficient

in computation. For numerical illustrations in this paper, we adopt the genetic opti-

mization using derivative (Sekhon and Mebane, 1998) for the (global) optimization of

θ and smoothing spline ANOVA (Wahba, 1990) for the nonparametric regression. The

theoretical results of these estimators are also provided in Section (4.4) under fixed

design setting.

4.2.3 Emulator

Since the simulator η is expensive to run, a common approach is to use a surrogate

model, also called an emulator. The surrogate model is typically an nonparametric

regression model that is estimated via a second set of samples of the simulator. Let

the simulator output at several (m) design locations (x∗1 ,θ∗1), . . . , (x∗m,θ∗m) be denoted

ys = (y1,s, . . . , ym,s)⊺. They are assumed to follow:

ys,j = η(x∗j ,θ∗j ) + τj, ∀j = 1, . . . , m,

where τj’s are independent random errors with mean zero. At a high level, the pro-

posed approach works as follows. We use the evaluations of the simulator ys to fit

a surrogate model via a nonparametric regression such as SS-ANOVA (Wahba, 1990)

and ACOSSO (Storlie et al., 2011). We then treat the surrogate η̂ as fixed in a semi-

parametric regression problem (4.2) to estimate θ0 and δ0 via methodology described

in Section 4.2.2. The parameters θ can be constrained to a particular domain, as is

often done in the Bayesian calibration approach via a prior distribution. Notice that

the estimation of η and δ0 is done separately. To the best of our knowledge, this ap-

proach to obtain a point estimate for the calibration problem with discrepancy of a
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computationally demanding model has not yet been attempted until now. The above

description does not yet account for the uncertainty in the estimation of the surrogate,

model parameters, or the discrepancy. However, this issue can easily be addressed via

bootstrap sampling (see, e.g., Davison, 1997; Efron and Tibshirani, 1994), as described

in Section 4.3.

4.3 A bootstrapping approach to uncertainty quantifica-
tion

Bootstrap sampling was used successfully to address the uncertainty in the surrogate

model for the purpose of sensitivity analysis (SA) and uncertainty analysis (UA) of

computationally demanding models in Reich et al. (2009) and Storlie et al. (2013b).

The calibration problem is far more complicated than SA/UA due to the estimation

of θ0 and δ0, but a very similar approach can be applied to the calibration estimate

proposed above.

Let the point estimates of the unknown parameters in the data model in (4.1) be

obtained as described above and be denoted θ̂, η̂, and δ̂. These define an estimate for

the data generating process for both the simulator data ys and experimental data y.

One may re-sample the designs in both data sets if the data are generated under ran-

dom designs. Thus, we can produce B bootstrap samples by re-sampling (centered)

residuals and re-estimate the parameters to obtain B bootstrap estimates of θ, η, and

δ, denote them θ̂∗b , η̂∗b , and δ̂∗b , b = 1, . . . , B, respectively. This bootstrap sample of

estimates can be used to obtain a bootstrap confidence region for most quantities of

interest. As in calibration problem, confidence intervals for elements of θ0 and (point-

wise) confidence band for δ0 are usually interested. For example, if we wish to obtain

a confidence interval for θ0,1, the first element of θ0, then we can do so by finding

the α/2 and (1− α/2) sample quantiles from the collection {θ̂∗1,1, . . . , θ̂∗B,1}, where θ̂∗b,1

represents the first element of θ̂∗b for b = 1, . . . , B, and write them as z∗α/2 and z∗1−α/2,

respectively. The corresponding confidence interval is then given by (z∗α/2 , z∗1−α/2).

A confidence interval for a prediction of the physical system ζ at a new input xnew
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and the pointwise confidence band for δ0 can be obtained in a similar fashion.

Since our procedure involves nonparametric regression, the impact of bias may

lead to incorrect asymptotic coverage of the aforementioned bootstrap confidence re-

gions (see, e.g., Hall, 1992a,b; Härdle and Bowman, 1988). In the literature, there

are two common strategies for correcting the coverage: undersmoothing and over-

smoothing. As shown in Hall (1992a), undersmoothing is a simpler and more effec-

tive procedure than oversmoothing. Thus, we can modify the above procedure by

incorporating some undersmoothing (i.e. choosing a smaller smoothing parameter

than what is chosen by cross-validation). However, it is not uncommon that the issue

of bias is completely avoided, which results in the use of the non-adjusted confidence

regions desribed above. See, e.g., Efron and Tibshirani (1994) and Ruppert et al. (2003).

4.4 Theoretical results
Note that the estimation of η depends on the second independent sample from the

simulator of size m and, in practice, we usually have larger sample from the simulators

than the one from physical reality. Thus, it is reasonable to assume that m is of a higher

order than n to go to infinity in the asymptotic framework. If m is fast enough, the

asymptotics of θ̂ and δ̂ are similar to those under known η. For simplicity, here we

assume that η is known and derive the asymptotic property of θ̂ and δ̂ described in

Section 4.2.2.

Write θ̂ and δ̂ as θ̂n and δ̂n respectively to address their dependence on n. In the

following, we assume that x1, . . . ,xn are fixed and write Fn = ∑n
i=1 δxi /n. In addition,

∥ · ∥n represents the L2(Fn)-norm and, with slight abuse of notations, ∥ · ∥ represents

both the L2(F)-norm and the Euclidean norm. The context should be clear enough

for correct interpretation. For two functions g and h, let ⟨g, h⟩n = ∑n
i=1 g(xi)h(xi)

and ⟨g, h⟩ =
∫
X g(x)h(x)dF(x). With slight notation abuse, we also write ⟨y, g⟩n =

(1/n)∑n
i=1 yig(xi) and ⟨ε, g⟩n = (1/n)∑n

i=1 εig(xi). We also write gθ(x) = η(x,θ),

G = {gθ : θ ∈ Θ} and G − g = {gθ − g : θ ∈ Θ} for a function g.

In practice, the design is usually either fixed or correlated (e.g. Latin Hypercube
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sampling). Thus, our results are developed under fixed design, rather than the rela-

tively common asymptotic framework of IID design. We first approach the parametric

part and establish the
√

n-consistency of θ̂n (Theorem 4.1), where the difficulty lies

in the existence of the discrepancy. The effect is similar to a regression model with

misspecification.

As for the discrepancy function, we adopt the framework of Section 10.1 of Van

De Geer (2000) for penalized least squares estimation. We extend Theorem 10.2 of

Van De Geer (2000) to obtain asymptotic behavior of δ̂n (Lemma B.2 and Theorem

4.2), under the effect of estimation error of θ̂n. Let the class of functions that δ0

belongs be H. Under the penalized least square framework, the general form of the

estimate of discrepancy function is

δ̂n = arg min
δ∈H

(
1
n

n

∑
i=1

(yi − gθ̂n
(xi)− δ(xi))

2 + λ2
n Jv(δ)

)
, (4.3)

where v > 0, λn > 0, J : H → [0, ∞) is a pseudo-norm on H. The λn is known as

smoothing parameter.

As an illustration, we provide the convergence rate of δ̂n for p = 1 if penalized

smoothing spline is used (Corollary 4.1). This requires an additional orthogonality

argument for the application of Theorem 4.2. Note that we write x as x for p = 1.

Here are some assumptions:

Assumption 4.1 (Error structure). E(εi) = 0, E(ε2
i ) = σ2 for all i = 1, . . . , n. Also,

ε1, . . . , εn are uniformly sub-Gaussian: There exists K and σ0 such that

max
i=1,...,n

K2
{

E exp(ε2
i /K2)− 1

}
≤ σ2

0 .

Assumption 4.2 (Parameter space). Θ is a totally bounded d-dimensional Euclidean space.

That means, there exists R1 > 0 such that Θ ⊂ B(R1).

Assumption 4.3 (Function class G).

(a) There exists c0 > 0 such that ∥gθ − gθ′∥n ≤ c0∥θ− θ′∥ for all θ,θ′ ∈ Θ.
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(b) gθ is twice continuously differentiable with respect to θ in a neighborhood of θ0. g(1)θ (x)

and g(2)θ (x) are continuous with respect to x over this neighborhood.

(c) supx∈X |g
(1)
θ (x)| and supx∈X |g

(2)
θ (x)| are bounded uniformly over a neighborhood of

θ0.

Assumption 4.4.

(a) suph∈(G−ζ) ∥h∥n < ∞.

(b) suph∈(G−gθ0 )
∥h∥n < ∞.

Assumption 4.5 (Convergence of design).

(a) supθ∈Θ |∥ζ − gθ∥2
n − ∥ζ − gθ∥2| = O(1).

(b) supg∈{(gθ−gθ0 )/∥gθ−gθ0∥n :θ∈Θ} |⟨ζ − gθ0 , g⟩n − ⟨ζ − gθ0 , g⟩| = O(n−1/2).

(c) Elements of |(1/n)∑n
i=1 g(1)θ0

(xi)g(1)θ0
(xi)

⊺ −
∫
X g(1)θ0

(x)g(1)θ0
(x)⊺dF(x)| are O(1).

Assumption 4.6 (Identification). For all ϵ > 0, infθ∈Θ:∥θ−θ0∥>ϵ ∥ζ − gθ∥ > ∥ζ − gθ0∥.

Assumption 4.7 (Discrepancy function).

(a) δ0 is continuous.

(b) There exist K > 0 and α > 0 such that

H
(

u,
{

δ− δ0

J(δ) + J(δ0)
: δ ∈ H, J(δ) + J(δ0) > 0)

}
, Fn

)
≤ Kδα,

for all u > 0 and n ≥ 1.

The following are two theorems and a corollary. Their proofs can be found in

Appendix B.

Theorem 4.1 (Rates of convergence of θ̂n and gθ̂n
). Assume that Assumptions 4.1, 4.2,

4.3(a-c), 4.4, 4.5(a-c), 4.6, 4.7(a) hold. We have ∥θ̂n−θ0∥ = Op(n−1/2) and ∥gθ̂n
− gθ0∥n =

Op(n−1/2).
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Theorem 4.2 (Rate of convergence of δ̂n). Assume that conditions of Theorem 4.1 and

Assumption 4.7(b) hold. Suppose v > (2α)/(2 + α) and λn ≍ n−1/(2+α).

(i) If J(δ0) > 0, we have

∥δ̂n − δ0∥n = Op

(
n−1/(2+α)

)
.

(ii) If J(δ0) = 0, J(δ) > 0 for all δ ∈ H, and 4v < (2 + α)(2v− 2α + vα), we have

∥δ̂n − δ0∥n = Op

(
n−1/2

)
.

Corollary 4.1 (Penalized smoothing spline). Assume p = 1, H = {δ : [0, 1] → R,∫ 1
0 {δ

(m)(x)}2dx < ∞} and J(δ) = [
∫ 1

0 {δ
(m)(x)}2dx]1/2. And δ̂n is given in (4.3) with

v = 2. Assume the conditions of Theorem 4.1 hold. Let ψ = (ψ1, . . . , ψk)
⊺, where ψk’s are

defined in (B.9). Assume that the smallest eigenvalue of
∫
ψψ⊺dFn is bounded away from 0.

In addition, suppose λn ≍ n−1/(2+α).

(i) If J(δ0) > 0, we have

∥δ̃n − δ0∥n = Op

(
n−m/(2m+1)

)
.

(ii) If J(δ0) = 0, we have

∥δ̃n − δ0∥n = Op

(
n−1/2

)
.

4.5 Simulation study
We conducted a simulation study to investigate the practical performance of the pro-

posed methodology. The simulation settings are as follows. We set n = 50 and

m = 300. The input and parameter spaces are X = [0, 1] and Θ = [0, 0.25]× [0, 0.5] re-

spectively. Both εi’s and τj’s follow normal distribution with standard deviation set as

0.741 and 0.906 respectively, where the signal-to-noise ratios are approximately equal

to 10 and 55 respectively in the sampling of physical reality and that of simulator.

Both designs in the simulator data and the experimental data are generated by Latin

hypercube sampling. The simulator, parameter values and discrepancy function are
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given as follows:

η(x,θ) = 7{sin(2πθ1 − π)}2 + 2{2πθ2 − π)2 sin(2πx− π)}

θ0 = (0.2, 0.3)⊺

δ0(x) = cos(2πx− π)

Here 200 data sets are simulated. The proposed calibration method is applied to

each of these data sets. We use the smoothing spline ANOVA as the nonparametric

regression model for both η and δ0. The smoothing parameters are selected by gener-

alized cross-validation (GCV). For uncertainty quantification, the following methods

are applied.

1. fcal-smooth: Proposed method with undersmoothing, but not design re-sampling

2. fcal-smooth-sam: Proposed method with undersmoothing and design re-sampling

3. fcal: Proposed method without undersmoothing and design re-sampling

4. fcal-sam: Proposed method without undersmoothing, but with design re-sampling

5. bssanova: Calibration of computational models via Bayesian smoothing spline

ANOVA (Storlie et al., 2014)

For all methods with undersmoothing, we choose the smoothing parameter as 0.9

times the smoothing parameter selected by GCV.

The mean square errors (MSEs) of θ0,1 and θ0,2, where θ0 = (θ0,1, θ0,2)
⊺, are 1.614×

10−4 (3.301× 10−5) and 7.069× 10−5 (8.749× 10−6) respectively with standard errors

shown in the parentheses. That means the corresponding root MSEs are 1.27× 10−2

and 8.41× 10−3, which are small compared to the true parameter value. For the dis-

crepancy, the MSE over a fine grid is 0.09428 (0.005247), with standard error shown in

the parenthesis. As for uncertainty quantification, the simulation results are summa-

rized in Table 4.1. The Bayesian smoothing spline ANOVA method bssanova can be

used for comparison. Overall, Table 4.1 shows that our proposed methods performs
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better than bssanova. In addition, the results of pointwise confidence (credible) inter-

vals for δ0 are summarized in Figure 4.1. This also shows that the proposed methods

perform better than bssanova.

Table 4.1. Simulation results of 95% confidence (credible) intervals of θ0: Average
coverages and lengths of 95% confidence (credible) intervals. The standard errors
are shown in parentheses.

fcal-smooth fcal-smooth-sam fcal fcal-sam bssanova

coverage 98.5% (0.862%) 97.5 (1.11%) 9.75e-01 (1.11%) 98.5% (0.862%) 88.5% (2.26%)

94.0% (1.68%) 96.0% (1.39%) 94.5% (1.62%) 96.0% (1.39%) 95.5% (1.47%)

length 4.23e-02 (1.07e-03) 4.18e-02 (1.01e-03) 4.07e-02 (1.05e-03) 4.10e-02 (1.02e-03) 1.19e-01 (2.74e-03)

3.18e-02 (3.74e-04) 3.20e-02 (3.68e-04) 3.17e-02 (3.45e-04) 3.14e-02 (3.39e-04) 4.32e-02 (4.11e-04)

4.6 Concluding remarks
In this work, we provide a frequentist framework for computer model calibration.

This framework applies a general semi-parametric data model with discrepancy func-

tion, which allows discrepancy between simulator and the physical reality. Despite the

flexibility of the model, our proposed framework gives identifiable parametrizations

for both the model parameters and the discrepancy function. These parametrizations

matches with the general belief of the roles of the model parameters and the discrep-

ancy function. Simple but effective algorithm has been proposed for estimation. In

addition, we provide theoretical results for the proposed calibration approach. Our

work also provides a bootstrapping approach for uncertainty quantification. Due to

simplicity of the proposed calibration framework and the corresponding bootstrap,

our approach can be coupled with variety of optimization methods and emulators,

which is beneficial to practitioners.
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Figure 4.1. Simulation results of 95% pointwise confidence (credible) bands of δ0:
Top: True discrepancy function. Middle: Average coverage. Bottom: Average length.
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Chapter 5

Automatic Estimation of Flux
Distributions of Astrophysical Source
Populations

Abstract

In astrophysics a common goal is to infer the flux distribution of populations

of scientifically interesting objects such as pulsars or supernovae. In practice,

inference for the flux distribution is often conducted using the cumulative dis-

tribution of the number of sources detected at a given sensitivity. The resulting

“log(N > S) − log(S)” relationship can be used to compare and evaluate theo-

retical models for source populations and their evolution. Under restrictive as-

sumptions the relationship should be linear. In practice, however, when simple

theoretical models fail, it is common for astrophysicists to use pre-specified piece-

wise linear models. This paper proposes a methodology for estimating both the

number and locations of “breakpoints” in astrophysical source populations that

extends beyond existing work in this field.

An important component of the proposed methodology is a new Interwoven EM

Algorithm that computes parameter estimates. It is shown that in simple set-

tings such estimates are asymptotically consistent despite the complex nature of

the parameter space. Through simulation studies it is demonstrated that the pro-

posed methodology is capable of accurately detecting structural breaks in a vari-
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ety of parameter configurations. This paper concludes with an application of our

methodology to the Chandra Deep Field North (CDFN) dataset.

This is a joint work with Paul Baines1, Alexander Aue1, Thomas C. M. Lee1 and

Vinay L. Kashyap2. This work will appear in the Annals of Applied Statistics.

5.1 Introduction
The relationship between the number of sources and the threshold at which they can

be detected is an important tool in astrophysics for describing and investigating the

properties of various types of source populations. Known as the log N − log S rela-

tionship, the idea is to use the number of sources N(> S) that can be detected at a

given sensitivity level S, on the log-log scale, to describe the distribution of source

fluxes. In simple settings and under restrictive assumptions a linear relationship be-

tween the log-flux and the log-survival function can be derived from first principles.

Traditionally astrophysicists have therefore examined this relationship by characteriz-

ing the slope of the log of the empirical survival function as a function of the log-flux

of the sources.

One of the first examples of the log N − log S relationship being derived from

first principles is in Scheuer (1957). It is shown that if radio stars are uniformly dis-

tributed in space then the number with intensity exceeding a threshold S is given by

N(> S) ∝ S−3/2. Importantly, the relationship holds irrespective of several factors

such as luminosity dispersion and the reception pattern of the detector. The derived

relationships therefore allow for researchers to test for departures from specific theo-

ries. For example, Hewish (1961) uses the derived relationship to infer a non-uniform

distribution of sources for a particular population.

Other examples of log N − log S analyses include Guetta et al. (2005), who use

the relationship for Gamma Ray Bursts (GRBs) to constrain the structure of GRB

jets. By comparing the log N − log S relationship for observed data to the predicted

log N − log S relationship under different physical models for GRB jets, the authors

1Department of Statistics, University of California at Davis
2Harvard-Smithsonian Center for Astrophysics
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are able to uncover limitations in the physical models. The log N − log S curves have

also been used to constrain cosmological parameters using cluster number counts in

different passbands; see, e.g., Mathiesen and Evrard (1998) and Kitayama et al. (1998).

Other applications of log N− log S modeling include the study of active galactic nuclei

(AGNs). For example, Mateos et al. (2008) use the log N − log S relationship over

different X-ray bands to constrain the population characteristics of hard X-ray sources.

Under independent sampling, the linear log N − log S relationship corresponds

to a Pareto distribution for the source fluxes, known to astrophysicists as a power-

law model. Despite the unrealistic assumptions in the derivation, the linear log N −

log S relationship does have strong empirical support in a variety of contexts; e.g., Ken-

ter and Murray (2003). In addition to its simplicity the power-law model also retains a

high degree of interpretability, with the power-law exponent often of direct scientific

interest. As a result of this simplicity and interpretability, the power-law model forms

the basis of most log N − log S analyses despite its many practical limitations in the

ability to fit more complex datasets.

To address the limitations of this simple model astrophysicists have also experi-

mented with a variety of broken power-law models. This is particularly important for

larger populations or populations of sources spread over a wide energy range. Ma-

teos et al. (2008) illustrate this by using both a two- and three-piece broken power-law

model to capture the structure of the log N− log S distribution across a wide range of

energies. The basic idea of broken power-law models is to relax the assumption that

the log survival function is a linear function of the log flux, and to instead assume

a piecewise linear function. This adds additional challenges in estimating the loca-

tion of the breakpoint, and quantifying the need for the breakpoint model above the

simpler single power-law model. While recognizing the need to have more flexible

models for log N − log S analyses, most of the work in this area does not provide a

coherent means to selecting the location and number of breakpoints.

Similarly to the single power-law model, the broken power-law model can be de-

rived from first principles as a mixture of truncated and untruncated Pareto distri-
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butions. The direct physical plausibility of the model is not as complete as for the

single power-law model but the model parameters, in particular the slopes of the

log N − log S relationship can be used to draw conclusions about competing theories.

The broken power-law provides a useful approximation that can be used to model

mixtures of populations of sources, as well as more general piecewise-linear popula-

tions. Indeed, the broken power-law has empirical support in a variety of contexts

both in astrophysics (Kouzu et al., 2013; Mateos et al., 2008) and outside (Segura et al.,

2013).

There are many alternative generalizations of the single power-law in addition to

the broken power-law considered in this paper. For example, Ryde (1999) considers a

smoothly broken power-law model that avoids the non-differentiability introduced by

the strict broken power-law model. Other alternatives include mixtures of log-normal

distributions and power-laws with modified tail behavior. In addition to parametric

methods, the flux distribution can also be modeled nonparametrically. For the types

of applications we are considering here, the main goal is parameter estimation and

model selection to distinguish between single and broken power-law models. The sci-

entific interpretability of a nonparametric model for the log(N > S)− log(S) relation-

ship is more complicated than the parametric alternative, and such approaches have

gained less traction in the astrophysics community in the context of log N− log S anal-

yses. Therefore, while a more flexible nonparametric fit is perhaps statistically prefer-

able, it is not as amenable to downstream science as in other contexts where the goal

is prediction rather than estimation.

Among all generalizations, the strict broken power-law remains the most popular

alternative. This popularity is a result of the interpretability of the model and the

ease of translation from statistical results to scientific interpretability. Despite the

popularity of the broken power-law model in the log N − log S literature, there is

currently no widely applicable and statistically rigorous method framework for fitting

broken power-law models to the log N − log S relationship to astrophysical source

populations.
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In this paper we provide an automatic method for jointly inferring the number and

location of breakpoints and the parameters of interest for the log N − log S problem.

Our method allows astrophysicists to reliably infer both the number and the location

of breakpoints in the log N − log S relationship in a statistically rigorous manner for

the first time. This simultaneous fitting introduces new computational challenges,

so our method utilizes a new extension of the EM algorithm, known as the Inter-

woven EM Algorithm (IEM) (Baines, 2010; Baines et al., 2012b). The IEM algorithm

provides efficient and stable estimation of the model parameters across a wide range

of parameter settings for a fixed number of breakpoints. To determine the number

of breakpoints we then use an additional model selection procedure that employs

the power posterior technique of Friel and Pettitt (2008) to accurately compute the

log-likelihood of the candidate models.

The remainder of the paper is organized as follows. In Section 5.2 we introduce

the necessary background and statistical formulation of the log N− log S model. Sec-

tion 5.3 provides details of our estimation procedure for a fixed number of break-

points, with Section 5.4 outlining our model selection procedure to determine the

number of breakpoints required. The performance of our method in terms of both

parameter estimation and identification of the number of breakpoints is detailed in

Section 5.5. An application to data from the Chandra Deep-Field North X-ray survey

is provided in Section 5.6. Large-sample theory is developed in Section 5.7 and con-

cluding remarks are offered in Section 5.8. Lastly technical details are given in an

online supplement (Wong et al., 2014) (see Appendix C).

5.2 Background and Problem Specification
Let S = (S1, . . . , Sn)T denote a vector of the fluxes (in units of ergs s−1 cm−2) of each

of a population of n astrophysical sources. For example, we may be interested in the

flux distribution of a selection of n X-ray pulsars located in a specified region of sky at

a specified distance. The basic building block of our method is the power-law model:

N(> S) =
n

∑
i=1

I{Si>S} ≃ αS−β, S > τ. (5.1)
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This specifies that the unnormalized survival function N(> S) is approximately a

power of the flux S. The power-law exponent, β, is the parameter of primary interest

and provides domain specific knowledge about the source populations. The lower

threshold τ can either be fixed according to the desired sensitivity level, or estimated

from the data. Equivalently, taking the logarithm of both sides, (5.1) assumes a linear

relationship between log(N(> S)) and log(S):

log(N(> S)) ≃ log(α)− β log(S), S > τ. (5.2)

In a statistical context, the theoretical power-law assumption corresponds to assuming

that the source fluxes follow a Pareto distribution:

Si
iid∼ Pareto(β, τ), i = 1, . . . , n.

In practice, the linear log N− log S, or Pareto, assumption is not sufficient to describe

the log N− log S relationship for many real datasets. There are several ways to gener-

alize (5.1), the most popular among astrophysicists being the broken power-law model

as illustrated in Jordán et al. (2004) and Cappelluti et al. (2007). The starting point of

the broken power-law is to replace (5.1) with a monotonically decreasing piecewise

linear approximation. In the case of a two-piece model we assume:

log(N(> S)) =

log(α1)− β1 log(S), τ1 < S ≤ τ2,

log(α2)− β2 log(S), S > τ2,
(5.3)

where β1 and β2 are parameters of interest. Note that as a result of the continuity

and normalization constraints on τ1, τ2, α1, α2, β1 and β2 there are a total of 4 free

parameters in this expanded two-piece model. Applications of the broken power-law

model in the astrophysics community typically use either fixed numbers and locations

of the breakpoint(s) or selection via ad hoc procedures (Trudolyubov et al., 2002). The

contribution of this paper is the proposal of an automatic procedure for selecting the

number and estimating the locations of the breakpoints jointly with the parameters of

interest.
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Figure 5.1. Example simulations of flux distributions under the single power-law
model (left), and the broken power-law model (right). In practice, the fluxes are not
directly observed and must be inferred from count data as described in Section 5.2.
For the broken power-law example, the vertical blue line corresponds to the location
of the breakpoint.

Figure 5.1 depicts the log N − log S relationship for flux distributions simulated

under a single power-law (left) and broken power-law model (right). As may be

expected, even under a theoreticaly linear relationship, the empirical log N − log S-

curve regularly exhibits non-linear features in the log N − log S-space. Depending on

the difference in the power-law slopes, the breakpoint may be clearly visible, or indis-

tinguishable by eye. In either case, it should be noted that much larger variations in

the log N − log S relationship are to be expected in the lower-right part of the curves

as a result of the log− log scaling. As will be seen in Section 5.2.1, the task of esti-

mating the parameters controlling the flux distribution and/or detecting a breakpoint

is additionally challenging because the fluxes depicted in Figure 5.1 are not directly

observed.

5.2.1 Hierarchical modeling of the log N − log S relationship

We now describe the connection between the broken power-law model introduced

in (5.3) and the observed data. In practice the flux of each source, Si, is not observed

directly. Instead, we observe a Poisson-distributed photon count whose intensity is a

known function of the parameter Si. Let Y1, Y2, . . . , Yn denote the source counts, then
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we assume the following hierarchical model. For i = 1, . . . , n,

Yi|S1, . . . , Sn
indep.∼ Poisson(AiSi + bi) and

Si
iid∼ ParetoB(β, τ ), (5.4)

where Ai’s and bi’s are known constants (see below), β = (β1, . . . , βB) > 0, τ =

(τ1, . . . , τB) such that τB > · · · > τ1 > 0, and ParetoB(β, τ ) represents a B-piece

Pareto distribution with survival distribution

SB(x) =



1, x < τ1( τ1
x
)β1 , τ1 ≤ x < τ2(

τ1
τ2

)β1
(

τ2
x

)β2
, τ2 ≤ x < τ3

...{
∏B−1

j=1

(
τj

τj+1

)β j
}(

τB
x

)βB
, x ≥ τB

and thus its distribution function FB(·) = 1 − SB(·). Note that the B-piece Pareto

distribution corresponds to the broken power-law. The probability density fB can be

easily found by differentiation. When B = 1, the B-Pareto distribution reduces to a

Pareto distribution with probability density function

f1(x; β, τ) =


βτβ

xβ+1 , x ≥ τ.

0, x < τ.

In the above Ai’s, sometimes known as effective areas, represent sensitivities of the

detector, while bi’s represent background intensities. With the above model the goal

is then to estimate B and, at the same time, β and τ . At first sight, this seems to be

a straightforward statistical problem: for a fixed B maximum likelihood estimation

can be used to estimate β and τ , while the issue of choosing B can be viewed as a

model selection problem and thus traditional ideas such as AIC and BIC can be used.

However, as to be seen below, practical implementation of these ideas poses serious

computational challenges that cannot be easily solved.
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5.3 Maximum Likelihood Estimation When B Is Known
In this section we provide details of how to obtain maximum likelihood estimates of

β and τ for a fixed number of breakpoints B in the log N − log S model. Defining

β0 = 0, τ0 = τ1 and τB+1 = ∞, the likelihood is

L(β, τ ; Y1, . . . , Yn) =
n

∏
i=1

{∫ ∞

τ1

e−(Ais+bi)(Ais + bi)
Yi

Yi!
fB(s;β, τ )ds

}
.

Note that the likelihood involves some numerically unstable integrals that do not

have a closed form solution, and hence a direct maximization is extremely difficult.

To further appreciate this difficulty, consider the case when there is no background

contamination (bi = 0), for which the above likelihood degenerates to

n

∏
i=1

 B

∑
j=1

(
τj−1

τj

)β j−1
β j(Aiτj)

β j

Yi!
{

Γ(Yi − β j, Aiτj)− Γ(Yi − β j, Aiτj+1)
} .

Here, Γ(a, x) =
∫ ∞

x ta−1e−tdt is the incomplete gamma function which is numeri-

cally unstable, particularly when the first argument is large. Together with the inner

summation in the above expression, these issues make a direct maximization of the

(log-)likelihood difficult even when there is no background contamination. To address

these issues we propose an EM-algorithm (Dempster et al., 1977) to find the maximum

likelihood estimators of β and τ for the general case of bi ≥ 0.

5.3.1 EM with a Sufficient Augmentation Scheme

The EM algorithm (Dempster et al., 1977) has long been popular for its monotone

convergence and resulting stability, and is therefore well-suited to our context. As

always, the EM algorithm must be formulated in terms of “missing data” or auxiliary

variables, that must be integrated out to obtain the observed data log-likelihood. For

the current problem, since we are interested only in inference for β and τ , marginaliz-

ing over the uncertainty in the individual fluxes, it is natural to treat S = (S1, . . . , Sn)T

as the missing data. Since S is a sufficient statistic for θ = (β, τ )T, we call this the

sufficient augmentation (SA) scheme in the terminology of Yu and Meng (2011).
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Let Y = (Y1, . . . , Yn)T. The complete data log-likelihood of (Y, S) is

log p(Y, S;β, τ ) =
n

∑
i=1

log g(Yi; AiSi + bi) +
n

∑
i=1

log fB(Si;β, τ ),

where g(x; µ) is the probability mass function of a Poisson distribution with mean µ.

In the E-Step of the algorithm we compute the conditional expectation

Q(θ|θ(k)) = E
{

log p(Y, S;θ)|Y;θ(k)
}

=
n

∑
i=1

E
{

log g(Yi; AiSi + bi)|Yi;θ(k)
}
+

n

∑
i=1

E
{

log fB(Si;θ)|Yi;θ(k)
}

, (5.5)

where θ(k) denotes the estimate of θ at the k-th iteration. The M-step of the algorithm

must then maximize Q(θ|θ(k)) with respect to θ. Since the first term of (5.5) does not

depend on θ, it can be ignored in our maximization. For the second term, as it does

not admit a closed form expression, a Monte Carlo method is used to approximate it.

The basic idea is to estimate it by the mean of a suitable Monte Carlo sample of the

Si’s as described in Algorithm 1.

Without the first term in (5.5), the maximization of Q(θ|θ(k)) is equivalent to

finding the MLE of θ = (β, τ )T from an iid sample X = (X1, . . . , Xm) from the

ParetoB(β, τ ) distribution. The log-likelihood of X is

l(θ;X) =
B

∑
j=1

β j
(
nj log τj − nj+1 log τj+1

)
+

B

∑
j=1

mj log β j

−
B

∑
j=1

β j ∑
i∈Aj

log Xi −
m

∑
i=1

log Xi,

where nj = card{i : Xi ≥ τj}, nB+1 = 0, mj = nj+1 − nj, τB+1 = ∞, nB+1 log τB+1 is

defined to be 0, and Aj = {i : τj ≤ Xi < τj+1}. Note that the nj’s and mj’s are functions

of τ . For any fixed τ , straightforward algebra shows that l(θ;X) is maximized when

β j is set to

β j(τ ) = mj(τ )

(
∑

i∈Aj

log Xi + nj+1(τ ) log τj+1 − nj(τ ) log τj

)−1

, (5.6)
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j = 1, . . . , B. By substituting the above expression, l(θ;X) becomes

l(θ;X) = −m−
m

∑
i=1

log Xi +
B

∑
j=1

mj(τ ) log β j(τ ). (5.7)

Therefore, to obtain the MLE for θ = (β, τ )T from X , one can first maximize l(θ;X)

in (5.7) with respect to τ , and then plug in the corresponding maximizer τ̂ (i.e., the

MLE of τ ) into (5.6) to obtain the MLE β̂ for β.

The MLE of τ1 is τ̂1 = min(X1, . . . , Xm), while unfortunately the MLEs for τ2, . . . , τB

do not admit closed-form expressions. Further, (5.7) is not a continuous function in τ

and therefore traditional optimization methods that require function derivatives (e.g.,

Newton-like methods) cannot be applied here. We have experimented with various

optimization algorithms and found that the Nelder-Mead algorithm works well for

this problem. The major steps of the EM algorithm in the SA scheme (SAEM) for

finding the MLEs of θ are given in Algorithm 1. In practice, the SAEM algorithm

often converges very slowly. Section 5.3.4 below provides some illustrative numerical

examples.

5.3.2 EM with an Ancillary Augmentation Scheme (AAEM)

Given the slow convergence of the SAEM algorithm, we seek faster alternatives. This

subsection proposes an alternative EM algorithm that is based on an ancillary aug-

mentation (AA) scheme, called the AAEM algorithm. For a discussion of augmenta-

tion schemes and their use in EM, see Baines et al. (2012b). The basis of our AAEM is

to re-express our model using auxiliary variables Ui = FB(Si;θ):

Yi|U1, . . . , Un
indep.∼ Poisson(AiF−1

B (Ui;θ) + bi) and

Ui
iid∼ Uniform(0, 1),

for i = 1, . . . , n. Here U = (U1, . . . , Un) is treated as the missing data, and preserves

the observed data log-likelihood. In the E-Step we then calculate the conditional

expectation

Q(θ|θ(k)) =
n

∑
i=1

E
{

log g(Yi; AiF−1
B (Ui;θ) + bi)|Yi;θ(k)

}
. (5.8)
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Algorithm 1 SAEM: EM with the Sufficient Augmentation Scheme (SAEM)

1. Choose a starting value θ(0) and set k = 0.

2. Generate S(1), . . . , S(Nsim) from p(S|Y;θ(k)) using the following Metropolis-

Hastings algorithm. For each simulation of S, we sample the elements of

S one at a time. Suppose S = (S1, . . . , Sn) is the current draw. Denote

S∗ = (S1, . . . , Sj−1, S∗j , Sj+1, . . . , Sn), where S∗j is drawn from ParetoB(β
(k), τ (k)).

We accept this S∗ as new value with probability aj(S, S∗); otherwise, we retain

S. The acceptance probability is given by

aj(S, S∗) = min

{
1,

g(Yj; AjS∗j + bj)

g(Yj; AjSj + bj)

}
.

3. Find the maximizer θ̃ of the Monte Carlo estimate of Q(θ|θ(k)). This is equiva-

lent to computing

θ̃ = argmax
θ

1
Nsim − Nburn

Nsim

∑
s=Nburn+1

n

∑
i=1

log fB(S
(s)
i ;θ),

where Nburn is the number of burn-in. As discussed above, θ̃ can be obtained

by the following steps:

(a) set τ̃1 = min{S(s)
i : i = 1, . . . , n, s = Nburn + 1, . . . , Nsim},

(b) obtain τ̃2, . . . , τ̃B as the maximizer of ∑B
j=1 mj(τ

∗) log β j(τ
∗), where τ ∗ =

(τ̃1, τ2, . . . , τB), using the Nelder-Mead algorithm, and

(c) set β̃ j = β j(τ̃ ) using (5.6), for j = 1, . . . , B.

4. Set θ(k+1) = θ̃.

5. Repeat Steps 2 to 4 until convergence.
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This conditional expectation can be approximated and maximized in a similar manner

as for the Q(θ|θ(k)) in the SAEM algorithm. The resulting AAEM algorithm is sum-

marized in Algorithm 2. Section 5.3.4 provides some empirical comparisons between

the AAEM and SAEM algorithms. As may be expected, there are some situations

where the AAEM algorithm converges faster, while there are other situations where

the SAEM algorithm converges faster.

Algorithm 2 AAEM: EM with Ancillary Augmentation Scheme

1. Choose a starting value θ(0) and set k = 0.

2. Generate U(1), . . . , U(Nsim) from p(U|Y;θ(k)) using the Metropolis-Hastings al-

gorithm. For each simulation of U, we sample the element of U one by one.

Let U = (U1, . . . , Un) be the previous draw. If we denote U∗ = (U1, . . . , Uj−1,

U∗j , Uj+1, . . . , Un), where U∗j is drawn from Uniform(0, 1). We accept this U∗ as

new value with probability bj(U, U∗); otherwise, we retain U. The acceptance

probability is given by

bj(U, U∗) = min

{
1,

g(Yj; AjF−1
B (U∗j ;θ(k)) + bj)

g(Yj; F−1
B (Uj;θ(k)) + bj)

}
.

3. Find the maximizer θ̃ of the following Monte Carlo estimate of Q(θ|θ(k)):

1
Nsim − Nburn

Nsim

∑
s=Nburn+1

n

∑
i=1

log g(Yi; AiF−1
B (U(s)

i ;θ) + bi).

The maximization can be done for example with the Nelder-Mead algorithm.

4. Set θ(k+1) = θ̃.

5. Repeat Steps 2 to 4 until convergence.

5.3.3 Interwoven EM (IEM)

In practice, choosing the most efficient algorithm between the SAEM and AAEM re-

quires knowledge of the unknown parameter values and the theoretical convergence
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rates, both of which are not available in most contexts. Therefore, it would instead

be desirable if one could combine the “best parts” of SAEM and AAEM rather than

select one of them. One simple way to combine the two algorithms is to use the

so-called alternating EM (AEM) algorithm. The AEM algorithm proceeds by using

SAEM for the first iteration, then uses AAEM for the second iteration, followed by

SAEM for the third, and so on. While this procedure tends to “average” the perfor-

mance of the two algorithms, a more sophisticated way to combine them is to use

the Interwoven EM (IEM) algorithm of Baines et al. (2012b). Theoretical and empirical

results show that IEM typically achieves sizeable performance gains over the compo-

nent EM algorithms. The key to the boosted performance of IEM is that it utilizes the

joint structure of the two augmentation schemes through a special “IE-Step”. In con-

trast, AEM simply performs sequential updates using each augmentation scheme that

make no use of this joint information. The theory of the IEM algorithm in Baines et al.

(2012b) shows that the rate of convergence of IEM is dependent on the “correlation”

between the two component augmentation schemes. Since the SA and AA schemes

typically have low correlation, here we interweave these two schemes to produce an

IEM algorithm for estimating the parameters of flux distributions.

The IEM algorithm for our log N − log S model is given in Algorithm 3. The al-

gorithm requires very minimal computation in addition to the component SAEM and

AAEM algorithms so is comparable in real-time per-iteration speed. Lastly we note

that there is some freedom in how to combine the IEM algorithm with MC meth-

ods. Specifically, there are variations in how one may choose to implement Step 3.

One may want to sample U again instead of using the previous samples in Step 2.

In both cases, one obtains a sample from U|Y ,θ(k+0.5) and achieves the goal. From

our practical experience, we found that there is very little difference between the per-

formances of these two approaches. Thus, we choose to use the one which is least

computationally expensive.
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Algorithm 3 IEM: Interwoven EM

1. Choose a starting value θ(0) and set k = 0.

2. Execute Steps 2 and 3 of the SAEM algorithm. Set θ(k+0.5) = θ̃.

3. Execute Step 3 of the AAEM algorithm, with U(l) generated as: U(l)
j =

FB(S
(l)
j ;θ(k+0.5)), for j = 1, . . . , n and l = Nburn + 1, . . . , Nsim. Set θ(k+1) = θ̃.

4. If convergence is achieved or k attains Nlimit, then declare θ(k+1) to be MLE;

otherwise set k = k + 1 and return to Step 2.

5.3.4 An Empirical Comparison Amongst Different EM Algorithms

In this subsection we empirically compare the convergence speeds of SAEM, AAEM,

AEM and IEM by applying them to two simulated data sets. These two data sets were

simulated from a model with B = 1 and no background contamination counts. This

model is somewhat simple but the advantage is that the likelihood function simplifies

considerably, and the corresponding maximum likelihood estimates can be reliably

obtained with non-EM methods. With these maximum likelihood estimates the max-

imized log-likelihood value can be calculated and used for baseline comparisons.

In Figure 5.2(a), for the first simulated data set, we plot the negative log-likelihood

values of the SAEM, AAEM, AEM and IEM estimates evaluated at different iterations.

One can see the slow convergence speeds of SAEM and AAEM, with SAEM being the

slower. Also, both AEM and IEM converged relatively fast, with IEM being the faster.

When comparing to AEM, IEM utilizes the relationship between SAEM and AAEM at

each step, which leads to the superiority of IEM. As noted earlier, the convergence rate

of IEM is heavily influenced by the ‘correlation’ between the two data augmentation

schemes being interwoven; i.e., the SA and AA for this example. For the log N− log S

model the correlation between these augmentation schemes is hard to estimate exactly,

but it appears empricially that the SA and AA have a reasonably high correlation, thus

preventing IEM from outperforming AEM by a larger amount. This is likely due to

81



0 5 10 15 20 25

36
8

37
0

37
2

37
4

37
6

37
8

38
0

iteration

ne
ga

tiv
e 

lo
g-

lik
el

ih
oo

d

SAEM (every 2 iterations)
AAEM (every 2 iterations)
AEM
IEM

0 5 10 15 20 25

38
0

38
2

38
4

38
6

38
8

39
0

39
2

iteration

ne
ga

tiv
e 

lo
g-

lik
el

ih
oo

d

SAEM (every 2 iterations)
AAEM (every 2 iterations)
AEM
IEM

(a) Simulated Data Set 1 (b) Simulated Data Set 2

Figure 5.2. Plots of negative log-likelihood values for different EM algorithms. In
each plot the horizontal dashed line indicates the negative log-likelihood evaluated
at the maximum likelihood estimates.

τ, which controls the boundary of the parameter of the space and heavily impacts the

rate of convergence. However, among the candidate algorithms IEM yields the best

convergence properties.

We repeat the same plot in Figure 5.2(b) for the second simulated data set. This

time the relative speeds of SAEM and AAEM switched; i.e., SAEM converged faster.

This illustrates that neither SAEM or AAEM is uniformly superior to the other across

all datasets. The relative rate of convergence of AEM and IEM remain the same for

these two datasets and across other simulated datasets (not shown).

Overall from these two plots one can see that the IEM algorithm is the most effi-

cient and robust. Also, when comparing to AEM, it is computationally faster due to

the skipping of an extra sampling step. Similar performance was observed across a

wide range of simulation settings. Therefore we recommend using the IEM algorithm

to compute the maximum likelihood estimates when B is known.

5.4 Automated Choice of B
This section addresses the important problem of selecting the number of “pieces”,

B, in the broken-Pareto model. Since this problem can be seen as a model selection

82



problem, one can adopt well studied methods such as AIC and BIC to solve it. To

proceed we first note that when B = 1, the number of free parameters in the model is

2B. With AIC, the best B is chosen as

B̂AIC = argmax
B

AIC(B) = argmax
B

{
−2 log L(β̂, τ̂ ; Y1, . . . , Yn) + 4B

}
,

while for BIC B is chosen as the minimizer of

B̂BIC = argmax
B

BIC(B) = argmax
B

{
−2 log L(β̂, τ̂ ; Y1, . . . , Yn) + 2B log n

}
.

Despite the straightforward definitions, in practice the numerical instability of the

likelihood function makes computation of AIC(B) and BIC(B) very challenging. To

address this problem we adopt the so-called power posterior method proposed by

Friel and Pettitt (2008) to approximate the log-likelihood directly.

In our context, the power posterior is defined as

pt(S|Y;θ) ∝ p(Y|S)t p(S;θ) for 0 ≤ t ≤ 1.

In addition, define

z(Y|t) =
∫

Rn
p(Y|s)t p(s;θ)ds,

and, for simplicity, write the likelihood as p(Y) = L(β, τ ; Y1, . . . , Yn). The following

equality is crucial to this method:

log{p(Y)} = log
{

z(Y|t = 1)
z(Y|t = 0)

}
=
∫ 1

0
E [log{p(Y|S)}|Y;θ, t] dt,

where the last expectation (inside the integral) is taken with respect to the power pos-

terior pt(S|Y;θ). The idea is as follows. First, for any given t, Monte Carlo methods

can be applied to sample from the power posterior and approximate the expectation.

Once a sufficient number of these expectations (corresponding to different values of

t) are calculated, numerical methods can be used to approximate the integral, which

is the same as the log-likelihood. Since this method approximates the log-likelihood

directly (i.e., without the computation of the likelihood), it is numerically quite stable.

The detailed algorithm is presented as Algorithm 4.
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Algorithm 4 Power Posterior Method for Log-Likelihood Calculation

1. Choose a starting value S(0) and set k = 0.

2. Set t = (k/Ngrid)
c, where c controls the density of the grid values of t. It is

typically set to 3 or 5 (see Friel and Pettitt, 2008).

3. Generate S(1), . . . , S(Nsim) from pt(S|Y;θ) using the Metropolis-Hastings algo-

rithm described in Step 2 of the SAEM algorithm. Note that the acceptance

probability becomes

aj(S, S∗) = min

1,

{
g(Yj; AjS∗j + bj)

g(Yj; AjSj + bj)

}t
 .

4. Estimate E [log{p(Y|S)}|Y;θ, t] with

l̂t =
1

Nsim − Nburn

Nsim

∑
s=Nburn+1

log p(Y|S(s);θ).

5. If k < Ngrid, set k = k + 1, S(0) = ∑Nsim
s=Nburn+1 S(s)/(Nsim − Nburn), and go to Step

2. Otherwise go to the next step.

6. Given the l̂t’s, the log-likelihood log{p(Y)} can be approximated via any reliable

numerical integration method.
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The above algorithm provides a reliable method for approximating the log-likelihood

for a given value of θ. Then one natural question to ask is, can we not simply ob-

tain the MLE of θ by directly maximizing this log-likelihood approximation via, say,

Newton’s method? The answer, in principle, is yes, but the IEM algorithm is still pre-

ferred mainly because the estimates from IEM are generally more stable and reliable.

Moreover, the power posterior approximation to the log-likelihood is computationally

intensive if one wants to obtain an accurate estimate. For these reasons, we only use

this power posterior approximation to estimate the log-likelihood evaluated at the

MLE obtained by the IEM algorithm.

5.5 Simulation Experiments
Numerical experiments were conducted to evaluate the practical performance of the

proposed methodology. Four experimental settings were considered:

1. B = 1, τ = 5× 10−17, β = 1 and n = 100,

2. B = 2, τ = (1× 10−17, 5× 10−17)T, β = (0.5, 3)T and n = 200,

3. B = 2, τ = (1× 10−17, 5× 10−17)T, β = (0.5, 1.5)T and n = 200,

4. B = 3, τ = (1× 10−17, 8× 10−17, 1.8× 10−16)T, β = (0.3, 1, 3)T and n = 500.

The parameter values of these settings were chosen to mimic the typical behavior

of the real data. The effective areas and the expected background counts are set to

Ai = 1019 and bi = 10 respectively for all i.

Two hundred data sets were generated for each experimental setting. For each

generated data set, both AIC and BIC were applied to choose the value of B, and

model parameters were estimated by the IEM algorithm. The selected values of B are

summarized in Table 5.1. One can see that BIC works substantially better than AIC

for selecting B, and while BIC occasionally overestimates B, there is a clear tendency

for AIC to consistently overestimate B.

Other crucial factors that determine the ability of our method to detect structural

breaks in the population distribution include: (i) the sample size, (ii) the separation
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between breakpoints, and, (iii) the magnitude of the difference between the power-law

slopes on adjacent segments. The impact of the third factor can be seen by comparing

simulation results from settings 2 and 3, where the misclassification rate is seen to

increase as the slopes become closer. From additional simulations our experience

suggests that in typical settings a sample size of 200 or more is needed to reliably

detect a single breakpoint, with double this required to detect two breakpoints. In

simulations, true breakpoints can be detected for smaller sample sizes, but at a lower

rate that is more dependent on the noise properties of the specific simulation.

In addition to selecting the number of breakpoints, we also conducted a simulation

to assess the quality of parameter estimation when using the IEM algorithm. For each

experimental setting, we calculated the squared error (β1 − β̂1)
2 of β̂1 for all those

data sets where B̂ were correctly selected. We then computed the average of all these

squared errors, denoted as mse(β̂1), and calculated the relative mean squared error√
mse(β̂1)/β1. Similar relative mean squared errors for other estimates in β̂ and τ̂

were obtained in a similar manner. These relative mean squared errors are given in

Table 5.2. We note that all of these are of the order of 10−2 or 10−1.

Table 5.1. The number of pieces B̂ selected by AIC and BIC.

Experimental Model Selection B̂

Setting Method 1 2 3 4

1 AIC 94 53 35 18

BIC 164 33 3 0

2 AIC 0 135 45 20

BIC 0 198 2 0

3 AIC 0 110 71 19

BIC 0 177 23 0

4 AIC 0 0 138 62

BIC 0 0 194 6
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Table 5.2. The relative mean squared errors of β̂ and τ̂ , conditional on selection of
the correct B. All entries are multiplied by 102.

Setting Method τ̂ β̂

1 AIC 5.14 - - 11.1 - -

BIC 4.91 - - 10.6 - -

2 AIC 3.33 2.55 - 9.81 11.3 -

BIC 3.52 2.60 - 9.17 10.8 -

3 AIC 3.52 14.2 - 12.0 13.2 -

BIC 3.57 12.9 - 11.1 13.5 -

4 AIC 2.71 3.26 5.04 7.08 9.91 12.3

BIC 2.72 3.94 4.97 7.16 9.74 11.9

5.6 Application: Chandra Deep Field North X-Ray Data
We now apply our method to data from the Chandra Deep Field North (CDFN) X-ray

survey. Our dataset comprises a total of 225 sources with an off-axis angle of 8 ar-

cmins or less and counts ranging from 5 to 8655. The full CDFN dataset is comprised

of multiple observations at many different aimpoints, however we here consider only

a subset where the aimpoints are close to each other to avoid complications such as

variations in detection probability due to changes in the point spread function (PSF)

shape, and consequent variations in detection probability. The decision to include

only aimpoints close to each other was taken primarily to avoid the issue of ‘incom-

pleteness’ and essentially amounts to taking a higher signal to noise subset of the full

dataset. Incompleteness occurs when sources are not observed, typically a result of

being too faint to be detected under the specific detector configuration used. Since

this missingness is a function of the quantity to be estimated, it must be accounted

for, and can lead to tremendously more complicated and challenging modeling. This

approach is taken as part of a fully Bayesian analysis in Baines et al. (2012a), but there

are significant challenges to the method. Most notably, results are very sensitive to the
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‘incompleteness function’, which is frequently not known to such high precision. By

considering only a subset of aimpoints we focus on a higher SNR subset of the Chan-

dra data that is not subject to issues arising from incompleteness. We do not believe

that the subset choice impacts the final conclusion, as the results in the unpublished

report of Udaltsova, which models the full dataset and accounts for incompleteness,

are extremely similar to those presented here. Since the off-axis angle measures the

radial distance of the source from the center of the detector, sources with large off-axis

angles can be thought of as being “close to the edge of the image”. Sources appearing

at large off-axis angles appear much larger and at lower resolution than those closer

to the center of the detector. The source-specific scaling constant, effective area Ai,

is used to account for variations in the expected number of photons as a function of

source location and photon energy. However, at large off-axis angles additional com-

plications such as “confusion” (two or more sources overlapping and appearing as

one) and “incompleteness” (possible non-detections of fainter sources) must be con-

sidered. For the purposes of our analysis here, we include all sources with an off-axis

angle < 8 arcmin to achieve a worst-case completeness of 80%. We also consider

thresholding at < 6 and < 7 arcmins, with a full discussion of the sensitivity to this

threshold considered in Section 5.6.1.

Applying our model selection procedure to the dataset with < 8 arcmins yields an

estimate of B̂ = 2, with B̂ = 1 for the < 6 and < 7 arcmin subsets. As discussed in

detail in Section 5.6.1, the consistency of the observations in the 6− 8 arcmin range

suggests that the ability to detect the presence of a breakpoint is limited by the small

sample sizes at < 6 and < 7. Figure 5.3 shows the log N− log S plot for the < 8 arcmin

dataset, depicting the log (base 10) of the empirical survival count as a function of the

log flux, using the imputed fluxes from the final E-step of our algorithm. While the

plot ignores the uncertainty in the Si’s, it remains the standard plot for the analysis of

log N − log S relationships. We note from the plot that the “break” is clearly visible

around log10(τ1) = −15.657, with a change in slope from 0.48 to 0.85. Full parameter

estimates and standard error estimates are provided in Table 5.3. Standard error
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Figure 5.3. log N − log S plot for the Chandra Deep Field North data with off-axis
angle truncation at 8 arcmins. The vertical dotted lines are drawn at τ̂1 and τ̂2. The
red lines correspond to the fitted broken-Pareto model with estimated slopes β̂1 and
β̂2.

estimates are obtained using a simple Bootstrap resampling procedure. We also note

that by simulating from the model, the seemingly nonlinear behavior of the curve at

log(S) = −14.5 is nonetheless seen to be consistent with the piecewise linear model.

Our analysis shows that a two-piece broken power-law model is preferred for this

subset, with a breakpoint at a lower flux than shown in Moretti et al. (2003), and with

the lower segment at a flatter slope. This differs from what would be expected if point

sources are to make up all of the diffuse background (Hickox and Markevitch, 2007),

suggesting that a significant proportion of the residual X-ray background is composed

of diffuse emission (e.g., hot intergalactic plasma); see also Mateos et al. (2008).

The analysis in Hickox and Markevitch (2007) was based on optical sources from

the Hubble Space Telecope (HST) which had no X-ray counterparts. By consider-

ing various models for the X-ray intensities of these sources, Hickox and Markevitch

(2007) compared them to the residual X-ray background from deep Chandra observa-

tions. The proportion of the Cosmic X-ray Background (CXB) that can be explained

by point sources alone is typically around 70-80%. Connecting to our results, higher

values for β1 increase the possibility that deeper observations could be obtained that

would explain an additional proportion of the CXB as discrete sources. Alternatively,
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lower values for β1 signify a flatter log N − log S, suggesting a greater amount of

diffuse emission. Figure 8 of Hickox and Markevitch (2007) depicts the relationship

between the proportion of the 0.5-2 keV CXB from unresolved HST point sources

and the power law slope. The breakpoint estimated in our analysis translates to

≈ 10−16ergs−1cm−2 for the passbands used by Hickox and Markevitch (2007). How-

ever, in the 2 Msec dataset they analyze, they do not detect any breakpoints (see

their Figure 7). Our analysis indicates that the log N − log S curve flattens for fluxes

less than the breakpoint, thus allowing for a significant proportion of the unresolved

residual X-ray background to be due to diffuse emission.

Table 5.3. Parameter estimates and standard errors for the CDFN dataset.

Parameter Estimate SE

β1 0.483 0.060

β2 0.854 0.224

log10(τ1) −16.344 0.030

log10(τ2) −15.657 0.271

5.6.1 CDFN Source Selection

In this section we consider the sensitivity of our analysis to the chosen off-axis angle

threshold. As discussed in Section 5.6, at higher off-axis angles there are additional

complications such as incompleteness and confusion that must be built into any sta-

tistical analysis that are not covered by the method presented here. Let K denote the

maximum off-axis angle; i.e., all sources with off-axis angle less than K are retained,

all others are excluded from the analysis. The choice of K = 8 for our analysis in

Section 5.6 is motivated by scientific considerations and an estimated completeness

above 80% at K = 8. However, by varying the truncation point we obtain additional

insight into the sensitivity of our analysis to this decision, as well as to the statistical

senstitivity to the sample size required for breakpoint detection. Table 5.4 shows the

results of the analysis for differing values of K. As explained, results for K > 9 are
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likely to be untrustworthy, although they happen to be similar to those with K = 8.

On the other extreme, if we truncate at K = 4 or K = 5 we unnecessarily discard a

large number of sources.

We note that at K = 7 we are also no longer able to formally detect a break i.e.,

B̂ = 1. However, upon closer examination the BIC values for B = 1 and B = 2 when

K = 7 are very similar (2186.79 vs. 2188.37), indicating that there is little to choose

between the B = 1 and B = 2 models. With a few additional data points added

at K = 8, our procedure then has enough power to detect the break at K = 8. It

is worth noting that all additional data points with off-axis angle between 7 and 8

were manually screened, and are quantitatively very similar to those with K < 7.

That is, the detection (or lack) of a breakpoint in this context appears to be primarily

determined by the sample size of the dataset used. This is consistent with our results

from the simulation study in Section 5.5, where a sample size of approximately 200

was required to reliably detect a break with similar parameter configurations. Indeed,

looking at the plot in Figure 5.3, we note that the break is rather a subtle one, with

the estimated slopes differing by approximately 0.37. In summary, for this particular

dataset we note that there appears to be evidence of a breakpoint, although the sample

size required to detect the breakpoint is not reached until we truncate at K = 8, just

before additional modeling considerations such as incompleteness must be accounted

for.

5.7 Theoretical Properties
This section deals with the large-sample properties of the proposed procedure. We

first establish consistency results for the case when B is known, with no background

contamination (bi = 0 for all i) and all Ai are assumed to be identical. Then we

describe how one could weaken the assumptions of identical Ai’s and zero bi’s. How-

ever, as explained at the end of this section, the case of unknown B is substantially

more difficult and we are unable to provide any theoretical results for this case.

If it is assumed that Ai = A > 0 and bi = 0 for all i = 1, . . . , n, then Y1, . . . , Yn
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Table 5.4. CDFN Results by varying off-axis truncation

log10(τ̂) β̂

K n log10(τ̂1) log10(τ̂2) β̂1 β̂2

4 77 −16.364 0.788

5 112 −16.353 0.738

6 152 −16.329 0.691

7 192 −16.373 0.590

8 225 −16.343 −15.668 0.482 0.850

9 257 −16.352 −15.732 0.449 0.850

10 287 −16.378 −15.696 0.450 0.792

11 298 −16.389 −15.702 0.456 0.793

12 303 −16.403 −15.677 0.454 0.802

13 304 −16.429 −15.843 0.412 0.743

constitute an iid sample from model (5.4). Denote the density of Y1 by

f (y;θ) =
∫ ∞

τ1

e−As(As)y

y!
fB(s;β, τ )ds

=
B

∑
j=1

(
τj−1

τj

)β j−1
β j(Aτj)

β j

y!
{

Γ(y− β j, Aτj)− Γ(y− β j, Aτj+1)
}

.

The parameter space is defined as Θ = {θ = (β, τ )T ∈ R2B
+ : β j ̸= β j+1, τj < τj+1, j =

1, . . . , B − 1}. Let θ0 = (β0, τ0)
T ∈ Θ denote the true parameter value. Notice that

Θ is not compact and that the value of the likelihood does not converge to zero if

the parameter approaches the boundary of Θ. Therefore standard arguments such

as the ones based on Wald (1949) do not apply directly in order to establish strong

consistency of the maximum likelihood estimator θ̂ of θ0. Instead a compactification

device is applied to subsequently use the results of Kiefer and Wolfowitz (1956). This

leads to the following result.

Theorem 5.1. Suppose B is known and Ai = A > 0 for all i = 1, . . . , n. Then, the maximum

likelihood estimator θ̂ is strongly consistent for θ0, that is, θ̂ → θ0 with probability one as
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n→ ∞.

The proof of Theorem 5.1 is provided in an online supplement (Wong et al., 2014)

(see Appendix C). To weaken the restriction of identical Ai, observe that this condition

is mainly applied to allow the use of the strong law of large numbers for iid random

variables, as required for the direct application of the results in Wald (1949) and Kiefer

and Wolfowitz (1956). Since the arguments used to prove Theorem 5.1 are still valid if

only the assumption Ai > 0 is made, Kolmogorov’s version of the strong law of large

numbers can be applied to adapt their proof to the present case, imposing additional

assumptions such as the Kolmogorov criterion

∞

∑
i=1

Var(Yi)

i2 < ∞

or conditions ensuring the validity of Kolmogorov’s three-series theorem. Then, the

result of Theorem 5.1 holds also in this more general setting. The case for non-zero

bi’s can also dealt with similarly, but with long and tedious algebra.

In the theory developed above, the number of pieces, B, in the broken-Pareto

model is assumed to be known. The case of unknown B is, however, substantially

more difficult. In fact, results in simpler settings such as the traditional “change in

mean” scenario, in which segments of independent observations differ only by their

levels, strong distributional assumptions become necessary to show consistency of an

estimator for B. These typically require normality of the observations so that sharp

tail estimates of the supremum of certain Gaussian processes are available; e.g., see

Yao (1988). These techniques have also been exploited in Aue and Lee (2011) for image

segmentation purposes. However, in the current context of the more complex broken-

Pareto model, these arguments are not applicable and in fact it seems infeasible to

derive theoretical properties under a set of practically relevant assumptions.

5.8 Concluding Remarks
We provide a coherent statistical procedure for selecting the number and orientation

of “pieces” in an assumed piecewise linear log N− log S relationship. Our framework
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allows astrophysicists to use a principled approach to reliably select the model order

B, and for parameter estimation via maximum likelihood estimation in a numerically

challenging context. To our knowledge, this is the first statistically rigorous procedure

developed for solving this important scientific problem. R code implementing the

proposed procedure can be obtained from the authors.
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Appendix A

Supplement to “Fiber Direction
Estimation in Diffusion MRI"

A.1 Estimation of the linear model (2.6)
This section describes a fast algorithm that we developed for estimating β̂ j in model (2.6).

With this model one can write the log-likelihood of β = (β1, . . . , βK)
⊺ as

ℓ(β) =
m

∑
i=1

[
log
( yi

σ2

)
−

y2
i + (∑K

k=1 βkxik)
2

2σ2 + log I0

{
yi(∑K

k=1 βkxik)

σ2

}]
,

where yi = S(ui) and xik = xk(ui) for i = 1, . . . , m, k = 1, . . . , K. And now we consider

minimizing

− ℓ(β) subject to βk ≥ 0 ∀k (A.1)

with respect to β. Now, differentiating ℓ with respect to β j, we have

∂ℓ

∂β j
=

m

∑
i=1

{
−
(∑K

k=1 βkxik)xij

σ2 +
yixij

σ2 ti(β)

}
,

where

ti(β) = I1

{
yi(∑K

k=1 βkxik)

σ2

}/
I0

{
yi(∑K

k=1 βkxik)

σ2

}

with

Iv(x) =
1
π

∫ π

0
exp(x cos ϕ) cos(vϕ)dϕ
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as the v-th (for nonnegative integer v) order modified Bessel function of the first kind

(Abramowitz and Stegun, 1964). One can show that the solution β̂ of minimizing

(A.1) satisfies

β̂j =

∑m
i=1

{
ti(β̂)yi −∑k ̸=j β̂kxik

}
xij

∑m
i=1 x2

ij


+

∀j. (A.2)

If we know ti(β̂)’s, (A.2) gives an update formula for one βk at a time, similarly as

in common coordinate descent algorithms. Since coordinate descent algorithm is of

an iterative basis, we propose to further approximate ti(β̂) by substituting the latest

update of β into ti. This leads to the following coordinate descent like strategy for

finding β̂:

• Outer loop: Approximate r(β̂) using the latest update of β.

• Inner loop: Coordinate updates through (A.2) until convergence.

For inner loop, very often, many coefficients remain zero after thresholding, which

leads to unchanged of their values. Since the update of a particular coefficient de-

pends on the partial sum of other coefficients, the inner loop is usually computation-

ally efficient and converges in a fast manner.

This algorithm requires an initial value of β. Motivated by the typical non-linear

estimator of a single fiber model, we can choose the initial value as a constrained least

square estimator which minimizes

m

∑
i=1

(
yi −

K

∑
k=1

βkxik

)2

subject to βk ≥ 0 ∀k.

Note that this is a quadratic programming problem, which can be solved efficiently

by existing algorithms.

A.2 Simulation study of voxel-wise estimation
This section provides simulation results for the voxel-wise estimation procedure pro-

posed in Section 2.3. Observed signal intensities were simulated from model (2.2)

with Rician noise under three settings:

96



1. Single tensor case: J = 1, m1 = (1, 0, 0)⊺.

2. Two tensor case with perpendicular crossing and unbalanced components: J =

2, m1 = (1, 0, 0)⊺, m2 = (0, 1, 0)⊺, p1 = 0.7, p2 = 0.3.

3. Two tensor case with 50 degree crossing and balanced components: J = 2, m1 =

(cos(π/9), sin(π/9), 0)⊺, m2 = (sin(π/9), cos(π/9), 0)⊺, p1 = 0.5, p2 = 0.5.

All FAs and largest eigenvalues of underlying tensors are set to 0.9 and 4 × 10−3

respectively. Moreover, b, S0 and σ are set to 1000, 1000 and 50 respectively. This

has a signal-to-noise ratio (SNR := S0/σ) 20, which is typical for dMRI studies. U

is obtained from the sphere tessellation with 3 subdivision using octahedron and

|U | = 33. For each setting, we simulate 200 voxel-wise data sets and compare the

following methods:

• golden: Optimization of (2.4) via Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

with starting values set as the true parameter values. (J is known.)

• global-aic: Global optimization of (2.4) via GENOUD (Sekhon and Mebane, 1998)

with Akaike Information criterion (AIC) for selection of J.

• global-bic: Similar to global-aic but with BIC.

• prop-aic: Our proposed method with AIC.

• prop-bic: Our proposed method with BIC.

Note that the AIC is derived as

AIC(I) = −2l(γ̂(I)) + 8I.

The simulation results are summarized in Table A.1. With the information of true

parameters, golden can be treated as a golden standard. Excluding golden, prop-bic

has the highest proportion of correct estimation of J and attains around 99% correct

recovery, which leads to our choice of BIC over AIC. In addition, note that prop-bic

over-selects J when it does not estimate J correctly. This is one of the reasons why a
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removal step (Step 12 of Algorithm 1) is designed in our smoothing procedure. As

said, our goal is the diffusion direction m. Conditional on the correct estimation of J,

the squared error of m is defined as

min
{k1,...,k J∈{1,...,J}:ki ̸=kj}

J

∑
j=1

d∗2(mj, ûkj),

where û1, . . . , ûJ are the estimated diffusion directions. From Table A.1 all methods

have root MSEs of m ranging from 1.5 to 1.6, 4.5 to 4.6 and 5.1 to 5.7 degree in the

three settings respectively, and so these methods do not have big difference in terms

of tracking. Given the accurate estimation of J and the computational benefit (over

general global optimization methods), prop-bic performs the best among the compared

methods.

Table A.1. Simulation results for voxel-wise estimation. Correct-select: proportion
of Ĵ = J. Over-select: proportion of Ĵ >= J. m, α, τ : MSE of m, α and τ (computed
on Ĵ = J), with corresponding standard error stated in brackets. Note that the MSE
of m is in squared degree.

Setting Method Correct-select Over-select m α τ

1 golden 100% 100% 2.48 (3.06e-03) 5.70e-02 (4.66e-03) 2.69e-04 (2.32e-05)
global-aic 75% 100% 2.39 (3.32e-03) 5.50e-02 (5.40e-03) 2.65e-04 (2.40e-05)
global-bic 98% 100% 2.48 (3.11e-03) 5.65e-02 (4.70e-03) 2.67e-04 (2.33e-05)
prop-aic 89% 100% 2.41 (3.07e-03) 5.53e-02 (5.01e-03) 2.73e-04 (2.51e-05)
prop-bic 99.5% 100% 2.48 (3.07e-03) 5.65e-02 (4.65e-03) 2.69e-04 (2.33e-05)

2 golden 100% 100% 20.5 (1.99e-02) 1.23 (2.83e-01) 4.01e-04 (2.81e-05)
global-aic 81.5% 100% 21.0 (2.19e-02) 1.20 (3.40e-01) 3.93e-04 (2.97e-05)
global-bic 97% 100% 21.3 (2.07e-02) 1.92 (7.46e-01) 4.05e-04 (2.88e-05)
prop-aic 91.5% 100% 21.1 (2.13e-02) 1.37 (3.43e-01) 4.10e-04 (2.93e-05)
prop-bic 99.5% 100% 20.7 (2.01e-02) 1.33 (3.16e-01) 4.00e-04 (2.81e-05)

3 golden 100% 100% 28.7 (3.85e-02) 5.21 (3.24) 2.72e-03 (2.61e-04)
global-aic 74.5% 100% 26.5 (3.80e-02) 2.02 (4.21e-01) 2.51e-03 (2.92e-04)
global-bic 95.5% 100% 32.3 (7.20e-02) 3.38 (1.04) 2.95e-03 (3.47e-04)
prop-aic 93.5% 100% 27.6 (3.83e-02) 5.37 (3.46) 2.60e-03 (2.65e-04)
prop-bic 99% 100% 28.6 (3.86e-02) 5.23 (3.27) 2.70e-03 (2.62e-04)

A.3 Choice of bandwidth
This section presents our bandwidth selection methods for the smoothing method in

Section 2.4. These methods are based on the idea of cross-validation (CV). Let m̆−i
i be

the smoothed version of m̂i when all directions sharing the same voxel with m̂i are
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not used in the smoothing. Since the choice of h may affect the number of clusters

(steps 3 and 4 of Algorithm 1), m̂i may have been removed (step 12 of Algorithm 1).

Thus, m̆−i
i is not always defined. Let oi be the indicator of the existence of m̆−i

i . The

CV score is the mean of {d∗2(m̂i, m̆−i
i ) : oi = 1}.

Even after direction smoothing, the number of diffusion directions within a voxel

may still be over-estimated. These spurious directions can have a great effect on the

CV score, similar to the effect of outliers.

To alleviate this issue, the trimmed mean of {d∗2(m̂i, m̆−i
i ) : oi = 1} and the median

of {d∗(m̂i, m̆−i
i ) : oi = 1} are used to form robust CV scores. They are called trimmed

CV score and Median CV score respectively. We choose h as the minimizer of either

one of these scores. See Section 2.7 for their numerical comparison.

In our numerical illustrations, the bandwidth h is chosen differently for single

fiber regions and crossing fiber regions. Further, if one has enough computational

resource, adaptive choice of bandwidth can also be achieved by dividing voxels into

blocks according to their spatial locations and performing cross validation.

A.4 Algorithms
This section presents various algorithms developed in the main paper.
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Algorithm 2 ClustDir: PAM based clustering for direction vectors
Input: Set of direction vectors {v1, . . . , vn}, number of cluster Nc

Output: Group mean {v∗1 , . . . , v∗Nc
}, group label {e1, . . . , en}

1: procedure ClustDir({v1, . . . , vn}, Nc)
2: for i, j = 1 to n do Dij ← d∗(vi, vj)

3: Define D as the dissimilarity matrix with elements Dij’s
4: Apply PAM with dissimilarity matrix D to cluster {v1, . . . , vn} into Nc groups
5: for i = 1 to n do ei ← group label of vi

6: for j = 1 to Nc do Compute group (Karcher) means:

v∗j ← arg min
v∈M

n

∑
i=1

I{ei = j}d∗2(vi, v)

7: return ({v∗1 , . . . , v∗Nc
}, {e1, . . . , en})

Algorithm 3 Algorithm for voxel-wise estimation
Input: Observed signal intensities {S(u), u ∈ U}, set of gradient vectors U , non-
diffusion weighted intensity S0, standard deviation of the noise σ, b-value b, FA
threshold r, upper bound of the number of directions Ĩ
Output: The selected number of diffusion directions, Ĵ and, if Ĵ > 0, the correspond-
ing ML estimate γ( Ĵ)
Description: To perform voxel-wise estimation

1: Compute FA
2: if FA < r then
3: Declare there is no major diffusion direction: Ĵ ← 0
4: else
5: Estimate β (Appendix A.1) and determine the selected directions.
6: for I = 1, . . . , min{ Ĩ, L} do
7: Cluster the selected directions into I groups (Algorithm 2)
8: Perform optimization with a gradient method (Section 2.3.3) and obtain

ML estimate γ̂(I)
9: Compute BIC(I)

10: Compute BIC(0)
11: Estimate the number of diffusion directions: Ĵ ← argminI∈{0,...,min{ Ĩ,L}}BIC(I)
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Algorithm 4 ClustDirN: PAM based clustering algorithm for direction vectors with
automatic choice of number of clusters
Input: Set of direction vector {v1, . . . , vn}, maximum number of cluster K, angular
threshold ξ

Output: Group mean {v∗1 , . . . , v∗C}, number of clusters C

1: procedure ClustDirN({v1, . . . , vn}, K, ξ)
2: if n = 1 then

the case of only one input direction: declare only one cluster
3: C← 1
4: else if n = 2 then

the case of two input directions: declare only one cluster if the angular
separation of these directions are small

5: if d∗(v1, v2) ≤ ξ then C ← 1 else C ← 2

6: else if n = 3 then
the case of three input directions

7: ψ ← the distance (2.7) between the two cluster means of Clust-
Dir({v1, v2, v3}, 2) (Algorithm 2)

8: if ψ ≤ ξ then
9: C ← 1

10: else
11: if minimum pairwise distance of {v1, v2, v3} ≤ ξ then C← 2 else C ← 3

12: else
the case of more than three input directions: use Shilhouette criterion

13: ψ← distance between the two cluster means of ClustDir({v1, . . . , vn}, 2)
14: if ψ ≤ ξ then
15: Claim there is only one cluster if the angular separation is small: C ← 1
16: else
17: for k = 2 to K do
18: ak ← average silhouette computed using ClustDir({v1, . . . , vn}, k)

19: Estimate the number of clusters as the maximizer of average silhouette:
C← arg minj{aj}

20: ({v∗1 , . . . , v∗C}, {e1, . . . , en})← ClustDir({v1, . . . , vn}, C)
21: return ({v∗1 , . . . , v∗C}, C)
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Algorithm 5 Algorithm for fiber tracking
Input: Target voxel s∗, initial direction v∗, (smoothed) voxel-wise estimate
{(sk, v̂k), k = 1, . . . , T}, maximum number of projection Nproj, angular threshold ξ

Output: Recorded locations and directions
Description: To perform fiber tracking

1: Initialization: x← s∗; v← v∗; Z← True
Here, x represents the current location, v represents the current direction, Z is an
indicator of whether the tracking should continue

2: Record x, v
3: while Z do
4: Move from x in the direction of v until hitting the boundary of the voxel
5: x← boundary point of the voxel
6: K ← number of fiber directions at the next voxel
7: if K = 0 then
8: Z̃← False, where Z̃ is an indicator of whether a viable direction exists
9: else

10: {v1, . . . , vK} ← fiber directions at the next voxel
11: Identify the direction with smallest angular separation: j ←

arg mink d∗(v, vk)

12: if d∗(v, vj) ≤ ξ then
13: v← sign(v · vj)vj; Z̃← True
14: else
15: Z̃← False
16: if not Z̃ then

Project the tracking and check if there is any viable direction after Nproj

voxels:
17: x̃← x; ṽ← v
18: for n = 1 to Nproj do
19: Projection: run lines 4 to 15 with all x and v replaced by x̃ and ṽ
20: if Z̃ then
21: Record x̃ and ṽ; break

22: if not Z̃ then Z ← False (Stop the tracking if there is no viable direction
after Nproj voxels)

23: else
24: Record x, v
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A.5 Technical details

Lemma A.1. Assume that Assumption 1 hold. ψ(ω,θ) is twice continuously differentiable

in a neighborhood of θ0 = 0, m(s0) = 0 and M(1)
n (0) = −2 ∑n

i=1 hKh(Si − s0)θi .

Proof of Lemma A.1. Under Assumption 1, for θ close to θ0,

d(θi,θ) = arccos(|ρv0(vi)
⊺ϕ−1(θ)|) = arccos(ρv0(vi)

⊺ϕ−1(θ)).

Note that ρv0(vi) ∈ V is represented by θi. Thus, for θ close to θ0, d(θi,θ) coincides

with the geodesic distance of V between points represented by logarithm coordi-

nates θi and θ. Now, Lemma A.1 follows from Bhattacharya and Bhattacharya (2012,

Theorem 5.3) applied to the Manifold V . Note that the cited theorem develops the

coordinate system through the logarithm map at the intrinsic mean, which is not the

same in our case. However, the requirement for developing the system at the intrinsic

mean is for deeper results stated in their theorem, which is irrelevant to our use of

their theorem.

Lemma A.2. Assume that Assumptions 1-5 hold. Let Yi = hKh(Si − s0)m(Si), for i =

1, . . . n. Then

n

∑
i=1

Yi = nh3
∫

x2K(x)dx
{

m(1)(s0) f (1)(s0) +
1
2

m(2)(s0) fS(s0)

}
+ Op(

√
nh3),

where m(1) and m(2) are interpreted as vectors of first and second derivatives of elements of m

respectively.

Proof of Lemma A.2. Since Yi’s are independently and identically distributed, we have

n

∑
i=1

Yi = nE(Y1) + Op

{√
nE(Y2

1)

}
.

103



We compute E(Y1) and E(Y2
1) below. Write Y1 = (Y1,1, Y1,2)

⊺. For j = 1, 2, by domi-

nated convergence theorem with boundedness and continuity assumptions of fS and

mj, and m(s0) = 0, from Lemma A.1, we have

E(Y1,j) = E
{

hKh(S1 − s0)mj(S1)
}

= h
∫

Kh(s− s0)m(s) fS(s)ds

= h
∫

K(x)mj(s0 + hx) fS(s0 + hx)dx

= h
∫

K(x)
{

m(1)
j (s0)hx +

1
2

m(2)
j (s0)h2x2

}
×
{

fS(s0) + f (1)S (s0)hx +
1
2

f (2)S (s0)h2x2
}

dx + o(h3)

= h3
∫

x2K(x)dx
{

m(1)
j (s0) f (1)S (s0) +

1
2

m(2)
j (s0) fS(s0)

}
+ o(h3).

Similarly, for j = 1, 2,

E(Y2
1) = E

{
h2K2

h(S1 − s0)m2
j (Si)

}
= h3

∫
x2K2(x)dx{m(2)

j (s0)}2 fS(s0) + o(h3).

Thus,

n

∑
i=1

Yi = nh3
∫

x2K(x)dx
{

m(1)(s0) f (1)S (s0) +
1
2

m(2)(s0) fS(s0)

}
+ Op(

√
nh3).

Lemma A.3. Assume that Assumptions 1-4 and 6 hold. Let Ỹi = hKh(Si− s0)(θi−m(Si)),

for i = 1, . . . n. Then

1√
nh

n

∑
i=1

Ỹi =⇒ N2

(
0,
∫

K2(x)dx fS(s0)Σ(s0)

)
.

Proof of Lemma A.3. We will use the Linderberg-Feller central limit theorem for show-

ing the asymptotic normality of ∑n
i=1 Ỹi/

√
nh. First, it is trivial that, for fixed n, Ỹi’s
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are independently and identically distributed, with E(Ỹ1) = 0. Next, we study the

variance of ∑n
i=1 Ỹi/

√
nh, which is E(Y1Y⊺

1)/h. Now, write Y1 = (Y1,1, Y1,2)
⊺. For

j, k = 1, 2,

1
h

E(Y1,jY1,k) = h
∫

K2
h(s− s0)E

[{
θ1,j −mj(s1)

}
{θ1,k −mk(s1)} |S1 = s

]
fS(s)ds

= h
∫

K2
h(s− s0)Σjk(s) fS(s)ds

=
∫

K2(x) f (s0 + hx)Σjk(s0 + hx)dx

=
∫

K2(x)dx f (s0)Σjk(s0) + o(1),

by dominated convergence theorem with boundedness and continuity assumptions

of fS and Σjk.

And, next, we have to verify the Linderberg-Feller condition. In our case, it can be

reformulated as, for any ε > 0,

lim
n→∞

n

∑
i=1

E

(∥∥∥∥ Ỹi√
nh

∥∥∥∥2

I
{∥∥∥∥ Ỹi√

nh

∥∥∥∥ > ε

})
= 0.

We verify this condition by showing limn→∞ Pr(∥Ỹ1/
√

nh∥ > ε) = 0, for any ε > 0.

This is equivalent to ∥Ỹ1/
√

nh∥ = op(1), which we verify by looking at the second

moment of ∥Ỹ1/
√

nh∥.
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E

(∥∥∥∥ Ỹ1√
nh

∥∥∥∥2)
=

1
nh

E
{

h2K2
h(S1 − s0)∥θ1 −m(S1)∥2

}
=

h
n

∫
K2

h(s− s0)E(∥θ1 −m(S1)∥2|S1 = s) fS(s)ds

=
h
n

∫
K2

h(s− s0)E(trace [{θ1 −m(S1)}{θ1 −m(S1)}⊺] |S1 = s) fS(s)ds

=
h
n

∫
K2

h(s− s0)trace {Σ(s)} fS(s)ds

=
1
n

∫
K(x)trace {Σ(s0 + hx)} fS(s0 + hx)dx

=
1
n
[{Σ11(s0) + Σ22(s0)} fS(s0) + o(1)] .

Thus, ∥Ỹ1/
√

nh∥ = op(1) and by continuous mapping theorem, ∥Ỹ1/
√

nh∥2 = op(1).

n

∑
i=1

E

(∥∥∥∥ Ỹi√
nh

∥∥∥∥2

I
{∥∥∥∥ Ỹi√

nh

∥∥∥∥ > ε

})
= E

(
n
∥∥∥∥ Ỹ1√

nh

∥∥∥∥2

I
{∥∥∥∥ Ỹ1√

nh

∥∥∥∥ > ε

})
Call the term inside the expectation of the right hand side as Zn. From above,

E(n∥Ỹ1/
√

nh∥2) < ∞, for sufficiently large n. Note that Zn ≤ n∥Ỹ1/
√

nh∥2. Thus, by

dominated convergence theorem with application of Skorohod Representation Theo-

rem to extend the result to weakly convergent sequence of random variables, we have

limn→∞ E(n∥Ỹ1/
√

nh∥2) = 0 and thus Linderberg-Feller condition is verified. Hence,

by Linderberg-Feller central limit theorem, we have

1√
nh

n

∑
i=1

Ỹi =⇒ N2

(
0,
∫

K2(x)dx fS(s0)Σ(s0)

)
.

Lemma A.4. Assume that Assumption 1-4, 7 and 8 hold.

M(2)
n (θ0) = nhΨ(s0) fS(s0){1 + op(1)}
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Proof of Lemma A.4. Note that M(2)
n (θ0) = ∑n

i=1 hKh(Si − s0)ψ2(θi,θ0). To understand

the asymptotic behavior of M(2)
n (θ0), we study the asymptotic expansion of hKh(S1 −

s0)ψ2(θi,θ0) through computing its first two moments.

For j, k = 1, 2,

E
{

hKh(S1 − s0)[ψ2(θ1,θ0))]j,k
}
=
∫

hKh(s− s0)Ψjk(s) fS(s)ds

= h
{

Ψjk(s0) fS(s0) + o(1)
}

,

by dominated convergence theorem with boundedness and continuity assumptions

of fS and Ψjk. As the second moment, since E{[ψ2(θ1,θ0)]
2
j,k|S1 = s} is bounded,

E
{

h2K2
h(S1 − s0)[ψ2(θ1,θ0))]

2
j,k

}
≤ Cjk

∫
h2K2

h(s− s0) fS(s)ds

= h
{

Cjk fS(s0)
∫

K2(x)dx + o(1)
}

by dominated convergence theorem with boundedness and continuity of fS. Thus,

M(2)
n (θ0) = nhΨ(s0) fS(s0){1 + op(1)}.

Lemma A.5. Assume that Assumptions 1-4 and 7-10 hold. Let θ ∈ R2. For all sufficiently

small δ > 0,

lim
n→∞

Pr

[
inf

θ̃∈Bδ(θ0)

1
nh

{
(θ− θ0)

⊺M(2)
n (θ̃)(θ− θ0)

}
≥ 1

2
fS(s0)(θ− θ0)

⊺Ψ(s0)(θ− θ0)

]

= 1.

Proof of Lemma A.5. In this proof, we will prepare the uniform result that is required to

show consistency of our estimator. Write Tn(θ̃) = (1/n)∑n
i=1 Kh(Si − s0)

{
ψ2(θi, θ̃)−
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ψ2(θi,θ0). Note that

sup
θ̃∈Bδ(θ0)

∥Tn(θ̃)∥ ≤
1
n

n

∑
i=1

{
Kh(Si − s0) sup

θ̃∈Bδ(θ0)

∥∥ψ2(θi, θ̃)−ψ2(θi,θ0)
∥∥} .

By dominated convergence theorem and Assumption 9, we have

E

(
sup

θ̃∈Bδ(θ0)

∥Tn(θ̃)∥
)
≤
∫

Kh(s− s0)γ(δ, s) fS(s)ds

=
∫

K(x)γ(δ, s0 + hx) fS(s0 + hx)dx

≤ γ̃(δ) f (s0) + o(1).

By Assumption 9, we have limδ→0 limsupn→∞[supθ̃∈B(θ0)
∥Tn(θ̃)∥] = 0 in probability.

For a given θ ∈ R2, note that

sup
θ̃∈Bδ(θ0)

∣∣(θ− θ0)
⊺Tn(θ̃)(θ− θ0)

∣∣ ≤ ( sup
θ̃∈Bδ(θ0)

∥Tn(θ̃)∥
)2

∥θ− θ0∥2.

Thus, by Lemma A.4 and Assumption 10, for all sufficiently small δ > 0,

lim
n→∞

Pr

[
inf

θ̃∈Bδ(θ0)

1
nh

{
(θ− θ0)

⊺M(2)
n (θ̃)(θ− θ0)

}
≥ 1

2
fS(s0)(θ− θ0)

⊺Ψ(s0)(θ− θ0)

]

= 1.

Proof of Theorem 2.1(a). To show the consistency result, we look into the Taylor’s ex-

pansion of Mn(θ) around θ0. Consider θ ∈ Bδ(θ0) and by Taylor’s expansion, we

have

Mn(θ)−Mn(θ0) = M(1)
n (θ0)

⊺(θ− θ0) +
1
2
(θ− θ0)

⊺M(2)
n (θ∗)(θ− θ0),
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where θ∗ lies on the line segment joining θ0 and θ. First, by Lemma A.2 and A.3,

1
nh

M(1)
n (θ0) = −

2
nh

n

∑
i=1

(
Yi + Ỹi

)
= op(1).

Then, from Lemma A.5, we have, for all sufficiently small δ > 0,

lim
n→∞

Pr
[

inf
θ∗∈Bδ(θ0)

1
nh

{
(θ− θ0)

⊺M(2)
n (θ∗)(θ− θ0)

}
≥ 1

2
fS(s0)(θ− θ0)

⊺Ψ(s0)(θ− θ0)

]
= 1.

Thus, by Assumption 10, there exists a local minimum in Bδ(θ0) asymptotically. That

means, for any δ > 0, there exists a sequence of roots, θ̂n, to M(1)
n (θ) = 0 such that,

lim
n→∞

Pr(∥θ̂n − θ0∥ < δ) = 1.

This completes the proof of Theorem 2.1(a).

Proof of Theorem 2.1(b). To show the distributional result, we expand M(1)
n (θ) by Tay-

lor’s expansion. Expanding at θ̂n, stated in Theorem 2.1(b),

0 = M(1)
n (θ̂n) = M(1)

n (θ0) + M(2)
n (θ∗n)(θ̂n − θ0),

where θ∗n lies on the line segment joining θ0 and θ̂n. Note that ∥θ∗n − θ0∥ ≤ ∥θ̂n −

θ0∥ = op(1). And

1
nh

M(2)
n (θ∗n) = fS(s0)Ψ(s0){1 + op(1)}

since, with ∥θ∗n − θ0∥ = op(1), one can show that E{Tn(θ∗n)} = op(1) along the proof

of Lemma A.5. As for M(1)
n (θ0), by Lemma A.2,

1√
nh

M(1)
n (θ0) = (−2)

√
nh5

∫
x2K(x)dx

{
m(1)(s0) f (1)(s0) +

1
2

m(2)(s0) fS(s0)

}
+ (−2)

1√
nh

n

∑
i=1

Ỹi + op(1)
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Thus, by Slutsky’s theorem,

√
nh
{
(θ̂n − θ0)− h2η

}
=⇒ N2(0, Ω).
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Appendix B

Supplement to “A Frequentist
Approach to Computer Model
Calibrations"

B.1 Technical details
Lemma B.1 (Consistency of θ̂n). Assume that Assumptions 4.1, 4.2, 4.3(a), 4.4(a), 4.5(a),

4.6 hold. θ̂n is a consistent estimator of θ0. i.e. ∥θ̂n − θ0∥
P→ 0 as n→ ∞.

Proof of Lemma B.1. Note that

Mn(θ) =
1
n

n

∑
i=1

ε2
i + ∥ζ − gθ∥2

n + 2⟨ε, ζ − gθ⟩n.

Define

M0,n(θ) = ∥ζ − gθ∥2
n + σ2.

In order to derive a uniform convergence of Mn(θ) − M0,n(θ), we need a uniform

results on ⟨ε, ζ − gθ⟩n. Here, we borrow the result from Corollary 8.3 of Van De Geer

(2000). By Assumptions 4.2 and 4.3(a),

H(u,G − ζ, Fn) ≤ d log
(

4R1c0 + u
u

)
,

where H is the entropy (see Van De Geer, 2000). Thus the entropy integral converges:∫ 1

0
H1/2(u,G − ζ, Fn)du < ∞.
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Thus, using Corollary 8.3 of Van De Geer (2000) with Assumptions 4.1 and 4.4(a), we

have

sup
θ∈Θ
|⟨ε, ζ − gθ⟩n| = Op(1).

By Bernstein’s inequality, we have (1/n)∑n
i=1 ε2

i
P→ σ2 and thus supθ∈Θ |Mn(θ) −

M0,n(θ)| = Op(1). Consider

sup
θ∈Θ
|Mn(θ)−M(θ)| ≤ sup

θ∈Θ
|Mn(θ)−M0,n(θ)|+ sup

θ∈Θ
|M0,n(θ)−M(θ)|,

where M(θ) = ∥ζ − gθ∥2 + σ2. By Assumption 4.5(a), supθ∈Θ |Mn(θ) − M(θ)| =

Op(1). By Theorem 5.7 of Van der Vaart (2000) with Assumption 4.6, ∥θ̂n − θ0∥ =

Op(1).

Proof of Theorem 4.1. We first derive a basic inequality. As gθ̂n
minimizes Mn(θ),

∥gθ̂n
− gθ0∥

2
n ≤ 2⟨ε, gθ̂n

− gθ0⟩n + 2⟨ζ − gθ0 , gθ̂n
− gθ0⟩n. (B.1)

The first term in the left hand side can be handled by the following result:

⟨ζ − gθ0 , gθ̂n
− gθ0⟩n

∥gθ̂n
− gθ0∥n

= Op(n−1/2) (B.2)

The proof of this result is shown in part of the proof of Theorem 9.1 of Van De Geer

(2000). Define Gn(R) = {gθ ∈ G : ∥gθ − gθ0∥ ≤ R}. By Assumptions 4.2 and 4.3(a),

for 0 ≤ z ≤ 1,

∫ z

0
H1/2(u,Gn(z), Fn)du ≤

∫ z

0
d1/2

{
log
(

4c0z + u
u

)}1/2

du

= 4c0d1/2z
∫ 1/4c0

0

{
log
(

1
x
+ 1
)}1/2

dx

= Kd1/2z,

for some constant K. Take Ψ(z) = Kd1/2z. Thus, condition (9.3) of Van De Geer (2000)

is met. In addition, the entropy integral converges:∫ z

0
H1/2(u,G − gθ0 , Fn)du < ∞.
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Then (B.2) follows from the proof of Theorem 9.1 of Van De Geer (2000) via the peel-

ing device. (Note that the statement of Theorem 9.1 of Van De Geer (2000) requires

Ψ(z)/z2 to be non-decreasing, which is a typo. Rather, it should be non-increasing.)

The major difficulty lies in the second term of left hand side of (B.1), which has the

same convergence rate as the left hand side (see below). This second term arises from

the misspecification of the regression function, which results in non-mean-zero errors

(δ0(xi) + εi). This forbids us from the direct use of the inequality (B.1) for getting the

convergence rate of ∥θ− θ0∥, as a standard approach shown in Van De Geer (2000).

From Assumptions 4.3(b) and 4.6, as θ0 minimizes M(θ),∫
X

δ0(x)g(1)θ0
(x)dF(x) = 0

and A = A1 − A2 is strictly positive definite, where

A1 =
∫
X

g(1)θ0
(x)g(1)θ0

(x)⊺dF(x) and A2 =
∫
X

δ0(x)g(2)θ0
(x)dF(x).

By Taylor’s expansion, we also have, for θ ∈ Θ close to θ0 and x ∈ X ,

gθ(x) = gθ0(x) + g(1)θ0
(x)⊺(θ− θ0) +

1
2
(θ− θ0)

⊺g(2)θ0
(x)(θ− θ0) + γθ(x), (B.3)

where

γθ(x) =
1
2
(θ− θ0)

⊺{g(2)
θ̃

(x)− g(2)θ0
(x)}(θ− θ0).

Here θ̃ lies between θ and θ0. Now, by Assumption 4.3(c) and 4.7(a), and Lemma B.1,

we have

⟨δ0, gθ̂n
− gθ0⟩ =

1
2
(θ̂n − θ0)

⊺A2(θ̂n − θ0) + Op(∥θ̂n − θ0∥2).

By Assumption 4.3(c) and Lemma B.1,

∥gθ̂n
− gθ0∥

2
n = (θ̂n − θ0)

⊺A1,n(θ̂n − θ0) + Op(∥θ̂n − θ0∥2),

where A1,n = (1/n)∑n
i=1 g(1)θ0

(xi)g(1)θ0
(xi)

⊺. Given Assumption 4.5(b) and 4.5(c), and

(B.2), (B.1) becomes

(θ̂n − θ0)
⊺A1,n(θ̂n − θ0) ≤ (θ̂n − θ0)

⊺A2(θ̂n − θ0) + Op(∥θ̂n − θ0∥2)

+Op(n−1/2)∥gθ̂n
− gθ0∥n

(θ̂n − θ0)
⊺A(θ̂n − θ0) ≤ Op(∥θ̂n − θ0∥2) +Op(n−1/2)∥gθ̂n

− gθ0∥n

113



Write the smallest eigenvalue of A be a. Since A is strictly positive definite, a > 0.

Thus,

0 ≤ a∥θ̂n − θ0∥2 ≤ Op(∥θ̂n − θ0∥2) +Op(n−1/2)∥gθ̂n
− gθ0∥n.

And by Assumption 4.3(a),

a + Op(1) ≤
Op(n−1/2)

∥θ̂n − θ0∥
,

which implies ∥θ̂n − θ0∥ = Op(n−1/2). By Assumption 4.3(a),

∥gθ̂n
− gθ0∥n = Op(n−1/2).

Lemma B.2. Assume that εi’s are uniformly sub-gaussian random variables and zn is a func-

tion of x ∈ X such that ∥zn∥n = Op(n−1/2). Moreover, assume that Assumption 4.7(b)

holds. Let

δ̃n = arg min
δ∈H

[
1
n

n

∑
i=1
{ỹi − δ(xi)}2 + λ2

n Jv(δ)

]
, (B.4)

ỹi = δ0(xi) + zn(xi) + εi for i = 1, . . . , n. Suppose v > (2α)/(2 + α) and λn ≍ n−1/(2+α).

(i) If J(δ0) > 0, we have

∥δ̃n − δ0∥n = Op

(
n−1/(2+α)

)
.

(ii) If J(δ0) = 0, J(δ) > 0 for all δ ∈ H, and 4v < (2 + α)(2v− 2α + vα), we have

∥δ̃n − δ0∥n = Op

(
n−1/2

)
.

Proof of Lemma B.2. The proof is similar to the proof of Theorem 10.2 of Van De Geer

(2000), with modification to cope with the contamination zn.

Case (i): Suppose J(δ̃n) > J(δ0). Since δ̃n minimizes (B.4), combining with Assumption

4.7(b) and Cauchy-Schwarz inequality,

∥δ̃n − δ0∥2
n + λ2

n Jv(δ̃n) ≤ Op(n−1/2)∥δ̃n − δ0∥1−α/2
n Jα/2(δ̃n) + λ2

n Jv(δ0)

+Op(n−1/2)∥δ̃n − δ0∥n.
(B.5)

Now, we look at two cases (a) J(δ0) = 0 and (b) J(δ0) > 0.
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Case (i)(a): Suppose J(δ0) = 0. (B.5) becomes

∥δ̃n − δ0∥2
n + λ2

n Jv(δ̃n) ≤ Op(n−1/2)∥δ̃n − δ0∥1−α/2
n Jα/2(δ̃n) +Op(n−1/2)∥δ̃n − δ0∥n.

Either

∥δ̃n − δ0∥2
n + λ2

n Jv(δ̃n) ≤ Op(n−1/2)∥δ̃n − δ0∥n, (B.6)

or

∥δ̃n − δ0∥2
n + λ2

n Jv(δ̃n) ≤ Op(n−1/2)∥δ̃n − δ0∥1−α/2
n Jα/2(δ̃n). (B.7)

Both (B.6) and (B.7) lead to ∥δ̃n − δ0∥n = Op(n−1/2).

Case (i)(b): Suppose J(δ0) > 0. Let An be the event that the last term of (B.5) is of the

largest term of the right hand side of (B.5). On An, we have λ2
n ≤ Op(n−1/2)∥δ̃n− δ0∥n

and

∥δ̃n − δ0∥2
n + λ2

n Jv(δ̃n) ≤ Op(n−1/2)∥δ̃n − δ0∥n,

which leads to ∥δ̃n − δ0∥n ≤ Op(n−1/2). Thus, λn ≤ Op(n−1/2). However, λn ≍

n−1/(2+α). Thus, Pr(An) → 0 as n → ∞. Lemma B.2 follows from the proof of

Theorem 10.2 of Van De Geer (2000) by focusing on Ac
n.

Case (ii): Suppose J(δ̃n) ≤ J(δ0) and J(δ0) > 0. For this case, we have

∥δ̃n − δ0∥2
n ≤ Op(n−1/2)∥δ̃n − δ0∥1−α/2

n Jα/2(δ0) + λ2
n Jv(δ0) +Op(n−1/2)∥δ̃n − δ0∥n.

(B.8)

Let Bn be the event that the last term of (B.8) is of the largest term of the right hand

side of (B.8). Using similar argument of An, we can show that Pr(Bn)→ 0 as n→ ∞.

The rest follows from the proof of Theorem 10.2 of Van De Geer (2000) by looking into

Bc
n.

Proof of Theorem 4.2. This follows from Theorem 4.1 and Lemma B.2.

Proof of Corollary 4.1. The key idea is the same as Section 10.1.1 of Van De Geer (2000)

by rewriting δ = δ1 + δ2 for δ ∈ H, where δ1 = ∑m
k=1 ψk and δ2 =

∫ 1
0 βuϕ̃u such that

⟨ψk, ϕ̃u⟩n = 0 for k = 1, . . . , m and 0 < u ≤ 1. One choice of {ψk} and {ϕ̃u} can be

found in Example 9.3.2 of Van De Geer (2000).
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Now, δ̂n can be estimated via two separate estimations. To see that, we write the

least square criterion in (4.3) as

∥y− gθ̂n
− δ∥2

n = ∥y− gθ̂n
− δ0∥n + ∥δ0 − δ∥2

n + 2⟨y− gθ̂n
− δ0, δ0 − δ⟩n.

Here, the first term is a constant with respect to δ. The second term can be written as

∥δ0 − δ∥2
n = ∥δ0,1 − δ1∥2

n + ∥δ0,2 − δ2∥2
n

where

δ0,1 ∈ H1 = {
m

∑
k=1

αkψk : αk ∈ R} (B.9)

and

δ0,2 ∈ H2 = H \H1.

And

⟨y− gθ̂n
− δ0, δ0 − δ⟩n = ⟨ε + gθ0 − gθ̂n

, δ0,1 − δ1⟩n + ⟨ε + gθ0 − gθ̂n
, δ0,2 − δ2⟩n.

The estimator can be written as δ̂n = δ̂1,n + δ̂2,n, where

δ̂1,n = arg min
δ1∈H1

{
∥δ1 − δ0,1∥2

n − 2⟨ε + gθ0 − gθ̂n
, δ1 − δ0,1⟩n

}
δ̂2,n = arg min

δ2∈H2

{
∥δ2 − δ0,2∥2

n − 2⟨ε + gθ0 − gθ̂n
, δ2 − δ0,2⟩n + λ2

n J2(δ2)
}

.

As for δ̂1,n, by Theorem 4.1, we have

∥δ̂1,n − δ0,1∥2
n ≤ 2⟨ε, δ̂1,n − δ0,1⟩n + 2⟨gθ0 − gθ̂n

, δ̂1,n − δ0,1⟩n

≤ 2⟨ε, δ̂1,n − δ0,1⟩n +Op(n−1/2)∥δ̂1,n − δ0,1∥n

Applying Theorem 9.1 of Van De Geer (2000), ∥δ̂1,n − δ0,1∥n = Op(n−1/2). As for

δ̂2,n, we simply apply Lemma B.2. Note that with smallest eigenvalue of
∫
ψψ⊺dFn

bounded away from zero, Assumption 4.7(b) is fulfilled forH2 (Mammen, 1991). Then

the corollary follows.
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Appendix C

Supplement to “Automatic Estimation
of Flux Distributions of Astrophysical
Source Populations"

C.1 Technical Details
To prove Theorem 5.1, the five assumptions made in Section 2 of Kiefer and Wolfowitz

(1956) need to be verified. This is done in the following.

Assumption C.1. It is required that f (y;θ) is a density with respect to a σ-finite measure µ

on a Euclidean space of which y is the generic point.

Proof. This condition is satisfied since the underlying distribution is discrete.

Define a metric on the space Θ by setting

δ(θ1,θ2) =
B

∑
j=1
| arctan β1,j − arctan β2,j|+

B

∑
j=1
| arctan τ1,j − arctan τ2,j|.

Following Kiefer and Wolfowitz (1956), the parameter space is compactified by defin-

ing Θ̄ to be the completion of Θ by adding all the limits of its Cauchy sequences

in the sense of the above metric. Unless otherwise mentioned, all limits involving θ

are understood to be with respect to δ. The Euclidean norm is denoted by | · |E. To

verify the next assumption of Kiefer and Wolfowitz (1956), two auxiliary lemmas are

introduced.
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Lemma C.1. For sufficiently large β j and a fixed y ∈N0, we have

β j(Aτj)
β j

∫ Aτj+1

Aτj

ty−β j−1e−tdt < 2(Aτj)
ye−Aτj ,

where τ ∈ Θ.

Proof. Note that β j(Aτj)
β j
∫ Aτj+1

Aτj
ty−β j−1e−tdt ≤ β j(Aτj)

β j Γ(y− β j, Aτj). Thus, by The-

orem 2.2 of Borwein and Chan (2009), for a sufficiently large β j and a fixed y ∈N0,

Γ(y− β j, Aτj) ≤
−(Aτj)

y−β j e−Aτj

y− β j

and consequently β j(Aτj)
β j Γ(y− β j, Aτj) < 2(Aτj)

ye−Aτj .

Lemma C.2. If |τ |E < ∞, lim|β|E→∞ f (y;θ) exists.

Proof. Note that if |β|E → ∞, there exists a j such that β j → ∞. We focus on that one

particular j. Let gj(y;θ) = β j(Aτj)
β j
∫ Aτj+1

Aτj
ty−β j−1e−tdt. In order to show that the limit

of f exists, we only have to show that the limit of g exists (since it generalizes to any j

with β j → ∞). Note that, instead of considering gj, we look at hj(y;θ) = log gj(y;θ).

We define hj,1(y;θ) = log{β j(Aτj)
β j} and hj,2(y;θ) = log

∫ Aτj+1
Aτj

ty−β j−1e−tdt. Then we

have

∂hj(y;θ)
∂β j

=
∂hj,1(y;θ)

∂β j
+

∂hj,2(y;θ)
∂β j

=

{
1
β j

+ log(Aτj)

}
+

−
∫ Aτj+1

Aτj
ty−β j−1e−t(log t)dt∫ Aτj+1

Aτj
ty−β j−1e−tdt


∂2hj,1(y;θ)

∂β2
j

= − 1
β2

j

∂2hj,2(y;θ)

∂β2
j

=

∫ Aτj+1
Aτj

ty−β j−1e−t(log t)2dt∫ Aτj+1
Aτj

ty−β j−1e−tdt
−


∫ Aτj+1

Aτj
ty−β j−1e−t(log t)dt∫ Aτj+1

Aτj
ty−β j−1e−tdt


2

Note that ∂2hj,2(y;θ)/∂β2
j = Var(log(T)), where T is a random variable with density

r(t) =
ty−β j−1e−t∫ Aτj+1

Aτj
sy−β j−1e−sds

, Aτj < t < Aτj+1.
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Thus ∂2hj,2(y;θ)/∂β2
j ≥ 0 and ∂hj,2(y;θ)/∂β j is increasing with respect to β j. It follows

then that ∂hj,2(y;θ)/∂β j is bounded from above since hj is bounded from above by

Lemma C.1. Consequently, limβ j→∞ ∂hj,2(y;θ)/∂β j exists.

Assumption C.2 (Continuity Assumption). It is possible to extend the definition of f (y;θ)

so that the range of θ will be Θ̄ and so that, for any {θi} and θ∗ in Θ̄, θi → θ∗ implies

f (y;θ)→ f (y;θ∗)

except perhaps on a set of y whose probability is 0 according to the probability density f (y;θ0).

(The exceptional y-set may depend on θ∗ and f (y;θ∗) need not be a probability density func-

tion.)

Proof. First, f (y;θ) is continuous with respect to θ ∈ Θ and thus f automatically

fulfills the above continuity requirement for θ ∈ Θ. Define ∂Θ = Θ̄\Θ. Now, we

will show that we can define f (y;θ∗), where θ∗ ∈ ∂Θ, as limθ→θ∗ f (y;θ). It is thus

only required to show the existence of this limit. Notice that limθ→θ∗ f (y;θ) exists for

boundary points θ ∈ ∂Θ with |θ|E ̸= ∞. The remaining case |θ|E = ∞ can be sepa-

rated into three sub-cases: (i) |β|E = ∞ and |τ |E < ∞, (ii) |β|E < ∞ and |τ |E = ∞,

and (iii) |β|E = ∞ and |τ |E = ∞.

1. Suppose |β|E = ∞ and |τ |E < ∞. From Lemma C.2, lim|β|E→∞ f (y;θ) exists.

2. Suppose |β|E < ∞ and |τ |E = ∞. This implies that there exists at least one j

such that τj = ∞. Here, we have

0 ≤ aβ j

∫ Ab

Aa
ty−β j−1e−tdt ≤ aβ j

∫ ∞

Aa
ty−β j−1e−tdt,

where 0 < a < b. Taking the limit on the right-hand side, using the l’Hospital

rule, it follows that

lim
a→∞

∫ ∞
Aa ty−β j−1e−tdt

a−β j
= lim

a→∞

Ay−β j−1τ
y
j e−Aa

β j
= 0.

Since 0 ≤ (c/a)β j−1 ≤ 1 for all 0 < c < a, lim|τ |E→∞ f (y;θ) exists.

3. |β|E = ∞ and |τ |E = ∞. The existence of lim|θ|E→∞ f (y;θ) is basically implied

by Lemma C.1.
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The proof is complete.

Assumption C.3. For any θ in Θ̄ and any ρ > 0, w(y;θ, ρ) is a measurable function of y,

where

w(y;θ, ρ) = sup f (y;θ′),

the supremum being taken over all θ′ in Θ̄ for which δ(θ,θ′) < ρ.

Proof. The statement is implied by the continuity of f (y;θ) with respect to θ ∈ Θ̄.

Assumption C.4 (Identifiability Assumption). If θ in Θ̄ is different from θ0, then, for at

least one x, ∫ x

−∞
f (y|θ)dµ ̸=

∫ x

−∞
f (y|θ0)dµ,

the integral being over those y all of whose components ≤ the corresponding of x.

Proof. In the present case, µ is the counting measure and thus, for all θ ∈ Θ̄, if

f (y|θ) ̸= f (y|θ0) for at least one y ∈ N0, it fulfills the above assumption. This is

obviously true for θ ∈ Θ. Since θ0 ∈ Θ, it is also easy to see that the above is true for

θ ∈ Θ̄.

Assumption C.5 (Integrability Assumption). For any θ in Θ̄ we have

lim
ρ↓0

E

[
log

w(Y;θ, ρ)

f (Y;θ0)

]+
< ∞,

where w is defined in Assumption C.3.

Proof. Since f (y;θ) is continuous and bounded over Θ̄, log w(y;θ, ρ) is bounded from
above. Now, we want to show that E| log f (Y;θ0)| < ∞. Since f (y;θ0) is bounded
from above, we only need E{log( f (Y;θ0)} > −∞, which can be shown as follows.
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Note that, for any θ ∈ Θ,

E[log{ f (Y;θ)}] = E

log

 B

∑
j=1

(
τj−1

τj

)β j−1 β j(Aτj)
β j

Y!

∫ Aτj+1

Aτj

tY−β j−1e−tdt




≥
B

∑
j=1

log


(

τj−1

τj

)β j−1

β j(Aτj)
β j

+ E

log


∫ Aτj+1

Aτj
tY−β j−1e−tdt

Y!





≥
B

∑
j=1

log


(

τj−1

τj

)β j−1

β j(Aτj)
β j

+
B

∑
j=1

E

log

∫ ∞
Aτj

tY−β j−1e−tdt

Y!


=

B

∑
j=1

log


(

τj−1

τj

)β j−1

β j(Aτj)
β j

+
B

∑
j=1

E

[
log
{Γ(Y− β j, Aτj)

Γ(Y + 1)

}]

Here,

Γ(Y− β j, Aτj)

Γ(Y + 1)
=

Γ(Y− β j, Aτj)

Γ(Y− β j)

Γ(Y− β j)

Γ(Y + 1)
= Q(Y− β j, Aτj)

Γ(Y− β j)

Γ(Y + 1)
,

where Q is the regularized incomplete gamma function. Now, we state the asymptotic

expansions of the regularized incomplete gamma function and the ratio of two gamma

functions: When a→ ∞,

Q(a, z) ∝ 1− a−a−1/2ea−zza
√

2π

{
1 + O

(
1
a

)}
,

Γ(a + b)
Γ(a + c)

∝ ab−c
{

1 + O
(

1
a

)}
.

Applying these asymptotic expansions for large y,

Γ(y− β j, Aτj)

Γ(y + 1)
∝ y−β j−1

{
1 + O

(
1
y

)}
.

Thus, in order to bound E[log{Γ(Y− β j, Aτj)/Γ(Y + 1)}], we only have to bound

E{log(Y)1{Y≥M}} away from ∞ for sufficiently large M. Here, we define log 0 ×

0 = 0. Now, we only have to consider the boundedness of ∑∞
y=M log(y)/yβ j+1 for

j = 1, . . . , B. It is bounded whenever β j > 0, which is fulfilled by any θ ∈ Θ. Thus,

E{log( f (Y;θ0)} > −∞ since θ0 ∈ Θ.

The statement of Theorem 5.1 follows now from Section 2 of Kiefer and Wolfowitz

(1956).
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