How to Make a Planet Karin Öberg (UVa/CfA) Chunhua Qi, David Wilner, Sean Andrews, Ruth Murray-Clay (CfA), Edwin Bergin (University of Michigan), Ewine van Dishoeck (Leiden)

6

[Andrews et al. 2011, Kraus et al. 2011]

DiSCS: Disk Imaging Survey of Chemistry with SMA

[Öberg et al. 2010a, 2011c]

Protoplanetary disks compositions

CO

 H_2

 H_2

 H_2

 H_2

Planet formation through core accretion

The physical effects of snowlines on planet formation

Icy grains are stickier than bare grains.

Volatile molecules (except for H₂) are ~2-3 times more abundant than silicate grains (1) \rightarrow dramatic grain column density increases at snowlines + coldfinger effects (2) \rightarrow enhanced planet formation.

Pressure bumps may even trap material exterior to the snowline (3).

H₂O is the most abundant volatile \rightarrow planet formation should be the most efficient right outside of the H₂O snowline.

Gas giants should form near snowlines

- Simulations reveal steep increase in dust surface density at H₂O snowline.
- Planetesimal formation most efficient somewhat exterior to the snowline.
- Largest planets, i.e. gas giants, should form there.

What if H₂O is not the most common volatile?

Some stars with exo-planets have stellar C/O ratios larger than in the sun.

In these systems CO and CO₂ may form more important snowlines than H₂O, potentially changing the locations of gas giant formation.

Non-stellar C/O ratios in gas giants

Atmospheric modeling of hot Jupiters reveal elemental deviations from Stellar values.

Enhanced C/O has so far been difficult to explain, especially in Wasp-12b where C/H is "normal".

Chemical Effects of Snowlines on Bulk Planet Compositions

Assuming interstellar molecular abundances, the C/O ratio between the CO₂ and CO snowlines will be ~1.

0

0

If a gas giant accretes its core from solids and envelope from gas, its atmosphere may achieve the same ratio assuming now planetesimal pollution or core dredging.

[[]Öberg et al. 2011d]

Gas Giant C/O Ratios

Snow-lines and bulk planet compositions

- Planet core formation is regulated by formation location w.r.t. major condensation front
- The rate of planet core formation with respect to gas dissipation determines which type of planet forms (rocky planet, gas giant, ice giant)
- Gas giant envelope compositions can deviate from stellar compositions because of accretion of gas depleted of certain elements, and because of pollution by certain types of solids.

Delivery of volatiles to Earth from Comets

Deuterium enrichment expected at low temperatures because: XH +HD \leftrightarrow XD + H₂ Δ H < 0, but Δ H is "small"

Comet Compositions

Primitive, dirty snowballs; dominated by water, and rich in organic molecules.

[Mumma & Charnley, 2011]

Templates of volatile-rich planetesimals in the Solar Nebula. Possible sources of volatiles on inner solar system planets. Chemically diverse, from organics rich to organics poor.

Delivery of volatiles from icy planetesimals

CH₃OH Ice Photochemistry as a Pathway to Prebiotic Molecules

[Öberg et al. 2009d]

Organic formation and the CO snowline

CO(g)

H₂CO and CH₃OH only form beyond the CO snowline.

Complex organics dependent on CH₃OH ice chemistry will only form in the outer disk.

Planetestimals need to accrete outer disk material to become rich in prebiotic molecules.

H₂CO and the CO snowline in HD 163296

Multi-transitional CO data (J=2-1, 3-2, 6-5 and four isotopologues) can only be fitted with CO freeze-out outside of 170 AU, corresponding to a freeze-out temperature of ~19 K

Consistent with H₂CO ring radius

H₂CO formation from CO confirmed?

[Qi, d'Alesssio, Öberg et al. 2011, Qi, Öberg et al. 2012 in prep.]

The Role of Snowlines in Shaping Planet Formation

H₂O snowline location key for where rocky planet, gas giant and ice giants form.
The bulk properties of gas giant envelopes depend on CO and H₂O snowlines.
The prebiotic ice chemistry is most efficient outside of the CO snow-line and comets seeding life likely originating in the outer solar system.
Low-mass stars are likely more hospitable to prebiotic chemistry since CO snowlines are closer to the planet-forming zone.

S O