Kepler and the Search for Habitable Planets

David W. Latham

Harvard-Smithsonian Center for Astrophysics
5 September 2012

Astronomers have developed two clever (but indirect) methods to find exoplanets

Astronomers have developed two clever (but indirect) methods to find exoplanets

Astronomers have developed two clever (but indirect) methods to find exoplanets

Calculate Planet Density and Infer Composition:
Gas giant (Jupiter), Ice giant (Neptune), or Rocky planet (Earth)

Kepler Mission Concept

- Kepler is optimized to find transiting Earth-like planets
- Radius down to $1 R_{\oplus}$
- Sun-like host star
- Orbit out to $1 \mathrm{AU}=1$ year
- Mission characteristics
- 150,000 selected targets
- Earth-trailing orbit for stability
- Stare at one FOV for 3.5 years

Candidates as of June 2010 Q0-Q1: May-June

Candidates as of Feb 2011

Q0-Q5: May 2009-Jun 2010

Candidates as of Dec 2011

$$
\text { Q0-Q6: May } 2009 \text { - Sep } 2010
$$

Size Distribution

HZ Candidates

48 with T_{eq} between 185 and 303 K

The Multiples

P [days]	$: \quad 5.369$	$\mathrm{a}_{1} \cdot \sin (\mathrm{i})[1 \mathrm{E}-3 \mathrm{au}]=0.00626$
e	$:-0.000$	$\mathrm{f}(\mathrm{m}) \quad[1 \mathrm{E}-9 \mathrm{Msol}]=0.00114$
ω [deg.]	$: 0.0$	$\mathrm{~m}_{1}[\mathrm{Msol}]=0.31$
phi 0	$: 54524.91$	$\mathrm{~m}_{2} \cdot \sin (\mathrm{i})=0.05007\left[\mathrm{M}_{\mathrm{jup}}\right], 0.925\left[\mathrm{M}_{\text {nept }}\right], 15.91\left[\mathrm{M}_{\text {earth }}\right]$
$\mathrm{K} 1[\mathrm{~m} / \mathrm{s}]$	$: 12.7$	a (relative orbit $)[\mathrm{au}]=0.041$

P [days]	$: 66.641$	$\mathrm{a}_{1} \cdot \sin (\mathrm{i})[1 \mathrm{E}-3 \mathrm{au}]=0.01248$
e	$: 0.271$	$\mathrm{f}(\mathrm{m}) \quad[1 \mathrm{E}-9 \mathrm{Msol}]=0.00006$
ω [deg.]	$: 24.5$	$\mathrm{~m}_{1}[\mathrm{Msol}]=0.31$
phi $_{0}$	$: 54538.75$	$\mathrm{~m}_{2} \cdot \sin (\mathrm{i})=0.01861\left[\mathrm{M}_{\mathrm{jup}}\right], 0.344\left[\mathrm{M}_{\text {nept }}\right], 5.92\left[\mathrm{M}_{\text {earth }}\right]$
$\mathrm{K} 1[\mathrm{~m} / \mathrm{s}]$	$: 2.1$	a (relative orbit)$[\mathrm{au}]=0.218$

HARPS N Collaboration:

Geneva, CfA, UK, INAF-TNG

HARPS-N first light April 2012

Transits Allows Studies of the Atmospheres That Are Not Possible for Non-Transiting Planets

HD 189733 Spitzer IRAC 8μ Knutson et al Nature 2007

Phase curve

HD 189733

 Spitzer IRAC 8μ Knutson et al Nature 2007Phase curve

Spitzer spectrum of the most favorable transiting Hot Jupiter is shaped by water absorption

The MEarth Project

- A ground-based survey for super-Earths in the Habitable Zone
- Target 2000 M dwarfs, the coolest and smallest stars
- Eight robotic 18 " telescopes at SAO's Whipple Observatory
- Led by David Charbonneau

2.7 Earth radii 6.6 Earth masses 1.6 day period 560 K surface

A water-rich solid planet?

Gliese 1214b: a super-Earth transiting an M dwarf

Thanks to Zach Berta

Current Results

Flat transmission spectrum of GJ 1214b (Berta et al. 2012)

VLT (Bean et al. 2010) Spitzer (Désert et al. 2011)
CFHT (Croll et al. 2011) Keck (Crossfield et al. 2011) VLT/Magellan (Bean et al. 2011) WFC3 (this work)
\downarrow (stellar variability in NIR)

- solar
$100 \% \mathrm{H}_{2} \mathrm{O}$

- Flat spectrum.
- No evidence of strong absorptions features.
- Result consistent with opaque atmosphere, >50\% water by mass.

T^{38}

Transiting Exoplanet Survey Satellite
Dr. George R. Ricker, PI, MIT

\bullet
In Concept Study Phase
Report due 21 Sep 2012

Research focus:
Does the diversity of planetary environments map onto a diversity of biochemistries?

Super Earths and Life sub-project:
Study the diversity of global geochemistry on Super-Earths and Earth analogs.

