
Figure 1 Observed solar lightcurves from flaring region (red asterisks) and nearby
background region (black crosses). XRT data provided by P. Grigis.

• We develop a set of simulated lightcurves to test three eventdetection algo-
rithms.

• Simulated lightcurves with zero events are used to calibrate the algorithms
to optimize false positives.

• Compared to the other two algorithms, Segment Finder appears more sen-
sitive to small (peak < 10 counts) events.

• In our sample of 15 observed Hinode XRT lightcurves, quiet Sun bright
point events are distributed as a powerlaw with measured index between 1.6
and 1.8.

• To do: investigate the use of a robust Bayesian wavelet-based event detec-
tion method, developed by Alex Blocker.

V. Summary & Future Work

Figure 3 Calibrating the event detection algorithms to optimize false positives,
using the simulated lightcurves with zero events. We expect∼2 false positives
at the 99.7% significance level.Right Average number of false positives versus
threshold normalization for Detect Peak.Middle Average number of false posi-
tives versus difference threshold S/N for Segment Finder.Left Average number
of false positives versus threshold normalization for the combined algorithm.

Figure 4 Performance of the algorithms on observed and simulated lightcurves.
Left Number versus luminosity (DN/s) of detected events in 15 lightcurves ob-
served with Hinode XRT, with sensitivity parameters in eachalgorithm set to op-
timize false positives. Fitting the curves above DN/s = 0.3 gives the following
powerlaw index values: 1.81 (Segment Finder), 1.77 (DetectPeak), 1.59 (com-
bined).Right Number versus peak intensity of detected events in 1000 simulated
lightcurves, with sensitivity parameters in each algorithm set to optimize false
positives. The black line shows the histogram of all peak intensities in the sim-
ulated data set. The algorithms perform equally well for bright events, but the
probability of detection decreases for weaker events. Thisdecrease is due to a de-
crease in sensitivity to weak events (for Detect Peak and the combined algorithm),
and also because weak events are undetected when they occur over the same time
interval as a stronger event.
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Detecting Bright Points in Hinode XRT Lightcurves

Figure 2 Simulated lightcurve with 64 events added to a constant background.
Events are modeled as the product of a slanted line and a modified Lorentzian,
and event intensities are chosen randomly from a powerlaw distribution with index
1.8.

Goal Event detection in presence of variable background (e.g. Figure 1), without
knowledge of background. Identify start and end time of event.

Three IDL event detection codes:

1. Detect Peak Smooths lightcurve with fixed-width Gaussian, looks at where
lightcurve derivative crosses given thresholds to find event.

2. Segment Finder Multi-scale Loess smoothing on lightcurve, segments lightcurve
between consecutive minima, then merges adjacent segmentsif adjacent ex-
trema are statistically indistinguishable.

3. Combined A combination of the first two methods: uses multi-scale Loess
smoothing and identifies events with derivative threshold crossing method.

One of the greatest challenges in solar coronal physics is toobtain a statistically
complete sample of short duration events like coronal bright points. Such samples
are necessary to fully characterize the properties of theseevents and understand
the physical basis of such phenomena. Datasets are best acquired automatically,
without manual intervention, in order to avoid introducingobserver biases. We
evaluate several algorithms for detecting flare events in time series data. One al-
gorithm determines where derivatives of the Gaussian-smoothed lightcurve cross
certain thresholds. A second algorithm segments the Loess-smoothed lightcurve
between consecutive minima, then joins adjacent segments if their extrema are
not statistically distinguishable. A third algorithm is a hybrid of the first two. We
generate simulated datasets with similar properties to observed Hinode XRT quiet
Sun lightcurves and test each algorithm on these datasets. The performance of
each algorithm on the simulated lightcurves is scored according to the rates of
false positive (Type I) and false negative (Type II) errors.We use these results to
optimize the parameter values of each algorithm. We comparethe performances
of the algorithms and evaluate the efficiency with which theyare able to detect
small events. Such evaluations are relevant to properly interpret the observed
steepening of the slope of the solar flare energy distribution at small energies.

To test the performance of the event detection algorithms and find optimal val-
ues for the algorithm parameters, we make simulated lightcurves with 0, 1, 2,
4, 8, 16, 32, and 64 events in 1896 time bins (to match the length of our ob-
served lightcurves). The events are the product of a slantedline and a modified
Lorentzian (PINTofALEmk_slant routine). The event peaks are chosen ran-
domly from a powerlaw distribution with index 1.8, and the core widths are chosen
randomly from a Gaussian distribution. The other event parameters (position of
peak, rising angle, and beta-profile index) are chosen randomly from uniform dis-
tributions. The events are added to a constant background. The mean value of the
lightcurve is set to match that of the observed data, and Poisson noise is added.
For each number of events we have 1000 simulated lightcurves. An example with
64 events is shown in Figure 2.

Each of the three event detection codes has one parameter primarily controlling
the sensitivity: for Detect Peak and the combined algorithm it is a normalization
applied to the threshold values, and for Segment Finder it isthe difference thresh-
old S/N for deciding if adjacent extrema are statistically distinguishable. (For
Detect Peak and the combined algorithm, increasing the threshold normalization
results in a looser detection criteria and therefore more false positives.) To find
the values of these parameters which optimize false positives, we run each code
on the simulated lightcurves with zero events, varying the parameter values. The
results are shown in Figure 3. Based on the length of the simulated lightcurves,
we would expect∼2 false positives at the 99.7% significance level. Therefore, we
choose optimal values for the event detection codes of

• Detect Peak: threshold normalization = 6× 10−5

• Segment Finder: difference threshold S/N = 3

• Combined: threshold normalization = 5× 10−4

Using the optimal parameter values determined in Figure 3, we run the algorithms
on a set of 15 lightcurves observed with Hinode XRT (Figure 4,left), and on
the set of simulated lightcurves with 64 events (Figure 4, right). The observed
lightcurves were manually selected based on the occurrenceof one event, but
we have extended the analysis to include all possible events. Each of the 15
bright points is widely separated, so the events are independent. Fitting the log-
distributions of observed events, we find powerlaw indices of ≈ 1.6-1.8.
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