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Abstract

One of the greatest challenges in solar coronal physicsabtain a statistically
complete sample of short duration events like coronal bpgints. Such sample
are necessary to fully characterize the properties of teesats and understan
the physical basis of such phenomena. Datasets are besteacgutomatically,
without manual intervention, in order to avoid introduciolgserver biases. W
evaluate several algorithms for detecting flare eventsnie tseries data. One a
gorithm determines where derivatives of the Gaussian-sineadightcurve cross
certain thresholds. A second algorithm segments the Leesssthed lightcurve
between consecutive minima, then joins adjacent segmegtitsir extrema are
not statistically distinguishable. A third algorithm is phrid of the first two. We
generate simulated datasets with similar properties tervies Hinode XRT quiet
Sun lightcurves and test each algorithm on these datasé#s.p@rformance of
each algorithm on the simulated lightcurves is scored aliogrto the rates of
false positive (Type 1) and false negative (Type Il) errdie use these results t
optimize the parameter values of each algorithm. We comiper@erformances
of the algorithms and evaluate the efficiency with which they able to detec
small events. Such evaluations are relevant to properrpnét the observer
steepening of the slope of the solar flare energy distrinutesmall energies.

I. Event Detection Algorithms

Goal Event detection in presence of variable background (egurEil), without
knowledge of background. Identify start and end time of éven

Three IDL event detection codes:

1. Detect Peak Smooths lightcurve with fixed-width Gaussian, looks at veher
lightcurve derivative crosses given thresholds to find even

2. Segment Finder Multi-scale Loess smoothing on lightcurve, segments tighte
between consecutive minima, then merges adjacent segifatijacent ex-
trema are statistically indistinguishable.

3. Combined A combination of the first two methods: uses multi-scale lsoes
smoothing and identifies events with derivative threshetésing method.
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Figure 1 Observed solar lightcurves from flaring region (red askeiand nearby
background region (black crosses). XRT data provided by@iS

Colibrating threshold normalization in Detect Peak

II. Simulated Lightcurves

To test the performance of the event detection algorithnasfend optimal val-
ues for the algorithm parameters, we make simulated lighesuwith 0, 1, 2,
4, 8, 16, 32, and 64 events in 1896 time bins (to match the keafjpur ob-
served lightcurves). The events are the product of a slditiechnd a modified
Lorentzian (PINTofALEnk_sl ant routine). The event peaks are chosen ri
domly from a powerlaw distribution with index 1.8, and theewidths are chosel
randomly from a Gaussian distribution. The other eventpetars (position of
peak, rising angle, and beta-profile index) are chosen mrahdfsom uniform dis-
tributions. The events are added to a constant backgroureimiean value of the
lightcurve is set to match that of the observed data, and &wissise is added
For each number of events we have 1000 simulated lightcuAresxample with
64 events is shown in Figure 2.
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Figure 2 Simulated lightcurve with 64 events added to a constant vaciad
Events are modeled as the product of a slanted line and a mwditirentzian,
hosen randomly from a
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lll. Calibrating with False Positives

Each of the three event detection codes has one paramatearilyi controlling
the sensitivity: for Detect Peak and the combined algorithis & normalization
applied to the threshold values, and for Segment Findettigglifference thresh
old S/N for deciding if adjacent extrema are statisticaligtidguishable. (Fol
Detect Peak and the combined algorithm, increasing thetthlésiormalization
results in a looser detection criteria and therefore molsefaositives.) To finc
the values of these parameters which optimize false pesitiwe run each cod
on the simulated lightcurves with zero events, varying themeter values. Th
results are shown in Figure 3. Based on the length of the sitedillightcurves
we would expect-2 false positives at the 99.7% significance level. Therefoee
choose optimal values for the event detection codes of

o Detect Peak: threshold normalization 610
e Segment Finder: difference threshold S/N = 3

o Combined: threshold normalization 5107

Calibrating difference threshold S/N in Segment Finder
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IV. Algorithm Performance

Using the optimal parameter values determined in Figures3um the algorithms
on a set of 15 lightcurves observed with Hinode XRT (Figurdeft), and on
the set of simulated lightcurves with 64 events (Figure ghtii. The observec
lightcurves were manually selected based on the occurrehome event, bur
we have extended the analysis to include all possible evelteh of the 15
bright points is widely separated, so the events are indign Fitting the log-
distributions of observed events, we find powerlaw indides d.6-1.8.
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Figure 4 Performance of the algorithms on observed and simulatetclighes.
Left Number versus luminosity (DN/s) of detected events in 16tigrves ob-
served with Hinode XRT, with sensitivity parameters in ealforithm set to op
timize false positives. Fitting the curves above DN/s = &g the following
powerlaw index values: 1.81 (Segment Finder), 1.77 (Defeatk), 1.59 (com
bined). Right Number versus peak intensity of detected events in 1000laterds
lightcurves, with sensitivity parameters in each algoritet to optimize fals¢
positives. The black line shows the histogram of all peakrisities in the sim
ulated data set. The algorithms perform equally well fogbtievents, but the
probability of detection decreases for weaker events. Taisease is due o a d
crease in sensitivity to weak events (for Detect Peak andafiined algorithm)
and also because weak events are undetected when they vecth@same time
interval as a stronger event.

V. Summary & Future Work

We develop a set of simulated lightcurves to test three edetection algo-
rithms.

Simulated lightcurves with zero events are used to cakhitae algorithms
to optimize false positives.

Compared to the other two algorithms, Segment Finder apprare sen-
sitive to small (peak < 10 counts) events.

In our sample of 15 observed Hinode XRT lightcurves, quiet Sright
point events are distributed as a powerlaw with measureskibétween 1.€
and 1.8.

To do: investigate the use of a robust Bayesian waveletebegent detec-
tion method, developed by Alex Blocker.
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